Study on Mechanical Properties and Durability of Alkali-Activated Silicomanganese Slag Concrete (AASSC)
Abstract
:1. Introduction
- (1)
- Physical activation
- (2)
- Chemical activation
- (3)
- Thermal activation
2. Raw Materials and Experimental Details
2.1. Raw Materials
2.2. Proportioning and Mixing Details of Study
2.3. Experimental Methods
2.3.1. Fluidity and Setting Times
2.3.2. Mechanical Properties
2.3.3. Freeze-Thaw Cycle Test
2.3.4. Micro-Structure Analysis
3. Experimental Results
3.1. Working Performances of Samples
3.1.1. Fluidity of Slurry
3.1.2. Setting Times
3.2. Mechanical Strength of Mixtures
3.2.1. Effects of the Replacement Ratio of Silicomanganese Slag
3.2.2. Effect of Modulus MS
3.2.3. Effect of Steel Fiber
3.2.4. Massive Substitution Ratio
3.3. Freeze-Thaw Resistance
3.3.1. Effect of Steel Fiber
3.3.2. Effect of Substitution Ratio
3.4. Scanning Electron Microscope (SEM) Test
3.4.1. Effect of Substitution Ratio on Micro-Structure
3.4.2. Effect of Different Modulus on Micro-Structure
3.4.3. Effect of Steel Fiber on Micro-Structure
3.4.4. Effect of Massive Silicomanganese Slag Addition on Micro-Structure
3.5. XRD Analysis
3.5.1. Effect of Different Contents of Silicomanganese Slag
3.5.2. Effect of Different Modulus
4. Conclusions
- (1)
- AASSC with a 10% substitution ratio of silicomanganese slag can reach over 80 MPa and over 132 MPa with the 3% steel fiber dosage; it can retain 80% compressive strength left with 3.5% mass lost after 800 freeze-thaw cycles by adding 2% steel fibers, which can allow the AASSC to be successfully applied to practical needs.
- (2)
- ASSC with the higher silicomanganese slag content has lower compressive and flexural strengths, but higher fluidity and setting times. When compared to pure alkali-activated concrete, ASSC with a 10% substitution ratio of silicomanganese slag has a limited strength reduction and good working performance, which is preferable to practical applications.
- (3)
- AASSC with a higher steel fiber content has better mechanical performance and resistance to freeze-thaw cycling. The steel fibers reduce the fluidity and setting times of slurry but can be neglected. The steel fiber content of 2% volume fraction is preferred for real applications in consideration of workability and strength.
- (4)
- The steel fiber addition is important to the freeze-thaw resistance of AASSC, and AASSC with the higher fiber dosage has better resistance. Moreover, despite the harmful effect of large amount of silicomanganese slag on AASSC, AASSC with a 60% substitution ratio of silicomanganese slag was damaged at 600 freeze-thaw cycles and had 3.3% mass lost with 60% strength left; it could also applied to construction considering a massive substitution to GBFS.
5. Recommendation
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Susanta, K.N.; Navneet, S.R.; Sanjay, K. A review on characteristics of silico-manganese slag and its utilization into construction materials. Resour. Conserv. Recycl. 2022, 176, 105946. [Google Scholar] [CrossRef]
- Navarro, R.; Alcoce, E.G.; Sánchez, I.; Garcés, P.; Zornoza, E. Mechanical properties of alkali activated ground SiMn slag mortars with different types of aggregates. Construct. Build. Mater. 2018, 186, 79–89. [Google Scholar] [CrossRef]
- Gao, H.L.; Yan, W.S. Sustainable development of manganese ferroalloys in post crisis period. China Manganese Ind. 2010, 28, 6–11. (In Chinese) [Google Scholar]
- Liu, Q.; Li, J.; Lu, Z.Y.; Li, X.; Jiang, J.; Niu, Y.; Xiang, Y. Silicomanganese slag: Hydration mechanism and leaching behavior of heavy metal ions. Construct. Build. Mater. 2022, 326, 126857. [Google Scholar] [CrossRef]
- Yun, C.N.; Bakri, M.K.B.; Rahman, M.R.; Kuok, K.K.; Khui, P.L.N.; Huda, D. Effect of Chemical Treatment on Silicon Manganese: Its Morphological, Elemental and Spectral Properties and Its Usage in Concrete. Fash. Texit. 2022, 14, 8081–8096. [Google Scholar] [CrossRef]
- Kumar, S.; García-Triñanes, P.; Teixeira-Pinto, A.; Bao, M. Development of alkali activated cement from mechanically activated silico-manganese (SiMn) slag. Cem. Concr. Compos. 2013, 40, 7–13. [Google Scholar] [CrossRef]
- Syed, K.N.; Megat, A.M.J.; Ashraf, A.B. Room Temperature Cured Silicomanganese Fume-Based Alkali Activated Mortar: Experimental, Statistical and Environmental Impact Studies. Stat. Environ. Impact Stud. 2022, 2, 31. [Google Scholar]
- Li, X.M.; Yang, H.B.; Ruan, J.; Li, Y. Effect of mechanical activation on enhancement of carbon thermal reduction of nickel slag. J. Iron Steel Res. Int. 2020, 27, 1311–1321. [Google Scholar] [CrossRef]
- Vavrenyuk, V.E.; Yu, S.V.; Vavrenyuk, V.G. Mechanical Activation, Mineral Powders Chemical Modification, Solid-Phaseeactivity, Polyorganosiloxanes. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1079, 072043. [Google Scholar] [CrossRef]
- Wang, F.; Long, G.; Bai, M.; Wang, J.; Zhou, J.L.; Zhou, X. Application of electrolytic manganese residues in cement products through pozzolanic activity motivation and calcination. J. Clean. Prod. 2022, 338, 130629. [Google Scholar] [CrossRef]
- Bian, W.; Ma, K.; Long, G.; Liu, W.; Zhang, C. Study on properties of alkali activated slag fly ash permeable concrete. J. Railw. Sci. Eng. 2020, 119, 83–91. (In Chinese) [Google Scholar]
- Huang, L.; Ye, H. Factors Affecting Kinetics and Gel Composition of Alkali–Silica Reaction in Alkali-Activated Slag Mortars. Int. J. Civ. Eng. 2021, 19, 453–462. [Google Scholar] [CrossRef]
- Lv, Q.M.; Zhang, R.L.; Wang, Z. Effects of calcination temperature and cooling conditions on pozzolanic activity of paper mill sludge ash. J. Environ. Eng. 2018, 12, 213–219. (In Chinese) [Google Scholar]
- Tao, X.W. Study on the Polymerization, Structure and Properties of SSBR at High Temperature. Master’s Thesis, Dalian University of Technology, Dalian, China, 2009. (In Chinese). [Google Scholar]
- He, W.; Li, R.; Zhang, Y.; Nie, D. Synergistic use of electrolytic manganese residue and barium slag to prepare belite-sulphoaluminate cement study. Constr. Build. Mater. 2022, 326, 126672. [Google Scholar] [CrossRef]
- Wang, X.J.; Ren, S.M.; Ding, H. Research and application of micro powder C60 concrete with silicon manganese slag. Silic. Build. Prod. 1994, 5, 13–15. (In Chinese) [Google Scholar]
- Srikavya, M.; Rajesh, T. Experimental Study on Concrete Using Silico Manganese Slag as A Partial Replacement of Coarse Aggregate and Fine Aggregate. Turk. Online J. Qual. Inq. 2021, 12, 4697–4720. [Google Scholar]
- Zhang, J.; Shi, C.; Zhang, Z.; Ou, Z. Durability of alkali-activated materials in aggressive environments: A review on recent studies. Constr. Build. Mater. 2017, 152, 598–613. [Google Scholar] [CrossRef]
- Amran, M.; Fediuk, R.; Abdelgader, H.S.; Murali, G.; Ozbakkaloglu, T.; Lee, Y.H. Fiber-reinforced alkali-activated concrete: A review. J. Build. Eng. 2022, 45, 103638. [Google Scholar] [CrossRef]
- Ambily, P.S.; Ravisankar, K.; Umarani, C.; Dattatreya, J.K.; Iyer, N.R. Development of ultra-high performance geopolymer concrete. Mag. Concr. Res. 2013, 66, 82–89. [Google Scholar] [CrossRef]
- You, W.J.; Mark, A.B.; Liu, H.N.; Zhao, W.; Yang, G.T. Steel-alkali activated cement based ultra-high performance concretelight-weight composite bridge decks: Flexural behavior. Eng. Struct. 2022, 266, 114639. [Google Scholar] [CrossRef]
- Qaidi, S.M.; Atrushi, D.S.; Mohammed, A.S.; Ahmed, H.U.; Faraj, R.H.; Emad, W.; Tayeh, B.A.; Najm, H.M. Ultra-high-performance geopolymer concrete: A review. Constr. Build. Mater. 2022, 346, 128495. [Google Scholar] [CrossRef]
- Su, Z.; Liu, Z.; Wang, H.; Xu, S.; Wang, D.; Han, F. Reaction kinetics, microstructure and phase evolution of alkali-activated Si-Mn slag during early age. Constr. Build. Mater. 2022, 333, 127437. [Google Scholar] [CrossRef]
- Huang, T.Z. Study on the Utilization of Silicomanganese Slag in Building Materials. Master’s Thesis, Chongqing University, Chongqin, China, 2012. (In Chinese). [Google Scholar]
- Nath, S.K.; Kumar, S. Reaction kinetics, microstructure and strength behavior of alkali activated silico-manganese (SiMn) slag–Fly ash blends. Constr. Build. Mater. 2017, 147, 371–377. [Google Scholar] [CrossRef]
- Navarro, R.; Zornoza, E.; Sánchez, I.; Alcocel, E.G. Influence of the type and concentration of the activator on the microstructure of alkali activated SiMn slag pastes. Constr. Build. Mater. 2022, 342, 128067. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, Z.; Shi, C. Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties. Cem. Concr. Compos. 2020, 112, 103670. [Google Scholar] [CrossRef]
- Li, N.; Shi, C.J.; Zhang, Z.; Zhu, D.; Hwang, H.; Zhu, Y.; Sun, T. A mixture proportioning method for the development of performance-based alkali-activated slag-based concrete. Cem. Concr. Compos. 2018, 93, 163. [Google Scholar] [CrossRef]
- Wetzel, A.; Middendorf, B. Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag. Cem. Concr. Compos. 2019, 100, 53–59. [Google Scholar] [CrossRef]
- GB/T 2419-2016; Determination of Fluidity of Cement Mortar. Ministry of Housing and Urban Rural Development: Beijing, China, 2016.
- Wu, Z.; Shi, C.; Khayat, K.H. Investigation of mechanical properties and shrinkage of ultra-high performance concrete: Influence of steel fiber content and shape. Compos. Part B 2019, 174, 107201. [Google Scholar] [CrossRef]
- DL/T5144-2001; Code for Construction of Hydraulic Concrete. Ministry of Housing and Urban Rural Development: Beijing, China, 2016.
- GB/T 17671-2020; Inspection Method of Cement Mortar. Ministry of Housing and Urban Rural Development: Beijing, China, 2020.
- GB/T 50082-2009; Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete. Ministry of Housing and Urban Rural Development: Beijing, China, 2009.
- Alonso, M.M.; Gismera, S.; Blanco, M.T.; Lanzón, M.; Puertas, F. Alkali-activated mortars: Workability and rheological behaviour. Constr. Build. Mater. 2017, 145, 576–587. [Google Scholar] [CrossRef]
- Struble, L.; Sun, G.-K. Viscosity of Portland cement paste as a function of concentration. Adv. Cem. Base Mater. 1995, 2, 62–69. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; He, W.; Wu, L. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Constr. Build. Mater. 2016, 103, 8–14. [Google Scholar] [CrossRef]
- Yu, R.; Spiesz, P.; Brouwers, H.J.H. Mix design and properties assessment of ultra-high performance fibre-reinforced concrete (UHPFRC). Cem. Concr. Res. 2014, 56, 29–39. [Google Scholar] [CrossRef]
- Serdar, A.; Baradan, B. Effect of activator type and content on properties of alkali-activated slag mortars. Compos. Part B Eng. 2014, 57, 166–172. [Google Scholar] [CrossRef]
- Jiao, Z.Z. Study on Basic Mechanical Properties of Alkali Activated Slag Cementitious Block Masonry. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2019. (In Chinese). [Google Scholar]
- Manjunath, M.C.; Narasimhan, K.M. Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes. Constr. Build. Mater. 2019, 198, 33–147. [Google Scholar] [CrossRef]
- Nath, S.K.; Kumar, S. Influence of Granulated Silico-Manganese Slag on Compressive Strength and Microstructure of Ambient Cured Alkali-Activated Fly Ash Binder. Waste Biomass Valorization 2018, 10, 2045–2055. [Google Scholar] [CrossRef]
- Leong, H.Y.; Ong, D.E.L.; Sanjayan, J.G. The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer. Constr. Build. Mater. 2016, 106, 500–511. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, R.S.; Bernal, S.A.; De Gutierrez, R.M.; van Deventer, J.S.; Provis, J. Distinctive microstructural features of aged sodium silicate-activated slag concretes. Cem. Concr. Res. 2014, 65, 41–51. [Google Scholar] [CrossRef]
- Barbosa, V.F.F.; Mackenzie, K.J.D.; Thaumaturgo, C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. Int. J. Inorg. Mater. 2000, 2, 309–317. [Google Scholar] [CrossRef]
- Cai, R.J.; Tian, Z.S.; Ye, H.L. Durability characteristics and quantification of ultra-high strength alkali-activated concrete. Cem. Concr. Compos. 2022, 134, 104743. [Google Scholar] [CrossRef]
- Aghaee, K.; Khayat, K.H. Benefits and drawbacks of using multiple shrinkage mitigating strategies on performance of fiber-reinforced mortar. Cem. Concr. Compos. 2022, 133, 104714. [Google Scholar] [CrossRef]
- Kuranlı, Ö.F.; Uysal, M.; Canpolat, O. Mechanical and durability properties of slag/fly ash based alkali-activated concrete reinforced with steel, polypropylene and polyamide fibers. Eur. J. Environ. Civ. Eng. 2022, 26, 1–24. [Google Scholar] [CrossRef]
- Nath, S.K.; Kumar, S. Evaluation of the suitability of ground granulated silico-manganese slag in Portland slag cement. Constr. Build. Mater. 2016, 125, 127–134. [Google Scholar] [CrossRef]
- Navarro, R.; Zornoza, E.; Garces, P.; Sanchez, I.; Alcocel, E.G. Optimization of the alkali activation conditions of ground granulated SiMn slag. Constr. Build. Mater. 2017, 150, 781–791. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Puertas, F. The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem. Concr. Res. 2002, 32, 1019–1024. [Google Scholar] [CrossRef]
- Sarkar, S. Handbook for Identification of Alkali-Silica Reactivity in Airfield Pavements; AC No150/5380-8 Appendix2004; US Department of Transportation, Federal Aviation Administration: Washington, DC, USA, 2004; pp. 1–12.
- García-Lodeiro, A.; Palomo, A.; Fernández-Jiménez, A. Alkali–aggregate reaction inactivated fly ash systems. Cem. Concr. Res. 2007, 37, 175–183. [Google Scholar] [CrossRef]
- Ahmed, F.A.; Fei, J.; Al-Tabbaa, A. Development of greener alkali-activated cement: Utilization of sodium carbonate for activating slag and fly ash mixtures. J. Clean. Prod. 2016, 113, 66–75. [Google Scholar] [CrossRef]
- Anıl, N.; Necip, A.E.; Abdulkadir, Ç. Effects of nanosilica and steel fibers on the impact resistance of slag based self-compacting alkali-activated concrete. Ceram. Int. 2021, 47, 23905–23918. [Google Scholar] [CrossRef]
- Chen, F.S.; Lv, X.J.; Zhu, X.; Liu, X.B.; Fu, L.; Shi, L. Research progress of alkali slag cementitious materials and their retarders. J. Fly Ash 2012, 24, 8–10. (In Chinese) [Google Scholar]
- Yang, G.Y. Study on the Interface Effect of Fiber in Ultra High Performance Concrete and Its Compatibility with Cement Substrate 636. Master’s Thesis, South China University of Technology, Changsha, China, 2020. (In Chinese). [Google Scholar]
Acronym | Abbreviations |
---|---|
FA | Fly ash |
SF | Silica fume |
GBFS | Grounded blast furnace slag |
AAMs | Alkali-activated materials |
AASSC | Alkali-activated silicomanganese slag concrete |
UHPGC | Ultra-high performance alkali-activated concrete |
LOI | Loss of ignition |
WG | Water glass |
SP | Polycarboxylic acid superplasticizer |
XRD | X-ray diffractometer |
SEM | Scanning Electron Microscope |
C-S-H | hydrated calcium silicate |
MS | Alkali-activated modulus |
Materials | SiO2 | Al2O3 | K2O | TiO2 | SO3 | Na2O | MgO | CaO | Fe2O3 | LOI |
---|---|---|---|---|---|---|---|---|---|---|
FA | 53.36 | 29.09 | - | - | - | 0.81 | 2.27 | 3.87 | 2.48 | |
SF | 95.26 | - | 0.98 | - | - | 0.98 | 0.29 | 1.93 | 0.57 | 2.48 |
GBFS | 34.21 | 14.15 | 1.95 | - | 0.12 | - | 10.32 | 39.11 | 0.82 | 0.7 |
Silicomanganese slag | 36.27 | 7.82 | - | 0.67 | 0.74 | 0.28 | 11.01 | 26.49 | 0.79 | 3.98 |
Material | Specific Surface Area (m2/kg) | Specific Density (kg/m3) | Mass Coefficient (Kkc) | 28Days Activity Coefficient (%) |
---|---|---|---|---|
GBFS | 519 | 2980 | 1.697 | 110 |
SF | 2500 | 2700 | - | 121 |
Particle Size (μm) | <2 | <4 | <10 | <16 | <20 | <32 | <64 | <80 | <100 |
---|---|---|---|---|---|---|---|---|---|
GBFS | 4.1 | 12.78 | 36.3 | 41.8 | 49.5 | 65.9 | 87.2 | 94.2 | 100.0 |
SF | 98.21 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Material | Particle Size (mm) | Bulk Density (kg/m3) | SiO2 (%) | Fe2O3 | Water Content (%) |
---|---|---|---|---|---|
Fine sand | 0.08–0.15 | 1600 | 90.5–92.7 | 0.03–0.10 | 1.5 |
Sand | 0.178–0.425 | 1450 | 90.5–92.7 | 0.03–0.10 | 1.5 |
Shape | Length (mm) | Diameter (mm) | Density (g/cm3) | Roughness | Tensile Strength (MPa) | Elongation (%) |
---|---|---|---|---|---|---|
Straight | 6 | 0.16 | 2.56 | smooth | 2500 | 3.5 |
No. | GBFS | FA | SF | Silicon Manganese Slag | Fine Sand | Sand | Steel Fiber (%) | SP | W | NaOH | WG |
---|---|---|---|---|---|---|---|---|---|---|---|
S0 | 688 | 172 | 45 | 0 | 271.5 | 633.5 | 0 | 13.8 | 36.2 | 36.2 | 416.3 |
S10 | 619.2 | 172 | 45 | 68.8 | 271.5 | 633.5 | 0 | 13.8 | 36.2 | 36.2 | 416.3 |
S20 | 550.4 | 172 | 45 | 137.6 | 271.5 | 633.5 | 0 | 13.8 | 36.2 | 36.2 | 416.3 |
S30 | 481.6 | 172 | 45 | 206.4 | 271.5 | 633.5 | 0 | 13.8 | 36.2 | 36.2 | 416.3 |
S10-M1 | 619.2 | 172 | 45 | 68.8 | 271.5 | 633.5 | 0 | 13.8 | 162.9 | 54.3 | 208.2 |
S10-M1.5 | 619.2 | 172 | 45 | 68.8 | 271.5 | 633.5 | 0 | 13.8 | 97 | 45 | 314 |
S10-M2 | 619.2 | 172 | 45 | 68.8 | 271.5 | 633.5 | 0 | 13.8 | 36.2 | 36.2 | 416.3 |
S10-SF1 | 619.2 | 172 | 45 | 68.8 | 271.5 | 633.5 | 1 | 13.8 | 36.2 | 36.2 | 416.3 |
S10-SF2 | 619.2 | 172 | 45 | 68.8 | 271.5 | 633.5 | 2 | 13.8 | 36.2 | 36.2 | 416.3 |
S10-SF3 | 619.2 | 172 | 45 | 68.8 | 271.5 | 633.5 | 3 | 13.8 | 36.2 | 36.2 | 416.3 |
S60-SF2 | 275.2 | 172 | 45 | 412.8 | 271.5 | 633.5 | 2 | 13.8 | 36.2 | 36.2 | 416.3 |
S100-SF2 | 0 | 172 | 45 | 688 | 271.5 | 633.5 | 2 | 13.8 | 36.2 | 36.2 | 416.3 |
- | S0 | S10 | S20 | S30 | S10- M1 | S10- M1.5 | S10- M2 | S10- SF1 | S10- SF2 | S10- SF3 | S60- SF2 | S100- SF2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fluidity | 230 | 235 | 238 | 245 | 215 | 227 | 232 | 225 | 210 | 200 | 235 | 242 |
- | S0 | S10 | S20 | S30 | S10- M1 | S10- M1.5 | S10- M2 | S10- SF1 | S10- SF2 | S10- SF3 | S60- SF2 | S100- SF2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial | 20 | 25 | 28 | 35 | 35 | 28 | 24 | 28 | 30 | 35 | 48 | 66 |
Final | 32 | 38 | 39 | 45 | 42 | 36 | 30 | 34 | 35 | 41 | 55 | 74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, B.; Wang, D.; Mohamed, E. Study on Mechanical Properties and Durability of Alkali-Activated Silicomanganese Slag Concrete (AASSC). Buildings 2022, 12, 1621. https://doi.org/10.3390/buildings12101621
Luo B, Wang D, Mohamed E. Study on Mechanical Properties and Durability of Alkali-Activated Silicomanganese Slag Concrete (AASSC). Buildings. 2022; 12(10):1621. https://doi.org/10.3390/buildings12101621
Chicago/Turabian StyleLuo, Baifu, Dong Wang, and Elchalakani Mohamed. 2022. "Study on Mechanical Properties and Durability of Alkali-Activated Silicomanganese Slag Concrete (AASSC)" Buildings 12, no. 10: 1621. https://doi.org/10.3390/buildings12101621
APA StyleLuo, B., Wang, D., & Mohamed, E. (2022). Study on Mechanical Properties and Durability of Alkali-Activated Silicomanganese Slag Concrete (AASSC). Buildings, 12(10), 1621. https://doi.org/10.3390/buildings12101621