Modelling Residential Outdoor Thermal Sensation in Hot Summer Cities: A Case Study in Chongqing, China
Abstract
:1. Introduction
2. Methodology
2.1. Study Area and Field Measurement
2.2. Outdoor Thermal Sensation Model and Comparison of Accuracy for Predicting Outdoor Thermal Sensation
3. Results and Discussion
3.1. Weather Conditions
3.2. Thermal Sensation of Residents
3.3. Empirical Model Establishment
3.4. The Accuracies of Thermal Indices
3.5. Path Planning
3.6. Thermal Adaptation
3.7. Limitations and Future Work
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature
D | Globe Diameter, 0.15 m |
FP | False prediction |
F1 | Regression Constant of Air Temperature |
F2 | Regression Constant of Wind Speed |
F3 | Regression Constant of Relative Humidity |
F4 | Regression Constant of Mean Radiant Temperature |
F5 | Regression Constant of Solar Radiation Intensity |
F6 | Intercept of the Regression Model |
hr | Radiant heat transfer coefficient, 4.71 W/(m2·K) |
MTCV | Mean Thermal Comfort Vote |
MTSV | Mean Thermal Sensation Vote |
MTSVCQ | Predictive Chongqing Mean Thermal Sensation Vote |
MTSVNEW | Universal Predictive Mean Thermal Sensation Vote |
PET | Physiological Equivalent Temperature (°C) |
PMV | Predicted Mean Vote |
RH | Relative Humidity (%) |
SET* | Standard Effective Temperature (°C) |
SR | Solar Radiation Intensity (W/m2) |
Ta | Air Temperature (°C) |
Tg | Black Globe Temperature (°C) |
Tmrt | Mean Radiant Temperature (°C) |
To | Operative Temperature (°C) |
TP | True Prediction |
UTCI | Universal Thermal Climate Index |
VIF | Variance Inflation Factor |
va | Wind Speed (m/s) |
εg | globe emissivity, 0.95 |
Appendix A
References
- Åström, D.O.; Bertil, F.; Joacim, R. Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. Maturitas 2011, 69, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, J.K.; Kinney, P.L.; Metzger, K.B. Intra-urban vulnerability to heat-related mortality in New York City, 1997–2006. Health Place 2014, 30, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Epstein, Y.; Moran, D.S. Thermal comfort and the heat stress indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Coffel, E.D.; Horton, R.M.; de Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 2018, 13, 014001. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhang, Y.; Mao, Y.; Yang, Y.; Fu, C.; Fang, Z. Analysis of SET* and PMV to evaluate thermal comfort in prefab construction site offices: Case study in South China. Case Stud. Therm. Eng. 2021, 26, 101137. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; Copenhagen Danish Technical Press: Copenhagen, Denmark, 1970; p. 244. [Google Scholar]
- Huang, Z.; Gou, Z.; Cheng, B. An investigation of outdoor thermal environments with different ground surfaces in the hot summer-cold winter climate region. J. Build. Eng. 2020, 27, 100994. [Google Scholar] [CrossRef]
- Gagge, A.P.; Fobelets, A.P.; Berglund, L.G. A standard predictive index of human response to the thermal environment. ASHRAE Trans. 1986, 92, 709–731. [Google Scholar]
- Mayer, H.; Höppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H.; Iziomon, M. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef]
- Höppe, P. Different aspects of assessing indoor and outdoor thermal comfort. Energy Build. 2002, 34, 661–665. [Google Scholar] [CrossRef]
- Lenzholzer, S.; Klemm, W.; Vasilikou, C. Qualitative methods to explore thermo-spatial perception in outdoor urban spaces. Urban Clim. 2016, 23, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Cheung, P.K.; Jim, C. Subjective outdoor thermal comfort and urban green space usage in humid-subtropical Hong Kong. Energy Build. 2018, 173, 150–162. [Google Scholar] [CrossRef]
- Fang, Z.; Feng, X.; Liu, J.; Lin, Z.; Mak, C.M.; Niu, J.; Tse, K.-T.; Xu, X. Investigation into the differences among several outdoor thermal comfort indices against field survey in subtropics. Sustain. Cities Soc. 2019, 44, 676–690. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Baker, N.; Steemers, K. Thermal comfort in outdoor urban spaces: Understanding the human parameter. Sol. Energy 2001, 70, 227–235. [Google Scholar] [CrossRef]
- Ghani, S.; Mahgoub, A.O.; Bakochristou, F.; ElBialy, E.A. Assessment of thermal comfort indices in an open air-conditioned stadium in hot and arid environment. J. Build. Eng. 2021, 40, 102378. [Google Scholar] [CrossRef]
- Knez, I.; Thorsson, S.; Eliasson, I.; Lindberg, F. Psychological mechanisms in outdoor place and weather assessment: Towards a conceptual model. Int. J. Biometeorol. 2009, 53, 101–111. [Google Scholar] [CrossRef]
- Lai, D.; Zhou, C.; Huang, J.; Jiang, Y.; Long, Z.; Chen, Q. Outdoor space quality: A field study in an urban residential community in central China. Energy Build. 2014, 68 Pt. B, 713–720. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Zhou, D.; Yang, C.; An, H.; Teng, T. Comparison of Summer Outdoor Thermal Environment Optimization Strategies in Different Residential Districts in Xi’an, China. Buildings 2022, 12, 1332. [Google Scholar] [CrossRef]
- Mi, J.; Hong, B.; Zhang, T.; Huang, B.; Niu, J. Outdoor thermal benchmarks and their application to climate-responsive designs of residential open spaces in a cold region of China. Build. Environ. 2020, 169, 106592. [Google Scholar] [CrossRef]
- Sayad, B.; Alkama, D.; Ahmad, H.; Baili, J.; Aljahdaly, N.H.; Menni, Y. Nature-based solutions to improve the summer thermal comfort outdoors. Case Stud. Therm. Eng. 2021, 28, 101399. [Google Scholar] [CrossRef]
- Yu, H.; Fukuda, H.; Zhou, M.; Ma, X. Improvement Strategies for Microclimate and Thermal Comfort for Urban Squares: A Case of a Cold Climate Area in China. Buildings 2022, 12, 944. [Google Scholar] [CrossRef]
- Kong, L.; Lau, K.K.-L.; Yuan, C.; Chen, Y.; Xu, Y.; Ren, C.; Ng, E.Y.Y. Regulation of outdoor thermal comfort by trees in Hong Kong. Sustain. Cities Soc. 2017, 31, 12–25. [Google Scholar] [CrossRef]
- Cong, Y.; Zhu, R.; Yang, L.; Zhang, X.; Liu, Y.; Meng, X.; Gao, W. Correlation Analysis of Thermal Comfort and Landscape Characteristics: A Case Study of the Coastal Greenway in Qingdao, China. Buildings 2022, 12, 541. [Google Scholar] [CrossRef]
- Abaas, Z.R. Impact of development on Baghdad’s urban microclimate and human thermal comfort. Alex. Eng. J. 2020, 59, 275–290. [Google Scholar] [CrossRef]
- Chokhachian, A.; Lau, K.K.-L.; Perini, K.; Auer, T. Sensing transient outdoor comfort: A georeferenced method to monitor and map microclimate. J. Build. Eng. 2018, 20, 94–104. [Google Scholar] [CrossRef]
- Han, G.; Chen, H.; Yuan, L.; Cai, Y.; Han, M. Field measurements on micro-climate and cooling effect of river wind on urban blocks in Wuhan city. In Proceedings of the 2011 International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011; pp. 4446–4449. [Google Scholar] [CrossRef]
- Steeneveld, G.; Koopmans, S.; Heusinkveld, B.; Theeuwes, N. Refreshing the role of open water surfaces on mitigating the maximum urban heat island effect. Landsc. Urban Plan. 2014, 121, 92–96. [Google Scholar] [CrossRef]
- Min, Y.; Chen, Y.; Shi, W.; Yang, H. Applicability of indirect evaporative cooler for energy recovery in hot and humid areas: Comparison with heat recovery wheel. Appl. Energy 2021, 287, 116607. [Google Scholar] [CrossRef]
- Standard GB/T35221-2017; Specifications for Surface Meteorological Observation-General. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Standardization Administration of the People’s Republic of China: Beijing, China, 2017. (In Chinese)
- Standard GB/T50785-2012; Evaluation Standard for Indoor Thermal Environment in Civil Buildings. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2012. (In Chinese)
- Standard GB/T17244-1998; Hot-Environments—Estimation of the Heat Stress on Working Man based on the WBGT-Index (Wet Bulb Globe Temperature). The State Bureau of Quality and Technical Supervision: Beijing, China, 1998. (In Chinese)
- Standard GB/T4200-2008; Classified Standard of Working in the Hot Environment. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China & Standardization Administration of the People’s Republic of China: Beijing, China, 2008. (In Chinese)
- ANSI ASHRAE Standard 55; Thermal Environmental Conditions for Human Occupancy. ANSI ASHRAE: Atlanta, GA, USA, 2017.
- Srivanit, M.; Jareemit, D. Modeling the influences of layouts of residential townhouses and tree-planting patterns on outdoor thermal comfort in Bangkok suburb. J. Build. Eng. 2020, 30, 101262. [Google Scholar] [CrossRef]
- ISO 7726; Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities. Danish Standards Association: Copenhagen, Denmark, 2001.
- ISO 10551; Ergonomics of the Physical Environment—Subjective Judgement Scales for Assessing Physical Environments. ISO: Geneva, Switzerland, 2019.
- Fang, Z.; Zheng, Z.; Feng, X.; Shi, D.; Lin, Z.; Gao, Y. Investigation of outdoor thermal comfort prediction models in South China: A case study in Guangzhou. Build. Environ. 2020, 188, 107424. [Google Scholar] [CrossRef]
- Cheng, V.; Ng, E.; Chan, C.; Givoni, B. Outdoor thermal comfort study in a sub-tropical climate: A longitudinal study based in Hong Kong. Int. J. Biometeorol. 2012, 56, 43–56. [Google Scholar] [CrossRef]
- Hadianpour, M.; Mahdavinejad, M.; Bemanian, M.; Nasrollahi, F. Seasonal differences of subjective thermal sensation and neutral temperature in an outdoor shaded space in Tehran, Iran. Sustain. Cities Soc. 2018, 39, 751–764. [Google Scholar] [CrossRef]
- Broday, E.E.; Ruivo, C.R.; da Silva, M.G. The use of Monte Carlo method to assess the uncertainty of thermal comfort indices PMV and PPD: Benefits of using a measuring set with an operative temperature probe. J. Build. Eng. 2021, 35, 101961. [Google Scholar] [CrossRef]
- Chen, J.; Augenbroe, G.; Wang, Q.; Song, X. Uncertainty analysis of thermal comfort in a prototypical naturally ventilated office building and its implications compared to deterministic simulation. Energy Build. 2017, 146, 283–294. [Google Scholar] [CrossRef]
- Chen, X.; Gao, L.; Xue, P.; Du, J.; Liu, J. Investigation of outdoor thermal sensation and comfort evaluation methods in severe cold area. Sci. Total Environ. 2020, 749, 141520. [Google Scholar] [CrossRef] [PubMed]
- Golasi, I.; Salata, F.; Vollaro, E.D.L.; Coppi, M. Complying with the demand of standardization in outdoor thermal comfort: A first approach to the Global Outdoor Comfort Index (GOCI). Build. Environ. 2018, 130, 104–119. [Google Scholar] [CrossRef]
- Yan, H.; Liu, Q.; Zhao, W.; Pang, C.; Dong, M.; Zhang, H.; Gao, J.; Wang, H.; Hu, B.; Yang, L.; et al. The coupled effect of temperature, humidity, and air movement on human thermal response in hot–humid and hot–arid climates in summer in China. Build. Environ. 2020, 177, 106898. [Google Scholar] [CrossRef]
- Rocha, A.; Pinto, D.; Ramos, N.M.; Almeida, R.M.; Barreira, E.; Simões, M.L.; Martins, J.P.; Pereira, P.F.; Sanhudo, L. A case study to improve the winter thermal comfort of an existing bus station. J. Build. Eng. 2020, 29, 101123. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; de Dear, R.; Luo, M.; Ghahramani, A.; Lin, B. The uncertainty of subjective thermal comfort measurement. Energy Build. 2018, 181, 38–49. [Google Scholar] [CrossRef]
- Lucchese, J.R.; Mikuri, L.P.; de Freitas, N.V.S.; Andreasi, W.A. Application of selected indices on outdoor thermal comfort assessment in Midwest Brazil. Int. J. Energy Environ. 2016, 7, 291–302. [Google Scholar]
- Auliciems, A.; Szokolay, S.V. Thermal Comfort; PLEA: Brisbane, Australia, 2007. [Google Scholar]
- Wei, D.; Yang, L.; Bao, Z.; Lu, Y.; Yang, H. Variations in outdoor thermal comfort in an urban park in the hot-summer and cold-winter region of China. Sustain. Cities Soc. 2022, 77, 103535. [Google Scholar] [CrossRef]
- Edholm, O.G. The Physiological Basis of Habituation. Proc. R. Soc. Med. 1966, 35, 113. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, C.; Shan, K.; Wang, S. Coordinated demand-controlled ventilation strategy for energy-efficient operation in multi-zone cleanroom air-conditioning systems. Build. Environ. 2021, 191, 107588. [Google Scholar] [CrossRef]
- Ballinas, M.; Barradas, V.L. Transpiration and stomatal conductance as potential mechanisms to mitigate the heat load in Mexico City. Urban For. Urban Green. 2016, 20, 152–159. [Google Scholar] [CrossRef]
- Hong, B.; Lin, B.; Hu, L.; Li, S. Study on the Impacts of Vegetation on Wind Environment in Residential District Combined Numerical Simulation and Field Experiment. Procedia Environ. Sci. 2012, 13, 1708–1717. [Google Scholar] [CrossRef]
- Yao, R.; Li, B.; Liu, J. A theoretical adaptive model of thermal comfort—Adaptive Predicted Mean Vote (aPMV). Build. Environ. 2009, 44, 2089–2096. [Google Scholar] [CrossRef]
- De Dear, R.J.; Brager, G.S. Developing an adaptive model of thermal comfort and preference. ASHREA Trans. 1998, 104, 145–167. [Google Scholar] [CrossRef]
- Easter School in Agricultural Science; Monteith, J.L.; Mount, L.E. Heat Loss from Animals and Man: Assessment and Control: Proceedings of the Twentieth Easter School in Agricultural Science 1973; University of Nottingham: Nottingham, UK, 1974; ISBN 040870652X. [Google Scholar]
- Wyndham, C.H. Adaptation to heat and cold. Environ. Res. 1969, 2, 442–469. [Google Scholar] [CrossRef]
- Jian, Y.; Liu, J.; Pei, Z.; Chen, J. Occupants’ tolerance of thermal discomfort before turning on air conditioning in summer and the effects of age and gender. J. Build. Eng. 2022, 50, 104099. [Google Scholar] [CrossRef]
- Brager, G.S.; de Dear, R.J. Thermal adaptation in the built environment: A literature review. Energy Build. 1998, 27, 83–96. [Google Scholar] [CrossRef]
- Gachkar, D.; Taghvaei, S.H.; Norouzian-Maleki, S. Outdoor thermal comfort enhancement using various vegetation species and materials (case study: Delgosha Garden, Iran). Sustain. Cities Soc. 2021, 75, 103309. [Google Scholar] [CrossRef]
- Francoeur, X.W.; Dagenais, D.; Paquette, A.; Dupras, J.; Messier, C. Complexifying the urban lawn improves heat mitigation and arthropod biodiversity. Urban For. Urban Green. 2021, 60, 127007. [Google Scholar] [CrossRef]
- Shi, D.; Song, J.; Huang, J.; Zhuang, C.; Guo, R.; Gao, Y. Synergistic cooling effects (SCEs) of urban green-blue spaces on local thermal environment: A case study in Chongqing, China. Sustain. Cities Soc. 2020, 55, 102065. [Google Scholar] [CrossRef]
- Mijorski, S.; Cammelli, S.; Green, J. A hybrid approach for the assessment of outdoor thermal comfort. J. Build. Eng. 2019, 22, 147–153. [Google Scholar] [CrossRef]
Instrument Name | Model | Range | Resolution | Precision | Measurement Parameters |
---|---|---|---|---|---|
Automatic Weather Station | TRM-ZS2 | −50–80 °C | 0.1 °C | 0.1 °C | Air temperature |
0–100% | 0.1% | 5% | Relative humidity | ||
0–60 m/s | 0.01 m/s | 0.2 m/s | Wind speed | ||
0–2000 W/m2 | 1 W/m2 | ≤5% | Solar radiation | ||
Temp. and RH Data Logger | ApresysTM | −20–60 °C | 0.01 °C | 0.5 °C | Air temperature |
0–100% | 1% | 3% | Relative humidity | ||
Wind Automatic Recorder | WFWZY-1 | −20–80 °C | 0.1 °C | 0.3 °C | Wind temperature |
0–20 m/s | 0.01 m/s | 0.03 m/s | Wind speed | ||
Automatic Black Globe Recorder | HQZY-1 | −40–80 °C | 0.1 °C | 0.2 °C | Black globe temperature |
Total Radiation Recorder | TPJ-24-G | 0–2000 W/m2 | 1 W/m2 | 7–14 W/m2 | Total solar radiation |
MTSV | RH | Ta | va | Tmrt | SR | |
---|---|---|---|---|---|---|
MTSV | 1 | −0.717 | 0.763 | −0.088 | 0.811 | 0.707 |
RH | −0.717 | 1 | −0.890 | −0.027 | −0.821 | −0.913 |
Ta | 0.763 | −0.890 | 1 | 0.015 | 0.824 | 0.974 |
va | −0.088 | −0.027 | 0.015 | 1 | 0.037 | 0.019 |
Tmrt | 0.811 | −0.821 | 0.824 | 0.037 | 1 | 0.785 |
SR | 0.707 | −0.913 | 0.974 | 0.019 | 0.785 | 1 |
Sum of Squares | Free Degree | Mean Square | F | Significance Level | |
---|---|---|---|---|---|
Regression | 82.0180 | 4 | 20.5040 | 64.4760 | 0.0000 |
Residuals | 35.3000 | 111 | 0.3180 | ||
Sum | 117.3170 | 115 |
B | Standard Error | T | VIF | R2 | |
---|---|---|---|---|---|
Constant | −4.2490 | 1.6440 | −2.5850 | 0.6990 | |
Ta | 0.0990 | 0.0370 | 2.6690 | 5.5180 | |
va | −0.3020 | 0.1390 | −2.1690 | 1.0020 | |
RH | 0.0050 | 0.0110 | 0.4730 | 5.4130 | |
Tmrt | 0.0620 | 0.0100 | 6.0670 | 3.5290 |
Thermal Sensation | MTSVCQ | SET* (°C) [49] | PET (°C) [50] | UTCI (°C) [50] |
---|---|---|---|---|
Neutral | −0.5–0.5 | 22.2–25.6 | 18.0–23.0 | 9.0–26.0 |
Warm | 0.5–1.5 | 25.6–30.0 | 23.0–29.0 | 26.0–32.0 |
Hot | 1.5–2.5 | 30.0–34.5 | 29.0–35.0 | 32.0–38.0 |
Very hot | >2.5 | >34.5 | >35.0 | >38.0 |
Time | Path Planning | ||
---|---|---|---|
First Choice | Second Choice | Third Choice | |
08:00–10:00 | Tracks under arbors | Roads besides ponds | Trails on lawns |
10:00–10:15 | Tracks under arbors | Roads besides ponds | - |
10:15–11:00 | Tracks under arbors | Roads besides ponds | Roads on masonry |
11:00–17:30 | - | - | - |
17:30–19:00 | Trails on lawns | Tracks under arbors | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Gao, Y.; Shi, D.; Zhuang, C.; Lin, Z.; Hao, Z. Modelling Residential Outdoor Thermal Sensation in Hot Summer Cities: A Case Study in Chongqing, China. Buildings 2022, 12, 1564. https://doi.org/10.3390/buildings12101564
Liu Y, Gao Y, Shi D, Zhuang C, Lin Z, Hao Z. Modelling Residential Outdoor Thermal Sensation in Hot Summer Cities: A Case Study in Chongqing, China. Buildings. 2022; 12(10):1564. https://doi.org/10.3390/buildings12101564
Chicago/Turabian StyleLiu, Ying, Yafeng Gao, Dachuan Shi, Chaoqun Zhuang, Zhang Lin, and Zhongyu Hao. 2022. "Modelling Residential Outdoor Thermal Sensation in Hot Summer Cities: A Case Study in Chongqing, China" Buildings 12, no. 10: 1564. https://doi.org/10.3390/buildings12101564
APA StyleLiu, Y., Gao, Y., Shi, D., Zhuang, C., Lin, Z., & Hao, Z. (2022). Modelling Residential Outdoor Thermal Sensation in Hot Summer Cities: A Case Study in Chongqing, China. Buildings, 12(10), 1564. https://doi.org/10.3390/buildings12101564