Performance Evaluation of a Sustainable Prefabricated System Using Small-Scale Experimental Model Technique
Abstract
:1. Introduction
2. Product Development and Methodology
2.1. Materials
2.2. Mix Design and Testing
2.3. Methodology
3. Development of Experimental Model
Building of a Small-Scale Model House
4. Performance Evaluation of the Developed Model
4.1. Functional Evaluation
4.2. Energy Assessment
4.2.1. Evaluation of Embodied Energy
4.2.2. Operational Energy—Computational Modelling
5. Feasibility
5.1. Time Study
5.2. Energy
6. Discussion and Recommendations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Housing & Urban Poverty Alleviation Government of India Pradhan Mantri Awas Yojana—Housing for All (Urban) —Credit Linked Subsidy Scheme. Gov. India New Delhi 2017, 2017, 1–62.
- Lindsey, R.; Dahlman, L. Climate Change: Global Temperature. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature#:~:text=Earth%E2%80%99s%20temper-ature%20has%20risen%20by,%20based%20on%20NOAA%E2%80%99s%20temperature%20data (accessed on 10 October 2022).
- Chippagiri, R.; Bras, A.; Sharma, D.; Ralegaonkar, R.V. Technological and Sustainable Perception on the Advancements of Prefabrication in Construction Industry. Energies 2022, 15, 7548. [Google Scholar] [CrossRef]
- Aksoylu, C.; Kara, N. Strengthening of RC frames by using high strength diagonal precast panels. J. Build. Eng. 2020, 31, 101338. [Google Scholar] [CrossRef]
- Özkılıç, Y.O.; Aksoylu, C.; Arslan, M.H. Experimental and numerical investigations of steel fiber reinforced concrete dapped-end purlins. J. Build. Eng. 2021, 36, 102119. [Google Scholar] [CrossRef]
- Aksoylu, C.; Sezer, R. Investigation of precast new diagonal concrete panels in strengthened the infilled reinforced concrete frames. KSCE J. Civ. Eng. 2018, 22, 236–246. [Google Scholar] [CrossRef]
- Gemi, L.; Aksoylu, C.; Yazman, Ş.; Özkılıç, Y.O.; Arslan, M.H. Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite. Compos. Struct. 2019, 229, 111399. [Google Scholar] [CrossRef]
- Özkılıç, Y.O.; Yazman, Ş.; Aksoylu, C.; Arslan, M.H.; Gemi, L. Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening. Constr. Build. Mater. 2021, 275, 122173. [Google Scholar] [CrossRef]
- Einea, A.; Salmon, D.C.; Fogarasi, G.J.; Culp, T.D.; Tadros, M.K. State-of-the-art of Precast Concrete Sandwich Panels. PCI J. 1991, 36, 78–92. [Google Scholar] [CrossRef]
- O’Hegarty, R.; Kinnane, O. Review of precast concrete sandwich panels and their innovations. Constr. Build. Mater. 2020, 233, 117145. [Google Scholar] [CrossRef]
- Dave, M.; Watson, B.; Prasad, D. Performance and perception in prefab housing: An exploratory industry survey on sustainability and affordability. Procedia Eng. 2017, 180, 676–686. [Google Scholar] [CrossRef]
- Lopez, D.; Froese, T.M. Analysis of costs and benefits of panelized and modular prefabricated homes. Procedia Eng. 2016, 145, 1291–1297. [Google Scholar] [CrossRef]
- Chippagiri, R.; Gavali, H.R.; Ralegaonkar, R.V.; Riley, M.; Shaw, A.; Bras, A. Application of Sustainable Prefabricated Wall Technology for Energy Efficient Social Housing. Sustainability 2021, 13, 1195. [Google Scholar] [CrossRef]
- Bansal, D.; Singh, R.; Sawhney, R.L. Effect of construction materials on embodied energy and cost of buildings—A case study of residential houses in India up to 60 m2 of plinth area. Energy Build. 2014, 69, 260–266. [Google Scholar] [CrossRef]
- Ramesh, T.; Prakash, R.; Shukla, K.K. Life cycle energy analysis of buildings: An overview. Energy Build. 2010, 42, 1592–1600. [Google Scholar] [CrossRef]
- Venkatarama Reddy, B.V.; Jagadish, K.S. Embodied energy of common and alternative building materials and technologies. Energy Build. 2003, 35, 129–137. [Google Scholar] [CrossRef]
- Tembhurkar, S.; Ralegaonkar, R.; Azevedo, A.; Madurwar, M. Low cost geopolymer modular toilet unit for ODF India—A case study. Case Stud. Constr. Mater. 2022, 16, e00937. [Google Scholar] [CrossRef]
- Raut, S.P.; Sedmake, R.; Dhunde, S.; Ralegaonkar, R.V.; Mandavgane, S.A. Reuse of recycle paper mill waste in energy absorbing light weight bricks. Constr. Build. Mater. 2012, 27, 247–251. [Google Scholar] [CrossRef]
- Sakhare, V.V.; Ralegaonkar, R.V. Development and investigation of cellular light weight bio-briquette ash bricks. Clean Technol. Environ. Policy 2017, 19, 235–242. [Google Scholar] [CrossRef]
- Ram, S.; Ralegaonkar, R.V.; Pradhan, K. Use of co-fired blended ash in the development of sustainable construction materials. Proc. Inst. Civ. Eng. Eng. Sustain. 2017, 171, 425–432. [Google Scholar] [CrossRef]
- Gavali, H.R.; Bras, A.; Faria, P.; Ralegaonkar, R.V. Development of sustainable alkali-activated bricks using industrial wastes. Constr. Build. Mater. 2019, 215, 180–191. [Google Scholar] [CrossRef]
- Shelote, K.M.; Gavali, H.R.; Bras, A.; Ralegaonkar, R.V. Utilization of co-fired blended ash and chopped basalt fiber in the development of sustainable mortar. Sustainability 2021, 13, 1247. [Google Scholar] [CrossRef]
- Dakwale, V.A.; Ralegaonkar, R.V. Development of sustainable construction material using construction and demolition waste. Indian, J. Eng. Mater. Sci. 2014, 21, 451–457. [Google Scholar]
- Venkrbec, V.; Klanšek, U. Suitability of recycled concrete aggregates from precast panel buildings deconstructed at expired lifespan for structural use. J. Clean. Prod. 2020, 247, 119593. [Google Scholar] [CrossRef]
- IEA Final Residential Energy Use Covered by Labels, 2000–2021, IEA, Paris. Available online: https://www.iea.org/data-and-statistics/charts/final-residential-energy-use-covered-by-labels-2000-2021 (accessed on 30 April 2022).
- Kumar, D.; Alam, M.; Zou, P.X.W.; Sanjayan, J.G.; Memon, R.A. Comparative analysis of building insulation material properties and performance. Renew. Sustain. Energy Rev. 2020, 131, 110038. [Google Scholar] [CrossRef]
- Shoubi, M.V.; Shoubi, M.V.; Bagchi, A.; Barough, A.S. Reducing the operational energy demand in buildings using building information modeling tools and sustainability approaches. Ain Shams Eng. J. 2015, 6, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Ralegaonkar, R.V.; Gavali, H.R.; Sakhare, V.V.; Puppala, A.J.; Aswath, P.B. Energy-efficient slum house using alternative materials. Proc. Inst. Civ. Eng. Energy 2017, 170, 93–102. [Google Scholar] [CrossRef]
- Naito, C.; Hoemann, J.; Beacraft, M.; Bewick, B. Performance and characterization of shear ties for use in insulated precast concrete sandwich wall panels. J. Struct. Eng. 2012, 138, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Shams, A.; Stark, A.; Hoogen, F.; Hegger, J.; Schneider, H. Innovative sandwich structures made of high performance concrete and foamed polyurethane. Compos. Struct. 2015, 121, 271–279. [Google Scholar] [CrossRef]
- D’Orazio, M.; Stipa, P.; Sabbatini, S.; Maracchini, G. Experimental investigation on the durability of a novel lightweight prefabricated reinforced-EPS based construction system. Constr. Build. Mater. 2020, 252, 119134. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; He, B.J.; Xu, W.; Jin, G.; Zhang, X. Application and suitability analysis of the key technologies in nearly zero energy buildings in China. Renew. Sustain. Energy Rev. 2019, 101, 329–345. [Google Scholar] [CrossRef]
- Ralegaonkar, R.V.; Gupta, R. Design development of a static sunshade using small scale modeling technique. Renew. Energy 2005, 30, 867–880. [Google Scholar] [CrossRef]
- Raut, S.; Mandavgane, S.; Ralegaonkar, R. Thermal Performance Assessment of Recycled Paper Mill Waste–Cement Bricks Using the Small-Scale Model Technique. J. Energy Eng. 2014, 140, 04014001. [Google Scholar] [CrossRef]
- Sakhare, V.V.; Ralegaonkar, R.V. Strategy to control indoor temperature for redevelopment of slum dwellings. Indoor Built Environ. 2018, 27, 1203–1215. [Google Scholar] [CrossRef]
- Gavali, H.R.; Ralegaonkar, R.V. Application of information modelling for sustainable urban-poor housing in India. Proc. Inst. Civ. Eng. Eng. Sustain. 2018, 172, 68–75. [Google Scholar] [CrossRef]
- Ram, S.; Ralegaonkar, R.V.; Gavali, H.R. Assessment of energy efficiency in buildings using synergistic walling material. Proc. Inst. Civ. Eng. Energy 2018, 171, 182–189. [Google Scholar] [CrossRef]
- Abanda, F.H.; Byers, L. An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling). Energy 2016, 97, 517–527. [Google Scholar] [CrossRef]
- Li, H.X.; Ma, Z.; Liu, H.; Wang, J.; Al-Hussein, M.; Mills, A. Exploring and verifying BIM-based energy simulation for building operations. Eng. Constr. Archit. Manag. 2020, 27, 1679–1702. [Google Scholar] [CrossRef]
- Hilliaho, K.; Lahdensivu, J.; Vinha, J. Glazed space thermal simulation with IDA-ICE 4.61 software—Suitability analysis with case study. Energy Build. 2015, 89, 132–141. [Google Scholar] [CrossRef]
- Chippagiri, R.; Bras, A.; Ralegaonkar, R.V. Development of sustainable prefabricated housing system by small-scale experimental model. Proc. Inst. Civ. Eng.Eng. Sustain. 2022, 40, 1–14. [Google Scholar] [CrossRef]
- Merriam-Webster.com Dictionary Thermal Inertia. Available online: https://www.merriam-webster.com/dictionary/thermalinertia (accessed on 28 July 2022).
- Praseeda, K.I.; Reddy, B.V.V.; Mani, M. Embodied energy assessment of building materials in India using process and input-output analysis. Energy Build. 2015, 86, 677–686. [Google Scholar] [CrossRef]
- Chen, T.Y.; Burnett, J.; Chau, C.K. Analysis of embodied energy use in the residential building of Hong Kong. Energy 2001, 26, 323–340. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Barreneche, C.; Miró, L.; Morera, J.M.; Bartolí, E.; Inés Fernández, A. Low carbon and low embodied energy materials in buildings: A review. Renew. Sustain. Energy Rev. 2013, 23, 536–542. [Google Scholar] [CrossRef]
- Gavali, H.R.; Bras, A.; Ralegaonkar, R.V. Cleaner construction of social housing infrastructure with load-bearing alkali-activated masonry. Clean Technol. Environ. Policy 2021, 23, 2303–2318. [Google Scholar] [CrossRef]
- NBC National Building Code of India, Volume 2. Bur. Indian Stand. New Delhi India 2016, 2, 97.
- CII—IGBC IGBC Green New Buildings Rating System Version 3.0. 2014. Available online: https://igbc.in/igbc/html_pdfs/abridged/IGBC%20Green%20New%20Buildings%20Rating%20System%20(Version%203.0).pdf (accessed on 15 October 2022).
- IEA Emission Savings—Multiple Benefits of Energy Efficiency. Available online: https://www.iea.org/reports/multiple-benefits-of-energy-efficiency/emissions-savings (accessed on 15 October 2022).
Material | Cement | River Sand | CFA | 20 mm Aggregates | 10 mm Aggregates | Aeration Agent (×10−3) | Water | Super Plasticiser |
---|---|---|---|---|---|---|---|---|
Quantity (kg) | 3.920 | 5.420 | 1.360 | 5.860 | 5.860 | 0.500 | 1.860 | 0.016 |
Material | Cement | Fly Ash | Crushed Sand | EPS (×10−3) | CFA | Water | Polymer (×10−3) | Accelerator (×10−3) | Super Plasticiser |
---|---|---|---|---|---|---|---|---|---|
Quantity (kg) | 1.980 | 1.970 | 2.460 | 27.600 | 0.270 | 1.180 | 4.100 | 41.000 | 0.022 |
Case | Products | Density | Compressive Strength | Flexural Strength | Tensile Strength | Thermal Conductivity |
---|---|---|---|---|---|---|
kg/m3 | MPa | MPa | MPa | W/mK | ||
Conventional | Concrete | 2400 | 25 | 4.84 | 2.20 | 1.61 |
Fly-ash brick | 1800 | 6.50 | - | - | 1.05 | |
Developed | CFA Concrete | 2342 | 26.91 | 4.02 | 1.83 | 0.81 |
LW prefabricated mix | 1312 | 7.05 | 2.16 | 1.27 | 0.40 | |
Codal compliance | IS 2185:2005 (Part 1) | IS 516:1959 | IS 5816:1999 | ASTM C177 |
Case | Fly-Ash Brick Masonry System | Developed Prefabricated Building System | ||
---|---|---|---|---|
Products | Fly-ash brickwork | RCC | CFA-based prefab panels | CFA-based concrete |
EE (MJ/cum.) | 1535 | 2640 | 2144 | 2376 |
Total Quantity (cum.) | 1.64 | 2.96 | 0.95 | 2.96 |
Total EE (MJ) | 10,332 | 9070 |
System | Element Application | Density (kg/m3) | Compressive Strength (MPa) | Thermal Conductivity (W/mK) |
---|---|---|---|---|
Conventional | Structural | 2400 | 25.00 | 1.613 |
Walling | 1800 | 6.50 | 1.050 | |
Developed | Structural | 2342 | 26.19 | 0.806 |
Walling | 1312 | 7.05 | 0.401 |
S. No. | Appliance | No. | Wattage (W) | Average Working Hours per Day (Hours) | Annual Consumption (kWh) | ||
---|---|---|---|---|---|---|---|
Summer (March– May) | Monsoon (June– November) | Winter (December– February) | |||||
1 | Ceiling Fans | 3 | 70 | 8 | 8 | 4 | 529.2 |
2 | Tube Lights | 3 | 20 | 5 | 8 | 7 | 151.2 |
3 | Lamps | 3 | 7 | 2 | 2 | 2 | 15.2 |
4 | Cooler | 1 | 250 | 12 | 0 | 0 | 270.0 |
5 | TV | 1 | 18 | 5 | 5 | 5 | 32.4 |
6 | Fridge | 1 | - | - | - | - | 386.0 |
Total | 1384 |
Size (mm) | Energy Generated from One Panel (Units/Sqm./Yr) | Area of One Panel (Sqm.) | Total Panels Fit (No.) | Annual Energy Generation (kWh) | |
---|---|---|---|---|---|
Solar PV Panel | 1980 × 1010 × 10 | 215 | 1.99 | 1 | 427.85 |
Parameters | Proposed Prefabricated System | Remarks | |
---|---|---|---|
CFA Based LW Prefabricated Panels | CFA Based Concrete | ||
Density | 27% | 2.5% | Lighter |
Compressive strength | 8% | 4% | Stronger |
Thermal conductivity | 62% | 50% | Thermally efficient |
Ambient inside temperature | 8% | Lesser | |
Embodied energy | 12% | ||
Peak cooling load | 52% | ||
Time | 20% | Faster | |
Energy savings | 42% energy savings on compensating 30% operational energy with renewable energy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chippagiri, R.; Gavali, H.R.; Bras, A.; Ralegaonkar, R.V. Performance Evaluation of a Sustainable Prefabricated System Using Small-Scale Experimental Model Technique. Buildings 2022, 12, 2000. https://doi.org/10.3390/buildings12112000
Chippagiri R, Gavali HR, Bras A, Ralegaonkar RV. Performance Evaluation of a Sustainable Prefabricated System Using Small-Scale Experimental Model Technique. Buildings. 2022; 12(11):2000. https://doi.org/10.3390/buildings12112000
Chicago/Turabian StyleChippagiri, Ravijanya, Hindavi R. Gavali, Ana Bras, and Rahul V. Ralegaonkar. 2022. "Performance Evaluation of a Sustainable Prefabricated System Using Small-Scale Experimental Model Technique" Buildings 12, no. 11: 2000. https://doi.org/10.3390/buildings12112000
APA StyleChippagiri, R., Gavali, H. R., Bras, A., & Ralegaonkar, R. V. (2022). Performance Evaluation of a Sustainable Prefabricated System Using Small-Scale Experimental Model Technique. Buildings, 12(11), 2000. https://doi.org/10.3390/buildings12112000