FDEM Simulation on the Failure Behavior of Historic Masonry Heritages Subjected to Differential Settlement
Abstract
:1. Introduction
2. Methodology
2.1. Equation of Motion
2.2. Contact
2.3. Fracture Model
3. Numerical Examples
3.1. Church Façade
3.2. Pompeii Colonnade
3.3. Arch Bridge
4. Further Analyses
4.1. Fracture of Colonnade
4.2. Fracture of Arch Bridge
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heyman, J. Leaning towers. Meccanica 1992, 27, 153–159. [Google Scholar] [CrossRef]
- Atamturktur, S.; Bornn, L.; Hemez, F. Vibration characteristics of vaulted masonry monuments undergoing differential support settlement. Eng. Struct. 2011, 33, 2472–2484. [Google Scholar] [CrossRef]
- Milani, G.; Shehu, R.; Valente, M. Role of inclination in the seismic vulnerability of bell towers: FE models and simplified approaches. Bull. Earthq. Eng. 2016, 15, 1707–1737. [Google Scholar] [CrossRef]
- Drougkas, A.; Verstrynge, E.; Szekér, P.; Heirman, G.; Bejarano-Urrego, L.-E.; Giardina, G.; Van Balen, K. Numerical Modeling of a Church Nave Wall Subjected to Differential Settlements: Soil-Structure Interaction, Time-Dependence and Sensitivity Analysis. Int. J. Arch. Herit. 2019, 14, 1221–1238. [Google Scholar] [CrossRef]
- Barrios Padura, Á.; Barrios Sevilla, J.; García Navarro, J. Settlement predictions, bearing capacity and safety factor of subsoil of Seville’s Giralda. Int. J. Archit. Herit. 2012, 6, 626–647. [Google Scholar] [CrossRef]
- Giardina, G.; Marini, A.; Hendriks, M.; Rots, J.G.; Rizzardini, F.; Giuriani, E. Experimental analysis of a masonry façade subject to tunnelling-induced settlement. Eng. Struct. 2012, 45, 421–434. [Google Scholar] [CrossRef]
- Amorosi, A.; Boldini, D.; DE Felice, G.; Malena, M.; Sebastianelli, M. Tunnelling-induced deformation and damage on historical masonry structures. Géotechnique 2014, 64, 118–130. [Google Scholar] [CrossRef]
- Camós, C.; Molins, C.; Arnau, O. Case Study of Damage on Masonry Buildings Produced by Tunneling Induced Settlements. Int. J. Arch. Herit. 2014, 8, 602–625. [Google Scholar] [CrossRef] [Green Version]
- Spada, A. The effect of vertical ground movement on masonry walls simulated through an elastic–plastic interphase meso-model: A case study. Ing. -Arch. 2019, 89, 1655–1676. [Google Scholar] [CrossRef]
- Cascini, L.; Gagliardo, R.; Portioli, F. LiABlock_3D: A Software Tool for Collapse Mechanism Analysis of Historic Masonry Structures. Int. J. Arch. Herit. 2018, 14, 75–94. [Google Scholar] [CrossRef]
- Giardina, G.; Marini, A.; Riva, P.; Giuriani, E. Analysis of a scaled stone masonry facade subjected to differential settlements. Int. J. Arch. Herit. 2019, 14, 1502–1516. [Google Scholar] [CrossRef]
- Portioli, F.; Cascini, L. Assessment of masonry structures subjected to foundation settlements using rigid block limit analysis. Eng. Struct. 2016, 113, 347–361. [Google Scholar] [CrossRef]
- Romano, A.; Ochsendorf, J.A. The mechanics of gothic masonry arches. Int. J. Archit. Herit. 2010, 4, 59–82. [Google Scholar] [CrossRef]
- Alessandri, C.; Garutti, M.; Mallardo, V.; Milani, G. Crack Patterns Induced by Foundation Settlements: Integrated Analysis on a Renaissance Masonry Palace in Italy. Int. J. Arch. Herit. 2014, 9, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Gagliardo, R.; Cascini, L.; Portioli, F.; Landolfo, R.; Tomaselli, G.; Malena, M.; De Felice, G. Rigid block and finite element analysis of settlement-induced failure mechanisms in historic masonry walls. Frat. Ed Integrità Strutt. 2020, 14, 517–533. [Google Scholar] [CrossRef] [Green Version]
- Truong-Hong, L.; Laefer, D.F. Impact of modeling architectural detailing for predicting unreinforced masonry response to subsidence. Autom. Constr. 2012, 30, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Malena, M.; Angelillo, M.; Fortunato, A.; de Felice, G.; Mascolo, I. Arch bridges subject to pier settlements: Continuous vs. piecewise rigid displacement methods. Meccanica 2021, 56, 2487–2505. [Google Scholar] [CrossRef]
- Bui, T.; Limam, A.; Sarhosis, V.; Hjiaj, M. Discrete element modelling of the in-plane and out-of-plane behaviour of dry-joint masonry wall constructions. Eng. Struct. 2017, 136, 277–294. [Google Scholar] [CrossRef] [Green Version]
- Baraldi, D.; Reccia, E.; Cecchi, A. In plane loaded masonry walls: DEM and FEM/DEM models. A critical review. Meccanica 2017, 53, 1613–1628. [Google Scholar] [CrossRef] [Green Version]
- Sarhosis, V.; Asteris, P.; Wang, T.; Hu, W.; Han, Y. On the stability of colonnade structural systems under static and dynamic loading conditions. Bull. Earthq. Eng. 2016, 14, 1131–1152. [Google Scholar] [CrossRef]
- Foti, D.; Vacca, V.; Facchini, I. DEM modeling and experimental analysis of the static behavior of a dry-joints masonry cross vaults. Constr. Build. Mater. 2018, 170, 111–120. [Google Scholar] [CrossRef]
- Gagliardo, R.; Terracciano, G.; Cascini, L.; Portioli, F.; Landolfo, R. The prediction of collapse mechanisms for masonry structures affected by ground movements using Rigid Block Limit Analysis. Procedia Struct. Integr. 2020, 29, 48–54. [Google Scholar] [CrossRef]
- Iannuzzo, A.; Dell’Endice, A.; Van Mele, T.; Block, P. Numerical limit analysis-based modelling of masonry structures subjected to large displacements. Comput. Struct. 2021, 242, 106372. [Google Scholar] [CrossRef]
- Munjiza, A. Discrete Elements in Transient Dynamics of Fractured Media. Ph.D. Thesis, Department of Civil Engineering, University of Wales, Swansea, Wales, 1992. [Google Scholar]
- Munjiza, A. The Combined Finite-Discrete Element Method; John Wiley and Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Munjiza, A.; Knight, E.E.; Rougier, E. Computational Mechanics of Discontinua; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Munjiza, A.; Rougier, E.; Knight, E.E. Large Strain Finite Element Method: A Practical Course; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Chen, X.; Chan, A.H.C. Modelling impact fracture and fragmentation of laminated glass using the combined finite-discrete element method. Int. J. Impact Eng. 2018, 112, 15–29. [Google Scholar] [CrossRef]
- Chen, X.; Chan, A. Soft impact responses of laminated glass simulated with the combined finite-discrete element method. Eng. Comput. 2018, 35, 1460–1480. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Chan, A.H.C.; Agrawal, A.K. Dynamic failure of dry-joint masonry arch structures modelled with the combined finite–discrete element method. Comput. Part. Mech. 2019, 7, 1017–1028. [Google Scholar] [CrossRef]
- Li, W.; Chen, X.; Wang, H.; Chan, A.H.C.; Cheng, Y. Evaluating the Seismic Capacity of Dry-Joint Masonry Arch Structures via the Combined Finite-Discrete Element Method. Appl. Sci. 2021, 11, 8725. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Chan, A.H.C.; Cheng, Y. Parametric analyses on the impact fracture of laminated glass using the combined finite-discrete element method. Compos. Struct. 2022, 297, 115914. [Google Scholar] [CrossRef]
- Munjiza, A.; Smoljanović, H.; Živaljić, N.; Mihanovic, A.; Divić, V.; Uzelac, I.; Nikolić, Ž.; Balić, I.; Trogrlić, B. Structural applications of the combined finite–discrete element method. Comput. Part. Mech. 2020, 7, 1029–1046. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Chan, A.H.C.; Agrawal, A.K.; Cheng, Y. Collapse simulation of masonry arches induced by spreading supports with the combined finite–discrete element method. Comput. Part. Mech. 2020, 8, 721–735. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Wang, H.; Agrawal, A.K.; Chan, A.H.; Cheng, Y. Simulating the failure of masonry walls subjected to support settlement with the combined finite-discrete element method. J. Build. Eng. 2021, 43, 102558. [Google Scholar] [CrossRef]
- Pepe, M.; Sangirardi, M.; Reccia, E.; Pingaro, M.; Trovalusci, P.; De Felice, G. Discrete and Continuous Approaches for the Failure Analysis of Masonry Structures Subjected to Settlements. Front. Built Environ. 2020, 6. [Google Scholar] [CrossRef]
- Smoljanović, H.; Živaljić, N.; Nikolić, Ž. A combined finite-discrete element analysis of dry stone masonry structures. Eng. Struct. 2013, 52, 89–100. [Google Scholar] [CrossRef]
- Smoljanović, H.; Nikolić, .; Živaljić, N. A finite-discrete element model for dry stone masonry structures strengthened with steel clamps and bolts. Eng. Struct. 2015, 90, 117–129. [Google Scholar] [CrossRef]
- Smoljanović, H.; Nikolić, Ž.; Živaljić, N. A combined finite–discrete numerical model for analysis of masonry structures. Eng. Fract. Mech. 2015, 136, 1–14. [Google Scholar] [CrossRef]
- Smoljanović, H.; Živaljić, N.; Nikolić, Ž.; Munjiza, A. Numerical analysis of 3D dry-stone masonry structures by combined finite-discrete element method. Int. J. Sol. Struct. 2018, 136-137, 150–167. [Google Scholar] [CrossRef]
- Munjiza, A. Manual for the “Y” FEM/DEM Computer Program; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Heyman, J. The stone skeleton. Int. J. Solids Struct. 1966, 2, 249–279. [Google Scholar] [CrossRef]
- Munjiza, A.; Andrews, K.R.F. NBS contact detection algorithm for bodies of similar size. Int. J. Numer. Methods Eng. 1998, 43, 131–149. [Google Scholar] [CrossRef]
- Munjiza, A.; Andrews, K.R.F. Penalty function method for combined finite–discrete element systems comprising large number of separate bodies. Int. J. Numer. Methods Eng. 2000, 49, 1377–1396. [Google Scholar] [CrossRef]
- Williams, J.R. Contact analysis of large numbers of interacting bodies using discrete modal methods for simulating material failure on the microscopic scale. Eng. Comput. 1988, 5, 198–209. [Google Scholar] [CrossRef]
- Munjiza, A.; John, N.W.M. Mesh size sensitivity of the combined FEM/DEM fracture and fragmentation algorithms. Eng. Fract. Mech. 2002, 69, 281–295. [Google Scholar] [CrossRef]
- Hillerborg, A.; Modéer, M.; Petersson, P.-E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 1976, 6, 773–781. [Google Scholar] [CrossRef]
- Munjiza, A.; Andrews, K.R.F.; White, J.K. Combined single and smeared crack model in combined finite-discrete element analysis. Int. J. Numer. Methods Eng. 1999, 44, 41–57. [Google Scholar] [CrossRef]
- Hordijk, D.A. Tensile and tensile fatigue behaviour of concrete; experiments, modelling and analyses. Heron 1992, 37, 3–79. [Google Scholar]
- Zivaljic, N.; Smoljanovic, H.; Nikolic, Z. A combined finite-discrete element model for RC structures under dynamic loading. Eng. Comput. 2013, 30, 982–1010. [Google Scholar] [CrossRef]
Young’s Modulus (GPa) | Poisson’s Ratio | Unit Weight (kN/m3) |
---|---|---|
10.0 | 0.2 | 18.0 |
Young’s Modulus (GPa) | Poisson’s Ratio | Density (kg/m3) |
---|---|---|
40.0 | 0.25 | 2680.0 |
Case No. | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 |
---|---|---|---|---|---|---|---|
Settled support | S1 | S2 | S3 | S4 | S1 & S2 | S1 & S3 | S1 & S4 |
Case No. | Case 8 | Case 9 | Case 10 | Case 11 | Case 12 | Case 13 | Case 14 |
Settled support | S2 & S3 | S2 & S4 | S3 & S4 | S1 & S2 & S3 | S1 & S2 & S4 | S1 & S3 & S4 | S2 & S3 & S4 |
Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|
Case 5 | Case 6 | Case 7 | Case 8 |
Case 9 | Case 10 | Case 11 | Case 12 |
Case 13 | Case 14 | ||
Young’s Modulus (GPa) | Poisson’s Ratio | Density (kg/m3) |
---|---|---|
3.18 | 0.23 | 2500.0 |
Case 1′ | Case 2′ | Case 3′ | Case 4′ |
Case 5′ | Case 6′ | Case 7′ | Case 8′ |
Case 9′ | Case 10′ | Case 11′ | Case 12′ |
Case 13′ | Case 14′ | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, W.; Chen, X.; Chan, A.; Cheng, Y.; Wang, H. FDEM Simulation on the Failure Behavior of Historic Masonry Heritages Subjected to Differential Settlement. Buildings 2022, 12, 1592. https://doi.org/10.3390/buildings12101592
Ou W, Chen X, Chan A, Cheng Y, Wang H. FDEM Simulation on the Failure Behavior of Historic Masonry Heritages Subjected to Differential Settlement. Buildings. 2022; 12(10):1592. https://doi.org/10.3390/buildings12101592
Chicago/Turabian StyleOu, Weibing, Xudong Chen, Andrew Chan, Yingyao Cheng, and Hongfan Wang. 2022. "FDEM Simulation on the Failure Behavior of Historic Masonry Heritages Subjected to Differential Settlement" Buildings 12, no. 10: 1592. https://doi.org/10.3390/buildings12101592
APA StyleOu, W., Chen, X., Chan, A., Cheng, Y., & Wang, H. (2022). FDEM Simulation on the Failure Behavior of Historic Masonry Heritages Subjected to Differential Settlement. Buildings, 12(10), 1592. https://doi.org/10.3390/buildings12101592