Experimental and Numerical Study on the Flexural Behavior of Cold-Formed Steel Multi-Limb Built-Up Section Beams
Abstract
:1. Introduction
2. Experimental Tests
2.1. Test Specimens
2.2. Material Testing
2.3. Test Set-Up and Loading
2.4. Test Results and Discussion
3. Finite Element Modeling and Parametric Study
3.1. General
3.2. Element Type and Mesh
3.3. Material Properties and Contact Properties
3.4. Boundary Conditions and Loading
3.5. Initial Geometric Imperfections and Analysis Methods
3.6. Verification of FE Models
3.7. Parametric Study
- The flexural moment capacities of K4 beams generally exceed those of B4 beams. The main reason is that the web depth-to-thickness ratios of the B4 beams are higher than those of the K4 beams.
- The flexural moment capacity is almost unchanged with the increase of the length of the U-shaped CFS (1400–3200 mm). The reason may be that the failure mode is hardly affected by the length.
- The Hc/Bc ratio increases with the increase of the web depth (180–240 mm). However, the tendency is reversed for the length-to-height ratio.
- The B0/ta ratio increases with the increase of the flange width (40–70 mm). For B4 beams, there are no apparent trends between the flexural moment capacities and the B0/ta ratio. The reason may be that the B4 beams generally fail at the web rather than the flange. For K4 beams, the flexural moment capacity increases with the increase of the B0/ta ratio.
- The B0/ta ratio decreases with the increase of the thickness (1.2–2.1 mm). The flexural moment capacity increases significantly with the increase of the thickness. This phenomenon is mainly because of the significant increase of the effective bending moment modulus.
4. Simplified Calculation Method
4.1. Derivation of the Simplified Calculation Method
4.2. Regression Analysis of k Values
5. Conclusions
- The failure modes of the beams with B4 and K4 sections were local buckling at the web and the upper flange.
- Generally, the ultimate load capacities of K4 beams are higher than those of B4 beams.
- For both B4 and K4 beams, the flexural moment capacity increases with the increase of the section height and thickness. However, with the increase of the flange width-to-thickness ratio, the flexural moment capacity of K4 beams increases but the flexural moment capacity of B4 beams shows no significant changes.
- A simplified method was proposed to predict the flexural moment capacities of closed and open section CFS beams. The new CFS four-limb built-up beam and simplified formulas can provide a reference for the design of multi-story buildings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chinese Standard GB50018-2002; Technical Code of Cold-Formed Thin-Wall Steel Structures. General Administration of Quality Supervision Inspection and Quarantine: Beijing, China, 2002.
- AISI-S100; North American Specification for the Design of Cold-Formed Steel Structural Members. American Iron, and Steel Institute: Washington, DC, USA, 2016.
- Wang, L.; Young, B. Behaviour and design of cold-formed steel built-up section beams with different screw arrangements. Thin. Wall Struct. 2018, 131, 16–32. [Google Scholar] [CrossRef]
- Abbasi, M.; Khezri, M.; Rasmussen, K.; Schafer, B.W.J.T.-W.S. Elastic buckling analysis of cold-formed steel built-up sections with discrete fasteners using the compound strip method. Thin. Wall Struct. 2018, 124, 58–71. [Google Scholar] [CrossRef]
- Zhou, X.; Shi, Y. Flexural strength evaluation for cold-formed steel lip-reinforced built-up I-beams. Adv. Struct. Eng. 2011, 14, 597–611. [Google Scholar] [CrossRef]
- Selvaraj, S.; Madhavan, M. Design of cold-formed steel back-to-back connected built-up beams. J. Constr. Steel. Res. 2021, 181, 106623. [Google Scholar] [CrossRef]
- Manikandan, P.; Sukumar, S.; Balaji, T.U. Effective shaping of cold-formed thin-walled built-up beams in pure bending. Arab. J. Sci. Eng. 2014, 39, 6043–6054. [Google Scholar] [CrossRef]
- Ferdous, W.; Manalo, A.; Aravinthan, T.; Fam, A. Flexural and shear behaviour of layered sandwich beams. Constr. Build. Mater. 2018, 173, 429–442. [Google Scholar] [CrossRef]
- Ai-Rubaye, M.; Manalo, A.; Alajarmeh, O.; Ferdous, W.; Lokuge, W.; Benmokrane, B.; Edoo, A. Flexural behaviour of concrete slabs reinforced with GFRP bars and hollow composite reinforcing systems. Compos. Struct. 2020, 236, 1118360. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Zhou, X.; Shi, Y.; Guan, Y.; Zou, Y. Simplified calculation method for flexural moment capacity of cold-formed steel built-up section beams. Adv. Struct. Eng. 2020, 23, 3153–3167. [Google Scholar] [CrossRef]
- Ghannam, M. Bending Moment capacity of cold-formed steel built-up beams. Int. J. Steel. Struct. 2019, 19, 660–671. [Google Scholar] [CrossRef]
- Laim, L.; Rodrigues, J.P.C.; Silva, L.S.D. Experimental and numerical analysis on the structural behaviour of cold-formed steel beams. Thin. Wall Struct. 2013, 72, 1–13. [Google Scholar] [CrossRef]
- Deepak, M.S.; Shanthi, V.M. Lateral-torsional buckling capacity of Hybrid Double-I-Box Beams: A numerical approach. Adv. Struct. Eng. 2019, 22, 641–655. [Google Scholar] [CrossRef]
- Meza, F.J.; Becque, J.; Hajirasouliha, I. Experimental study of cold-Formed steel built-up beams. J. Struct. Eng. 2020, 146, 04020126. [Google Scholar] [CrossRef]
- Chinese Standard GB/T228. 1-2010; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. China Standard Press: Beijing, China, 2011.
- Huang, Y.; Young, B. The art of coupon tests. J. Constr. Steel. Res. 2014, 96, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Roy, K.; Lau, H.H.; Ting, T.; Chen, B.; Lim, J. Flexural behaviour of back-to-back built-up cold-formed steel channel beams: Experiments and finite element modelling. Structures 2021, 29, 235–253. [Google Scholar] [CrossRef]
- Abaqus/CAE User’s Guide, Ver. 6.9; Dassault Systemes Simulia Corp.: Providence, RI, USA, 2009.
- Keerthan, P.; Mahendran, M. New design rules for the shear strength of LiteSteel beams. J. Constr. Steel. Res. 2011, 67, 1050–1063. [Google Scholar] [CrossRef] [Green Version]
- Shuang, N.; Rasmussen, K.; Feng, F. Distortional–global interaction buckling of stainless steel C-beams: Part II—Numerical study and design. J. Constr. Steel. Res. 2014, 96, 40–53. [Google Scholar]
- Anbarasu, M. Simulation of flexural behaviour and design of cold-formed steel closed built-up beams composed of two sigma sections for local buckling. Eng. Struct. 2019, 191, 549–562. [Google Scholar] [CrossRef]
- EN 1993-1-8:2005; Euro Code 3: Design of steel structures—Part 1–8: Design of joints. European Committee for Standardization (CEN): Brussels, Belgium, 2005.
- Gendy, B.L.; Hanna, M.T. Effect of geometric imperfections on the ultimate moment capacity of cold-formed sigma-shape sections. HBRC J. 2017, 13, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Young, B. Beam tests of cold-formed steel built-up sections with web perforations. J. Constr. Steel. Res. 2015, 115, 18–33. [Google Scholar] [CrossRef]
- Liu, J.L.; Lue, D.M.; Lin, C.H. Investigation on slenderness ratios of built-up compression members. J. Constr. Steel. Res. 2009, 65, 237–248. [Google Scholar] [CrossRef]
Specimen | Cross-Sectional Form | Dimension (mm) | L (mm) | H (mm) | B (mm) | ta * (mm) | Screw Spacing (mm) |
---|---|---|---|---|---|---|---|
1 | B4 | 4U200 × 50 × 1.2 | 2000 | 200 | 100 | 2.4 | 300 |
2 | K4 | 4U200 × 50 × 1.2 | 2000 | 200 | 150 | 1.6 | 300 |
Coupon | E (GPa) | σ0.2 (MPa) | σu (MPa) | εf (%) |
---|---|---|---|---|
P1 | 204.31 | 248.71 | 359.85 | 28.00 |
P2 | 206.56 | 249.93 | 360.11 | 25.90 |
P3 | 207.93 | 252.76 | 358.84 | 25.40 |
Mean | 206.27 | 250.47 | 359.60 | 26.40 |
COV | 0.0089 | 0.0083 | 0.0019 | 0.0521 |
Section | FT (kN) | FFE (kN) | FT/FFE |
---|---|---|---|
B4 | 41.94 | 46.11 | 0.91 |
K4 | 48.19 | 49.49 | 0.97 |
M (kN·m) | t (mm) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.2 | 1.5 | 1.8 | 2.1 | |||||||||||
B (mm) | H (mm) | L (mm) | MFE | MW | k | MFE | MW | k | MFE | MW | k | MFE | MW | k |
50 | 180 | 1400 | 11.31 | 23.99 | 0.47 | 16.93 | 29.88 | 0.57 | 23.11 | 35.72 | 0.65 | 29.39 | 41.52 | 0.71 |
2000 | 12.38 | 23.99 | 0.52 | 18.66 | 29.88 | 0.62 | 25.12 | 35.72 | 0.70 | 32.21 | 41.52 | 0.78 | ||
2600 | 12.49 | 23.99 | 0.52 | 19.12 | 29.88 | 0.64 | 25.74 | 35.72 | 0.72 | 32.48 | 41.52 | 0.78 | ||
3200 | 12.47 | 23.99 | 0.52 | 17.86 | 29.88 | 0.60 | 24.97 | 35.72 | 0.70 | 31.34 | 41.52 | 0.75 | ||
200 | 1400 | 12.18 | 27.81 | 0.44 | 18.20 | 34.65 | 0.53 | 25.28 | 41.44 | 0.61 | 32.54 | 48.19 | 0.68 | |
2000 | 13.83 | 27.81 | 0.50 | 20.15 | 34.65 | 0.58 | 28.21 | 41.44 | 0.68 | 36.45 | 48.19 | 0.76 | ||
2600 | 13.92 | 27.81 | 0.50 | 22.12 | 34.65 | 0.64 | 30.10 | 41.44 | 0.73 | 37.49 | 48.19 | 0.78 | ||
3200 | 13.87 | 27.81 | 0.50 | 21.24 | 34.65 | 0.61 | 28.36 | 41.44 | 0.68 | 35.72 | 48.19 | 0.74 | ||
220 | 1400 | 13.16 | 31.86 | 0.41 | 18.90 | 39.70 | 0.48 | 26.61 | 47.49 | 0.56 | 35.04 | 55.24 | 0.63 | |
2000 | 14.95 | 31.86 | 0.47 | 22.36 | 39.70 | 0.56 | 31.20 | 47.49 | 0.66 | 40.46 | 55.24 | 0.73 | ||
2600 | 15.44 | 31.86 | 0.48 | 19.61 | 39.70 | 0.49 | 33.39 | 47.49 | 0.70 | 41.67 | 55.24 | 0.75 | ||
3200 | 15.41 | 31.86 | 0.48 | 23.41 | 39.70 | 0.59 | 31.82 | 47.49 | 0.67 | 40.24 | 55.24 | 0.73 | ||
240 | 1400 | 13.45 | 36.13 | 0.37 | 19.83 | 45.03 | 0.44 | 28.23 | 53.89 | 0.52 | 37.23 | 62.69 | 0.59 | |
2000 | 15.96 | 36.13 | 0.44 | 24.47 | 45.03 | 0.54 | 33.96 | 53.89 | 0.63 | 44.34 | 62.69 | 0.71 | ||
2600 | 17.14 | 36.13 | 0.47 | 26.06 | 45.03 | 0.58 | 36.17 | 53.89 | 0.67 | 45.97 | 62.69 | 0.73 | ||
3200 | 16.82 | 36.13 | 0.47 | 24.58 | 45.03 | 0.55 | 35.17 | 53.89 | 0.65 | 44.45 | 62.69 | 0.71 | ||
40 | 200 | 1400 | 12.33 | 24.48 | 0.50 | 19.02 | 30.49 | 0.62 | 25.61 | 36.47 | 0.70 | 32.57 | 42.40 | 0.77 |
2000 | 13.73 | 24.48 | 0.56 | 20.66 | 30.49 | 0.68 | 27.69 | 36.47 | 0.76 | 34.75 | 42.40 | 0.82 | ||
2600 | 14.72 | 24.48 | 0.60 | 21.83 | 30.49 | 0.72 | 28.64 | 36.47 | 0.79 | 35.26 | 42.40 | 0.83 | ||
3200 | 12.98 | 24.48 | 0.53 | 20.04 | 30.49 | 0.66 | 27.17 | 36.47 | 0.75 | 34.01 | 42.40 | 0.80 | ||
50 | 1400 | 12.18 | 27.81 | 0.44 | 18.20 | 34.65 | 0.53 | 25.28 | 41.44 | 0.61 | 32.54 | 48.19 | 0.68 | |
2000 | 13.83 | 27.81 | 0.50 | 20.15 | 34.65 | 0.58 | 28.21 | 41.44 | 0.68 | 36.45 | 48.19 | 0.76 | ||
2600 | 13.92 | 27.81 | 0.50 | 22.12 | 34.65 | 0.64 | 30.10 | 41.44 | 0.73 | 37.49 | 48.19 | 0.78 | ||
3200 | 13.87 | 27.81 | 0.50 | 21.24 | 34.65 | 0.61 | 28.36 | 41.44 | 0.68 | 35.72 | 48.19 | 0.74 | ||
60 | 1400 | 12.21 | 31.15 | 0.39 | 19.07 | 38.81 | 0.49 | 25.29 | 46.41 | 0.54 | 33.00 | 53.97 | 0.61 | |
2000 | 13.74 | 31.15 | 0.44 | 19.51 | 38.81 | 0.50 | 26.91 | 46.41 | 0.58 | 35.57 | 53.97 | 0.66 | ||
2600 | 14.15 | 31.15 | 0.45 | 20.10 | 38.81 | 0.52 | 27.38 | 46.41 | 0.59 | 36.42 | 53.97 | 0.67 | ||
3200 | 14.32 | 31.15 | 0.46 | 20.53 | 38.81 | 0.53 | 28.21 | 46.41 | 0.61 | 35.56 | 53.97 | 0.66 | ||
70 | 1400 | 12.68 | 34.49 | 0.37 | 18.90 | 42.96 | 0.44 | 25.88 | 51.38 | 0.50 | 33.71 | 59.75 | 0.56 | |
2000 | 14.52 | 34.49 | 0.42 | 21.31 | 42.96 | 0.50 | 29.76 | 51.38 | 0.58 | 38.16 | 59.75 | 0.64 | ||
2600 | 15.11 | 34.49 | 0.44 | 22.01 | 42.96 | 0.51 | 30.16 | 51.38 | 0.59 | 41.03 | 59.75 | 0.69 | ||
3200 | 15.33 | 34.49 | 0.44 | 22.34 | 42.96 | 0.52 | 30.38 | 51.38 | 0.59 | 39.45 | 59.75 | 0.66 |
M (kN·m) | t (mm) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.2 | 1.5 | 1.8 | 2.1 | |||||||||||
B (mm) | H (mm) | L (mm) | MFE | MW | k | MFE | MW | k | MFE | MW | k | MFE | MW | k |
50 | 180 | 1400 | 14.25 | 32.06 | 0.44 | 19.69 | 39.95 | 0.49 | 27.14 | 47.79 | 0.57 | 33.73 | 55.58 | 0.61 |
2000 | 13.59 | 32.06 | 0.42 | 19.40 | 39.95 | 0.49 | 25.91 | 47.79 | 0.54 | 32.69 | 55.58 | 0.59 | ||
2600 | 13.52 | 32.06 | 0.42 | 18.91 | 39.95 | 0.47 | 25.32 | 47.79 | 0.53 | 32.13 | 55.58 | 0.58 | ||
3200 | 13.37 | 32.06 | 0.42 | 18.52 | 39.95 | 0.46 | 25.16 | 47.79 | 0.53 | 31.61 | 55.58 | 0.57 | ||
200 | 1400 | 15.05 | 37.16 | 0.41 | 22.55 | 46.31 | 0.49 | 30.11 | 55.42 | 0.54 | 38.39 | 64.47 | 0.60 | |
2000 | 14.85 | 37.16 | 0.40 | 20.82 | 46.31 | 0.45 | 28.40 | 55.42 | 0.51 | 38.05 | 64.47 | 0.59 | ||
2600 | 14.94 | 37.16 | 0.40 | 20.34 | 46.31 | 0.44 | 28.51 | 55.42 | 0.51 | 37.35 | 64.47 | 0.58 | ||
3200 | 14.80 | 37.16 | 0.40 | 20.55 | 46.31 | 0.44 | 29.01 | 55.42 | 0.52 | 37.31 | 64.47 | 0.58 | ||
220 | 1400 | 16.46 | 42.55 | 0.39 | 24.13 | 53.05 | 0.45 | 33.34 | 63.50 | 0.53 | 42.30 | 73.89 | 0.57 | |
2000 | 16.63 | 42.55 | 0.39 | 24.39 | 53.05 | 0.46 | 33.64 | 63.50 | 0.53 | 42.71 | 73.89 | 0.58 | ||
2600 | 16.45 | 42.55 | 0.39 | 22.99 | 53.05 | 0.43 | 31.64 | 63.50 | 0.50 | 41.74 | 73.89 | 0.56 | ||
3200 | 16.43 | 42.55 | 0.39 | 23.05 | 53.05 | 0.43 | 31.61 | 63.50 | 0.50 | 41.30 | 73.89 | 0.56 | ||
240 | 1400 | 18.53 | 48.25 | 0.38 | 26.15 | 60.17 | 0.43 | 35.61 | 72.03 | 0.49 | 47.44 | 83.83 | 0.57 | |
2000 | 18.39 | 48.25 | 0.38 | 25.13 | 60.17 | 0.42 | 36.46 | 72.03 | 0.51 | 47.43 | 83.83 | 0.57 | ||
2600 | 18.04 | 48.25 | 0.37 | 26.07 | 60.17 | 0.43 | 36.13 | 72.03 | 0.50 | 47.17 | 83.83 | 0.56 | ||
3200 | 17.75 | 48.25 | 0.37 | 24.38 | 60.17 | 0.41 | 34.48 | 72.03 | 0.48 | 46.93 | 83.83 | 0.56 | ||
40 | 200 | 1400 | 13.81 | 32.70 | 0.42 | 20.40 | 40.76 | 0.50 | 27.43 | 48.77 | 0.56 | 35.23 | 56.73 | 0.62 |
2000 | 13.75 | 32.70 | 0.42 | 20.78 | 40.76 | 0.51 | 28.09 | 48.77 | 0.58 | 35.19 | 56.73 | 0.62 | ||
2600 | 13.94 | 32.70 | 0.43 | 21.30 | 40.76 | 0.52 | 28.61 | 48.77 | 0.59 | 34.35 | 56.73 | 0.61 | ||
3200 | 13.75 | 32.70 | 0.42 | 20.50 | 40.76 | 0.50 | 26.94 | 48.77 | 0.55 | 34.37 | 56.73 | 0.61 | ||
50 | 1400 | 15.05 | 37.16 | 0.41 | 22.55 | 46.31 | 0.49 | 30.11 | 55.42 | 0.54 | 38.39 | 64.47 | 0.60 | |
2000 | 14.85 | 37.16 | 0.40 | 20.82 | 46.31 | 0.45 | 28.40 | 55.42 | 0.51 | 38.05 | 64.47 | 0.59 | ||
2600 | 14.94 | 37.16 | 0.40 | 20.34 | 46.31 | 0.44 | 28.51 | 55.42 | 0.51 | 37.35 | 64.47 | 0.58 | ||
3200 | 14.80 | 37.16 | 0.40 | 20.55 | 46.31 | 0.44 | 29.01 | 55.42 | 0.52 | 37.31 | 64.47 | 0.58 | ||
60 | 1400 | 15.60 | 41.62 | 0.37 | 22.98 | 51.87 | 0.44 | 31.04 | 62.07 | 0.50 | 39.54 | 72.20 | 0.55 | |
2000 | 16.04 | 41.62 | 0.39 | 22.62 | 51.87 | 0.44 | 30.97 | 62.07 | 0.50 | 39.54 | 72.20 | 0.55 | ||
2600 | 15.66 | 41.62 | 0.38 | 22.46 | 51.87 | 0.43 | 30.17 | 62.07 | 0.49 | 38.53 | 72.20 | 0.53 | ||
3200 | 15.61 | 41.62 | 0.38 | 21.56 | 51.87 | 0.42 | 29.19 | 62.07 | 0.47 | 36.73 | 72.20 | 0.51 | ||
70 | 1400 | 16.21 | 46.08 | 0.35 | 23.29 | 57.43 | 0.41 | 31.77 | 68.72 | 0.46 | 41.99 | 79.94 | 0.53 | |
2000 | 16.37 | 46.08 | 0.36 | 23.29 | 57.43 | 0.41 | 31.31 | 68.72 | 0.46 | 40.55 | 79.94 | 0.51 | ||
2600 | 16.66 | 46.08 | 0.36 | 23.37 | 57.43 | 0.41 | 31.01 | 68.72 | 0.45 | 39.41 | 79.94 | 0.49 | ||
3200 | 16.61 | 46.08 | 0.36 | 23.03 | 57.43 | 0.40 | 31.29 | 68.72 | 0.46 | 38.84 | 79.94 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, F.; He, Y.; Deng, L.; Zhong, W. Experimental and Numerical Study on the Flexural Behavior of Cold-Formed Steel Multi-Limb Built-Up Section Beams. Buildings 2022, 12, 1639. https://doi.org/10.3390/buildings12101639
Deng F, He Y, Deng L, Zhong W. Experimental and Numerical Study on the Flexural Behavior of Cold-Formed Steel Multi-Limb Built-Up Section Beams. Buildings. 2022; 12(10):1639. https://doi.org/10.3390/buildings12101639
Chicago/Turabian StyleDeng, Feiyun, Yulong He, Lu Deng, and Wenjie Zhong. 2022. "Experimental and Numerical Study on the Flexural Behavior of Cold-Formed Steel Multi-Limb Built-Up Section Beams" Buildings 12, no. 10: 1639. https://doi.org/10.3390/buildings12101639
APA StyleDeng, F., He, Y., Deng, L., & Zhong, W. (2022). Experimental and Numerical Study on the Flexural Behavior of Cold-Formed Steel Multi-Limb Built-Up Section Beams. Buildings, 12(10), 1639. https://doi.org/10.3390/buildings12101639