Energy Performance Evaluation of Historical Building
Abstract
:1. Introduction
2. Methodology
2.1. Case Study
2.2. Parametric Evaluations
- Energy saving
- Thermal comfort
- Carbon dioxide emissions (GHGs in general)
- Economic feasibility
- Geographical location and climate
- Gävle, Sweden
- Sapporo, Japan
- Beirut, Lebanon
- Jakarta, Indonesia
- Building orientation
- 90° clockwise
- Shading
- Internal shading (IS)
- External shading (ES)
- Installation of LEF
- Alternative energy supply
- GHP with coefficient of performance (COP) of 4.0
2.3. Software
2.4. Numerical Model, Setup, and Validation
2.5. Thermal Comfort
2.6. Locations
2.7. Orientation
2.8. Shading
2.9. LEF
2.10. Economic Evaluation
- Undiscounted payback time (UPT)
- Discounted payback time (DPB)
2.11. DH, Electricity Generation, and GHG Emissions
2.12. Case Studies and Configurations
3. Results and Discussion
3.1. B-Case Evaluations
3.2. L-Case Evaluations
3.3. Best Possible Thermal Comfort Configuration
3.4. Comparison of CO2 Emissions for DH
3.5. Heat Pump Evaluation
3.6. Economic Feasibility—Investment in LEF
3.7. Economic Feasibility—Investment in GHP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ACH | old building with very high ceiling |
BEP | building energy performance |
BPS | building performance simulation software |
CF | cash flow |
COP | coefficient of performance |
DH | district heating |
DPB | discounted payback time |
D% | discount rate |
ES | external shading |
GHGs | greenhouse gases |
GHP | geothermal heat pump |
HVAC | heating, ventilation, and air conditioning |
IS | internal shading |
LEF | low energy film |
NPV | net present value |
PPD | percentage of total occupant hours with thermal dissatisfaction [%] |
SDEI | satisfaction per delivered energy index [1/(kWh/m2∙year)] |
SHG | solar heat gain |
UPT | undiscounted payback time |
WWR | window to wall ratio |
References
- Campagna, L.M.; Fiorito, F. On the Impact of Climate Change on Building Energy Consumptions: A Meta-Analysis. Energies 2022, 15, 354. [Google Scholar] [CrossRef]
- Barbir, F.; Veziroǧlu, T.N.; Plass, H.J. Environmental Damage Due to Fossil Fuels Use. Int. J. Hydrog. Energy 1990, 15, 739–749. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability. IPCC Sixth Assess. Rep. 2022. [Google Scholar] [CrossRef]
- Zhai, Z.J.; Helman, J.M. Implications of Climate Changes to Building Energy and Design. Sustain. Cities Soc. 2019, 44, 511–519. [Google Scholar] [CrossRef]
- Sharma, S.K.; Mohapatra, S.; Sharma, R.C.; Alturjman, S.; Altrjman, C.; Mostarda, L.; Stephan, T. Retrofitting Existing Buildings to Improve Energy Performance. Sustainability 2022, 14, 666. [Google Scholar] [CrossRef]
- Fosas, D.; Coley, D.A.; Natarajan, S.; Herrera, M.; Fosas de Pando, M.; Ramallo-Gonzalez, A. Mitigation versus Adaptation: Does Insulating Dwellings Increase Overheating Risk? Build. Environ. 2018, 143, 740–759. [Google Scholar] [CrossRef]
- Fitton, R.; Swan, W.; Hughes, T.; Benjaber, M. The thermal performance of window coverings in a whole house test facility with single-glazed sash windows. Energy Effic. 2017, 10, 1419–1431. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.; Tariq, M.A.U.R.; Ng, A.W.M.; Zaheer, Z.; Sadeq, S.; Mohammed, M.; Mehdizadeh-Rad, H. Reducing the Cooling Loads of Buildings Using Shading Devices: A Case Study in Darwin. Sustainability 2022, 14, 3775. [Google Scholar] [CrossRef]
- Morelli, M.; Rønby, L.; Mikkelsen, S.E.; Minzari, M.G.; Kildemoes, T.; Tommerup, H.M. Energy Retrofitting of a Typical Old Danish Multi-Family Building to a “Nearly-Zero” Energy Building Based on Experiences from a Test Apartment. Energy Build. 2012, 54, 395–406. [Google Scholar] [CrossRef]
- Harrestrup, M.; Svendsen, S. Full-Scale Test of an Old Heritage Multi-Storey Building Undergoing Energy Retrofitting with Focus on Internal Insulation and Moisture. Build. Environ. 2015, 85, 123–133. [Google Scholar] [CrossRef]
- Curto, D.; Franzitta, V.; Guercio, A.; Panno, D. Energy Retrofit. A Case Study—Santi Romano Dormitory on the Palermo University. Sustainability 2021, 13, 13524. [Google Scholar] [CrossRef]
- Cho, H.M.; Yun, B.Y.; Kim, Y.U.; Yuk, H.; Kim, S. Integrated Retrofit Solutions for Improving the Energy Performance of Historic Buildings through Energy Technology Suitability Analyses: Retrofit Plan of Wooden Truss and Masonry Composite Structure in Korea in the 1920s. Renew. Sustain. Energy Rev. 2022, 168, 112800. [Google Scholar] [CrossRef]
- Esteghamati, M.Z.; Sharifnia, H.; Ton, D.; Asiatico, P.; Reichard, G.; Flint, M.M. Sustainable Early Design Exploration of Mid-Rise Office Buildings with Different Subsystems Using Comparative Life Cycle Assessment. J. Build. Eng. 2022, 48, 104004. [Google Scholar] [CrossRef]
- Angrisano, M.; Fabbrocino, F.; Iodice, P.; Girard, L.F.; Ruello, M.L.; Mobili, A. The Evaluation of Historic Building Energy Retrofit Projects through the Life Cycle Assessment. Appl. Sci. 2021, 11, 7145. [Google Scholar] [CrossRef]
- Moghaddam, S.A.; Mattsson, M.; Ameen, A.; Akander, J.; Gameiro Da Silva, M.; Simões, N. Low-Emissivity Window Films as an Energy Retrofit Option for a Historical Stone Building in Cold Climate. Energies 2021, 14, 7584. [Google Scholar] [CrossRef]
- Woloszyn, M.; Rode, C. Tools for Performance Simulation of Heat, Air and Moisture Conditions of Whole Buildings. In Building Simulation; Springer: Berlin/Heidelberg, Germany, 2008; Volume 1, pp. 5–24. [Google Scholar]
- Ahmed, K.; Carlier, M.; Feldmann, C.; Kurnitski, J. A New Method for Contrasting Energy Performance and Near-Zero Energy Building Requirements in Different Climates and Countries. Energies 2018, 11, 1334. [Google Scholar] [CrossRef] [Green Version]
- Pieskä, H.; PLoSkić, A.; Wang, Q. Design Requirements for Condensation-Free Operation of High-Temperature Cooling Systems in Mediterranean Climate. Build. Environ. 2020, 185, 107273. [Google Scholar] [CrossRef]
- Kabanshi, A.; Ameen, A.; Hayati, A.; Yang, B. Cooling energy simulation and analysis of an intermittent ventilation strategy under different climates. Energy 2018, 156, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Bakhtiari, H.; Akander, J.; Cehlin, M.; Hayati, A. On the Performance of Night Ventilation in a Historic Office Building in Nordic Climate. Energies 2020, 13, 4159. [Google Scholar] [CrossRef]
- Soleimani-Mohseni, M.; Nair, G.; Hasselrot, R. Energy Simulation for a High-Rise Building Using IDA ICE: Investigations in Different Climates. In Building Simulation; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9, pp. 629–640. [Google Scholar]
- Hoffmann, T. SunCalc: Sun Position and Sunlight Phases Calculator. Available online: https://www.suncalc.org/ (accessed on 3 September 2022).
- Atzeri, A.; Cappelletti, F.; Gasparella, A. Internal Versus External Shading Devices Performance in Office Buildings. Energy Procedia 2014, 45, 463–472. [Google Scholar] [CrossRef]
- Hens, H.S.L. Building Physics-Heat, Air and Moisture: Fundamentals and Engineering Methods with Examples and Exercises; John Wiley & Sons: New York, NY, USA, 2017. [Google Scholar]
- Moreno, B.; Gonzalo, F.D.A.; Fernandez, J.A.; Lauret, B.; Hernandez, J.A. A Building energy simulation methodology to validate energy balance and comfort in zero energy buildings. J. Energy Syst. 2019, 3, 168–182. [Google Scholar] [CrossRef]
- Tzempelikos, A.; Athienitis, A.K. The Impact of Shading Design and Control on Building Cooling and Lighting Demand. Sol. Energy 2007, 81, 369–382. [Google Scholar] [CrossRef]
- Heydari, A.; Sadati, S.E.; Gharib, M.R. Effects of Different Window Configurations on Energy Consumption in Building: Optimization and Economic Analysis. J. Build. Eng. 2021, 35, 102099. [Google Scholar] [CrossRef]
- Vanek, F.M.; Albright, L.D.; Angenent, L.T. Energy Systems Engineering: Evaluation and Implementation; McGraw-Hill Education: New York, NY, USA, 2016. [Google Scholar]
- Rezaie, B.; Rosen, M.A. District Heating and Cooling: Review of Technology and Potential Enhancements. Appl. Energy 2012, 93, 2–10. [Google Scholar] [CrossRef]
- Rydegran, E. Fjärrvärmens Minskade Koldioxidutsläpp. Available online: https://www.energiforetagen.se/statistik/fjarrvarmestatistik/fjarrvarmens-koldioxidutslapp/ (accessed on 31 August 2022).
- Gävle Energi AB Gävle Energi-Productionmix. Available online: https://www.gavleenergi.se/om-oss/miljo-och-hallbarhet/fjarrvarme/ (accessed on 3 September 2022).
- Sandgren, A.; Nilsson, J. Emissionsfaktor För Nordisk Elmix Med Hänsyn till Import Och Export. Utredning Av Lämplig Systemgräns För Elmix Samt Beräkning Av Det Nordiska Elsystemets Klimatpåverkan. Norrköping. Nat. 2021. Available online: http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Anaturvardsverket%3Adiva-8809 (accessed on 26 August 2022).
- ANSI/ASHRAE Standard 55-2017; American Society of Heating and Refrigerating and Air-Conditioning Engineers Thermal Environmental Conditions for Human Occupancy. American National Standard: New York, NY, USA, 2017.
- Arnaoutakis, G.E.; Katsaprakakis, D.A.; Christakis, D.G. Dynamic Modeling of Combined Concentrating Solar Tower and Parabolic Trough for Increased Day-to-Day Performance. Appl. Energy 2022, 323, 119450. [Google Scholar] [CrossRef]
Structural Component | U-Value (W/(m2·K)) |
---|---|
External walls | 0.81 |
Internal walls | 1.16 |
Internal floors | 2.90 |
External floors | 0.37 |
Roof | 0.23 |
Basement wall toward ground | 3.30 |
Heated floor area: 1480 m2 Envelope area: 1910 m2 WWR: 11.7% |
Type of Joint | External Wall/Internal Slab | External Wall/Internal Wall | External Wall/External Wall | External Window Perimeter |
---|---|---|---|---|
Thermal bridges (W/(K·m)) | 0.58 | 0.23 | 0.25 | 0.05 |
Type | U-Value (W/(m2·K)) | g-Value | Transmitted Visible Light |
---|---|---|---|
Double-Pane Window | 2.30 | 0.76 | 0.81 |
Type | Total | W |
---|---|---|
Occupants | 59 | 90 W |
Lights | 450 | 24 W |
Equipment | 59 | 125 W |
Location | Coordinates | Climate (M, P, T) | Climate File Source |
---|---|---|---|
Gävle Sweden | 60.6749° N 17.1413° E | Dfc (Snow, F. humidity, C. Summer) | SMHI Sveby |
Sapporo Japan | 43.0618° N 141.3545° E | Dfb (Snow, F. Humidity, W. Summer) | ASHRAE IWEC2 |
Beirut Lebanon | 33.8938° N 35.5018° E | Csa (Warm temperature, Dry warm summer) | ASHRAE IWEC2 |
Jakarta Indonesia | 6.2088° S 106.8456° E | Af-Am (Equatorial, F. humid/Monsoonal) | ASHRAE IWEC2 |
Type | U-Value (W/(m2·K)) | g-Value | Transmitted Visible Light |
---|---|---|---|
Window with applied LEF | 1.55 | 0.51 | 0.66 |
Model Pre-LEF | Model Post LEF | Models with GHP |
---|---|---|
B0: Base model (BM) | L0: B0 + LEF | CB0: GHP + B0 |
B1: (BM) + 90° clockwise rotation | L1: B1 + LEF | CL0: GHP + L0 |
B2: BM + IS + sun control | L2: B2 + LEF | |
B3: BM + ES + temperature control | L3: B3 + LEF | |
B4: BM + ES + sun control | L4: B4 + LEF |
Energy Price (€/kWh) | CB0 | CL0 |
---|---|---|
0.07 | € 11,556 | € 11,901 |
0.08 | € 13,206 | € 13,601 |
0.09 | € 14,857 | € 15,301 |
0.10 | € 16,508 | € 17,001 |
0.11 | € 18,159 | € 18,701 |
0.12 | € 19,810 | € 20,401 |
0.13 | € 21,461 | € 22,101 |
0.14 | € 23,111 | € 23,802 |
0.15 | € 24,762 | € 25,502 |
0.16 | € 26,413 | € 27,202 |
0.17 | € 28,064 | € 28,902 |
0.18 | € 29,715 | € 30,602 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ameen, A.; Bahrami, A.; El Tayara, K. Energy Performance Evaluation of Historical Building. Buildings 2022, 12, 1667. https://doi.org/10.3390/buildings12101667
Ameen A, Bahrami A, El Tayara K. Energy Performance Evaluation of Historical Building. Buildings. 2022; 12(10):1667. https://doi.org/10.3390/buildings12101667
Chicago/Turabian StyleAmeen, Arman, Alireza Bahrami, and Khaled El Tayara. 2022. "Energy Performance Evaluation of Historical Building" Buildings 12, no. 10: 1667. https://doi.org/10.3390/buildings12101667
APA StyleAmeen, A., Bahrami, A., & El Tayara, K. (2022). Energy Performance Evaluation of Historical Building. Buildings, 12(10), 1667. https://doi.org/10.3390/buildings12101667