Digital Twin and Industry 4.0 Enablers in Building and Construction: A Survey
Abstract
:1. Introduction
2. Literature Review
2.1. Research Compilation Methodology
2.2. Trends and Analysis
3. Enabling Construction 4.0 through DT and Other Emerging Technologies
3.1. State-of-the-Art Technological Developments in Construction 4.0
Technology | References | Construction Applications | Tools/Techniques |
---|---|---|---|
Wireless Sensor Network (WSN) | [14,15,16] | Enhance structural health monitoring (SHM) via cyber-physical systems. | Connectivity: Zigbee; LoRaWAN; Bluetooth Controller: Raspberry Pi; Arm; Arduino Sensors for:
|
[17,18] | Building performance evaluation. Include evacuation planning, monitoring energy usage, emissions (CO, radiological), and temperature. | ||
[19,20,21] | Improve building cost efficiency through lifecycle management and energy conservation. | ||
[22,23,24,25] | Develop sustainability practices. Include applications in HVAC systems, reduce energy usage, carbon emission monitoring, equipment, and raw material tracking. | ||
Internet of Things (IoT) | [27,28] | Building performance optimisation. Include energy efficiency, sustainability assessment, indoor safety management, and enhanced FM system in the BLM process. | Connectivity: Cellular networks (GSM/3G/4G); Wi-Fi; Universal mobile telecommunications system; Low-power wide-area network (LPWAB) Controller: Arduino; Programmable logic controller (PLC) IoT Sensor for:
|
[29] | Project management. Integrate CPS/DT technologies to enhance efficiency and synergy. | ||
[30] | Enhance structural health monitoring (SHM). Include predictive maintenance of infrastructure. | ||
Social Media | [31] | Enhance construction lifecycle management. Include plan, design, build, usage aspects. | Auxiliary milieu: Log files; Emails; Social media messages; Building models |
Technology | References | Construction Applications | Tools/Techniques |
---|---|---|---|
Semantic Modeling | [33,34] | Asset design and optimisation. Enable equipment re-/configurations for disruption management. Localize a panorama with sub-meter localization error. Improve asset representation. | Software: Apache Jena, Protégé, Revit, Unreal Engine 4, Datasmith Language: XML, OWL, SPARQL, C++ Library: OpenCascade, OpenVDB Algorithm: CNN, ResNet101, PSPNet |
Blockchain | [36,37,38] | Project management. Improve efficiency via contract implementation, stakeholder collaboration with increased reliability and service. Enhance information sharing and continuity for Modular Integrated Construction. | Cloud platform: Microsoft Azure Database: Distributed ledger Mechanism: Consensus mechanism, Encryption mechanism Platform: Ethereum blockchain |
[39] | Develop sustainable practices. Develop an intelligent platform integrating with blockchain to improve the sustainability of prefabricated housing construction. | ||
Data Mining | [41] | Building performance optimisation. Improve the energy efficiency of both legacy and modern buildings. | Algorithm: Inductive miner, fuzzy miner, ARIMAX mode Modelling languages: Petri net, business process modelling notation (BPMN) Standard: Cross-industry standard process for data mining (CRISP-DM) Model: CRISP-DM reference model |
[42] | Project management. Achieve a higher degree of intelligence and automation. |
Technology | References | Construction Applications | Tools/Techniques |
---|---|---|---|
Building Information Modelling (BIM) | [44,45,46,47,48,49,50,51] | Facility management, improve comfort, energy efficiency, and building lifecycle management (BLM). Include anomaly detection, maintenance work, and decision support systems. | BIM authoring tools: Autodesk Revit, ArchiCAD, Allplan, AECOsim, Tekla structures BIM auxiliary tools: BIMserver, Autodesk Navisworks, Revit DB Link, Dynamo BEM authoring tools: Green Building Studio, EnergyPlus, Design Builder, Open Studio, CYPETHERM HE; |
[52,53,54] | Enhance structural health monitoring (SHM). Include disaster planning and damage inspection. | ||
[55,56,57,58] | Asset design and optimisation. Incorporate lean manufacturing and configure-to-order business approaches to automate construction-related productions. Optimize precast elements production. | ||
[59,60,61,63,64] | Develop sustainability practices. To realise net or nearly zero energy building (NZEB) solutions, circular economy, carbon cost estimation, and other green initiatives via product-service paradigms, lifecycle considerations, building energy models (BEM), and 6D BIM adoption. | ||
Simulation | [65,66] | Structure design optimisation. To reduce prototype development time and cost through high-resolution analysis, parametric geometric modelling. | Coupled simulation: ANSYS Fluent, TRNSYS, MATLAB Numerical simulation: ABAQUS DES simulation: coroutines, open BMS, ZeroMQ library |
[67] | Building performance optimisation. Enable infrastructure visualisations for power and environment monitoring. | ||
Point cloud | [68,69] | Structure health monitoring. Inspection services for digitised structures in a VR environment, future damage validation for historic masonry structures. | Software: Cyclone register 360, Cloud Compare, Civil 3D Hardware: Stationary/Airborne/terrestrial Laser scanner, Leica ScanStation P40, Leica ScanStation P20 Library: Point cloud library, ODAS library |
[70,71,72,73] | Asset design and visualisation. Generates building and city models using LiDAR, gestalt design principles, and as-built reconstruction approaches. Include ML/DL-based interpretation of point clouds to classify models. | ||
Virtual/Augmented Reality (VR/AR) | [74] | Human-robot collaboration. Facilitates task planning and supervision through bidirectional communication and asset control. | |
[75] | Urban planning and design. Multiple viewpoints and usability testing from nonexpert stakeholders involved in the building project. |
Technology | References | Construction Applications | Tools/Techniques |
---|---|---|---|
Computer Vision | [76] | Bridge maintenance system. Includes image recognition to enhance inspection processes. | Algorithm: Mask R-CNN, DeepSORT, Self-designed localisation, Fuzzy Logic, Edge detection, Neuro-fuzzy system, Optical Character Recognition, DeepLabv3 Software: Self-designed Revit, Blender |
[77,78,79] | Facility management. Includes movement recognition for maintenance operations, 3D structure reconstruction from CAD drawings and street view images. | ||
Machine Learning | [81] | Urban management. Contribute to building and maintaining base data for geospatial DT efficiently, including virtual 3D city, building indoor models, or BIM. | Algorithm: Tree-based classification, Clustering, Association, Categorizing, YOLOV3, Support vector machine (SVM) models, genetic algorithms Network structure: PointNet neural network (PNN), convolutional neural network (CNN), Deep bi-directional Recurrent Neural Networks (DBRNN), long short-term memory (LSTM), Back-propagation neural network (BPNN), Deep Residual Networks (DRN), Iterative Closest Point (ICP), Random sample consensus (RANSAC), KPConv, Monte Carlo tree search (MCTS), Multivariate regression mode, Non-dominated sorting genetic algorithm |
[82,83,84] | Improve energy efficiency. Include energy management through interacting with occupants, smart building design, and integrating semantic model. | ||
[85,87,88] | Safety management. Develop a security system for a three-floor elevator in a commercial building setting and an indoor safety management system based on DT. Propose a threat assessment framework for construction site. Identifying essential entities from the electrical and fire-safety domain. | ||
[89] | Construction equipment monitoring. Evaluate asset performance in various conditions. | ||
[90] | Building performance optimisation. Integrate with CPS in a building environment and provide theoretical information and practical reference for developing the indoor environmental control system. | ||
[91,92] | On-site construction optimisation. Improve construction workflow schedule and optimise the structure of building components. | ||
[93,94] | Structure design optimisation. Support structure evaluation dynamically and minimise wind-induced vibration. |
3.2. Integration of Technologies Using a DT-Adapted Framework
4. DT Perspectives on Construction Lifecycle Aspects Based on a Six M Methodology
4.1. Machine
4.2. Manpower
4.3. Material
4.4. Measurement
4.5. Milieu
4.6. Method
5. Discussion and Future Directions
5.1. Strengths and Limitations of DT in Construction
5.2. Future Directions for Construction 4.0
Six M | Lifecycle Stage | Construction Function | Reference | DT-Enabled Benefits |
---|---|---|---|---|
Machine | On-site construction | Intelligent equipment control | [99,100] | Reduce steady-state errors and safety risks. |
Automatic robot construction | [101,102,103,104,105] | Improve context observation to implement robot control policy, enhance the generative design and robotic construction through real-time perception-modelling, achieve real-time bidirectional communication and supervision remote collaboration between workers and robots. | ||
Operations and maintenance | Safety management | [106,107] | Improve object detection confidence level in the digital triplet security system. | |
Asset management | [108] | Enhance bidirectional coordination between virtual and physical assets and establish context-aware capabilities for configuration and workflow efficiency. | ||
Manpower | On-site construction | Worker safety | [109] | Synchronise information in dynamic and complex environments to process hazards. |
Worker training | [110,111] | Decrease training risk by virtual practice platform and improve learning effects of construction practitioners. | ||
Material | Design and engineering | Structure design optimisation | [112] | Provide more accurate models to support the design validation of 3D-printed modules. |
Reuse and recycling | [113] | Reduce material consumption and waste generation through building component reuse. | ||
On-site construction | Material information tracking | [114] | Improve traceability and radiological detection of construction material. | |
Operations and maintenance | Durability and response monitoring | [115] | Facilitate material circularity by exploring properties and responses of secondary raw materials (SRM). | |
Decommissioning | Reuse and recycling | [116] | Guide material flows towards a sustainable material flow through quantitative assessment. | |
Measurement | On-site construction | Greenhouse gas emissions tracking | [117] | Improve the potential for establishing energy conservation and emission reduction strategy through real-time GHG emissions monitoring. |
Operations and maintenance | Structural health monitoring | [118,119,120,121,122,123,124,125,126,127,128,129] | Provide promising paradigms for real-time and continuous SHM application, including structural damage detection, safety assessment, failure avoidance, and maintenance operations assistance. | |
Milieu | On-site construction | Construction site monitoring | [130,131,132] | Improve construction digitalisation through automatic detection and monitoring of construction site and assembly progress. |
Operations and maintenance | Indoor environment management | [133,134,135,136,137,138,139,140] | Benefit visually dynamic common platforms for intelligent indoor management functions, including real-time monitoring, safety maintenance, thermal comfort, and reducing resource consumption. | |
Building occupancy monitoring | [141,142] | Improve space utilisation and sensor system efficiency and accuracy through real-time building occupancy monitoring and intelligent algorithm. | ||
Smart city development | [143,144,145,146] | Easier demonstration and transparency of administration tasks, urban planning, and policy to the public through visualisation and analysis of digital prototypes. | ||
Method | Design and engineering | Building shape/profile optimisation | [147,148,149] | Automate façade functions development, minimise the influence of wind load through dynamic façade and provide a cost-effective method to satisfy serviceability limits, optimise the shape of the concrete roof structure with complex geometry for energy saving. |
Building energy modelling | [150,151] | Enhance the interoperability between BIM and Building Energy Model (BEM) in the building design phase. | ||
Indoor environment design | [152] | Enable rapid prototyping of applications to improve design performance by reusing hardware and software on shared infrastructures. | ||
On-site construction | Safety management | [153,154] | Enhance safety management in construction sites through risk factors analysis, proactive risk control, and threat assessment. | |
Construction logistic | [155] | Support decision-making during silo dispatch and replenishment activities. | ||
Quality assessment | [156] | Facilitate the visual quality assessment of as-built prefabricated façades during the construction process. | ||
Sustainability enhancement | [157,158] | Support data synchronisation, blockchain integration for traceability, and incorporate the smart product-service paradigm. | ||
Operations and maintenance | Asset management | [160,161,162,163,164,165,166] | Better access to siloed data and support the development of asset management applications such as real-time monitoring and more intelligent decision-making for cognitive buildings. | |
Energy reduction | [167,168,169,170,171,172,173,175] | Promote energy-saving construction to achieve energy-reduction goals through accurate energy simulation analysis, encourage energy-efficient behaviours, and intelligent matching of residents and activities. | ||
Lifecycle management | [176,177,178,179] | Enable cognitive features in assets to support sustainability, vulnerability assessments, and maintain quality throughout the construction lifecycle. | ||
Building evacuation | [180] | Provide guidance information for efficient building evacuation in emergencies. |
Category | Reference | Future Direction | Description |
---|---|---|---|
Technology enhancement | [16,19,30,95] | Diverse and multi-function sensor systems | Develop advanced miniature sensors with intelligent and integrative features to support GPS, 4/5G, and robotics for performance improvements. |
[18,81,84,87,90,182] | AI-enhanced functionalities | Automate and accelerate learning, reasoning, and perceiving from extensive datasets to tackle higher-order tasks such as detection, prediction, optimisation, and planning. | |
[28,39,161,183,184] | Multi-function and integrated DT systems | Enhance computation capabilities to include higher quality simulation and solution accuracy as well as faster processing time to support visualisations and evaluations. | |
Application scope | [78,89,185] | Multi-asset servitization | Integrated solutions using assets and resources to enhance recognition, tracking, and management operations. |
[143,144,186,187,188] | City-scale DT systems | Validate current DT architecture to a broader scale and expand DT application from building to community and city level to provide the foundation to optimise city services. | |
[29,42,47,52,108] | Broad industry implementations | Incorporate complex multi-asset scenarios based on real-life practices to suit industrial needs with an information-rich digital twin model. | |
[117,189] | Encompass full lifecycle | Achieve an efficient DT system that can be used to plan, design, operate maintenance and demolition economically and environmentally throughout the whole lifecycle of the construction project. | |
Circular economy | [24,25,167] | Sustainable construction | Improve resource efficiency, tracking, and reduce emissions, extend asset lifespans, and enhance waste management through functional component monitoring and analysis in each lifecycle stage. |
[55,56,190] | Lean concept integration | Integrate lean concepts within digital solutions to enhance resource sustainable infrastructure projects or implement lean manufacturing approaches for PPVC production. | |
Benefits analysis | [191] | Time-based analysis | Explore the influence of DT solutions on project timelines with comprehensive dataset analysis. |
[192,193,194] | Economic considerations | Ascertain the financial viability of DT adoption and the use of DT solutions to achieve cost savings. |
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.Y.H.; Le, N.T.; Agarwal, N.; Huynh, B.H. Digital Twin Architecture and Development Trends on Manufacturing Topologies. In Implementing Industry 4.0; Springer: Berlin/Heidelberg, Germany, 2021; pp. 259–286. [Google Scholar] [CrossRef]
- Zheng, P.; Lim, K.Y.H. Product family design and optimization: A digital twin-enhanced approach. Procedia CIRP 2020, 93, 246–250. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, S.; Cheng, H. An application framework of digital twin and its case study. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 1141–1153. [Google Scholar] [CrossRef]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- McKinsey & Company and M. G. Institute. “Reinventing Construction: A Route To Higher Productivity,” McKinsey Co., no. February, p. 12. 2017. [Online]. Available online: http://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/reinventing-construction-through-a-productivity-revolution%0Awww.revalue.dk (accessed on 27 February 2017).
- Sawhney, A.; Riley, M.; Irizarry, J. Construction 4.0: An Innovation Platform for the Built Environment; Routledge: London, UK, 2020. [Google Scholar]
- Lim, K.Y.H.; Zheng, P.; Chen, C.-H. A state-of-the-art survey of Digital Twin: Techniques, engineering product lifecycle management and business innovation perspectives. J. Intell. Manuf. 2020, 31, 1313–1337. [Google Scholar] [CrossRef]
- Department for Business, Innovation & Skills. Construction 2025. 2013. Available online: www.official-documents.gov.uk (accessed on 2 July 2013).
- Local Government Association. National Construction Category Strategy. 2018. Available online: https://www.local.gov.uk/sites/default/files/documents/Construction Category Strategy Final.pdf (accessed on 15 January 2018).
- You, Z.; Feng, L. Integration of Industry 4.0 Related Technologies in Construction Industry: A Framework of Cyber-Physical System. IEEE Access 2020, 8, 122908–122922. [Google Scholar] [CrossRef]
- Shirowzhan, S.; Tan, W.; Sepasgozar, S.M.E. Digital Twin and CyberGIS for Improving Connectivity and Measuring the Impact of Infrastructure Construction Planning in Smart Cities. ISPRS Int. J. Geo-Inf. 2020, 9, 240. [Google Scholar] [CrossRef] [Green Version]
- Alam Bhuiyan, Z.; Wu, J.; Wang, G.; Cao, J.; Jiang, W.; Atiquzzaman, M. Towards Cyber-Physical Systems Design for Structural Health Monitoring: Hurdles and opportunities. ACM Trans. Cyber-Phys. Syst. 2017, 1, 1–26. [Google Scholar] [CrossRef]
- Loubet, G.; Takacs, A.; Gardner, E.; De Luca, A.; Udrea, F.; Dragomirescu, D. LoRaWAN Battery-Free Wireless Sensors Network Designed for Structural Health Monitoring in the Construction Domain. Sensors 2019, 19, 1510. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Fu, C.; Li, Y.; Su, L. Survey and study on intelligent monitoring and health management for large civil structure. Int. J. Intell. Robot. Appl. 2019, 3, 239–254. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Kang, K.; Lin, J.-R.; Zhang, J.-P.; Zhang, Y. Building information modeling–based cyber-physical platform for building performance monitoring. Int. J. Distrib. Sens. Netw. 2020, 16, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-C.; Cheung, W.-F. Developing WSN/BIM-Based Environmental Monitoring Management System for Parking Garages in Smart Cities. J. Manag. Eng. 2020, 36, 04020012. [Google Scholar] [CrossRef]
- Khajavi, S.H.; Motlagh, N.H.; Jaribion, A.; Werner, L.C.; Holmstrom, J. Digital Twin: Vision, Benefits, Boundaries, and Creation for Buildings. IEEE Access 2019, 7, 147406–147419. [Google Scholar] [CrossRef]
- Grübel, J.; Thrash, T.; Aguilar, L.; Gath-Morad, M.; Hélal, D.; Sumner, R.W.; Hölscher, C.; Schinazi, V.R. Dense Indoor Sensor Networks: Towards passively sensing human presence with LoRaWAN. Pervasive Mob. Comput. 2022, 84, 101640. [Google Scholar] [CrossRef]
- Abrol, S.; Mehmani, A.; Kerman, M.; Meinrenken, C.J.; Culligan, P.J. Data-Enabled Building Energy Savings (D-E BES). Proc. IEEE 2018, 106, 661–679. [Google Scholar] [CrossRef]
- González, V.G.; Ruiz, G.R.; Bandera, C.F. Empirical and Comparative Validation for a Building Energy Model Calibration Methodology. Sensors 2020, 20, 5003. [Google Scholar] [CrossRef]
- Keskin, C.; Mengüç, M.P. An Adaptive Vent System for Localized and Customized Thermal Management in Buildings. J. Heat Transf. 2020, 142, 052903. [Google Scholar] [CrossRef]
- Liu, G.; Yang, H.; Fu, Y.; Mao, C.; Xu, P.; Hong, J.; Li, R. Cyber-physical system-based real-time monitoring and visualization of greenhouse gas emissions of prefabricated construction. J. Clean. Prod. 2020, 246, 119059. [Google Scholar] [CrossRef]
- Liu, G.; Chen, R.; Xu, P.; Fu, Y.; Mao, C.; Hong, J. Real-time carbon emission monitoring in prefabricated construction. Autom. Constr. 2020, 110, 102945. [Google Scholar] [CrossRef]
- Mainetti, L.; Patrono, L.; Vilei, A. Evolution of wireless sensor networks towards the Internet of Things: A survey. In Proceedings of the SoftCOM 2011, 19th International Conference on Software, Telecommunications and Computer Networks, Split, Croatia, 15–17 September 2011; pp. 16–21. [Google Scholar]
- Tagliabue, L.; Cecconi, F.; Maltese, S.; Rinaldi, S.; Ciribini, A.; Flammini, A. Leveraging Digital Twin for Sustainability Assessment of an Educational Building. Sustainability 2021, 13, 480. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, A.; Wang, W. A Framework for an Indoor Safety Management System Based on Digital Twin. Sensors 2020, 20, 5771. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Anumba, C.; Lu, W. Taxonomy and Deployment Framework for Emerging Pervasive Technologies in Construction Projects. J. Constr. Eng. Manag. 2019, 145, 04019028. [Google Scholar] [CrossRef] [Green Version]
- Zonzini, F.; Aguzzi, C.; Gigli, L.; Sciullo, L.; Testoni, N.; De Marchi, L.; Di Felice, M.; Cinotti, T.S.; Mennuti, C.; Marzani, A. Structural Health Monitoring and Prognostic of Industrial Plants and Civil Structures: A Sensor to Cloud Architecture. IEEE Instrum. Meas. Mag. 2020, 23, 21–27. [Google Scholar] [CrossRef]
- Turk, Ž.; Klinc, R. A social–product–process framework for construction. Build. Res. Inf. 2020, 48, 747–762. [Google Scholar] [CrossRef]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a semantic Construction Digital Twin: Directions for future research. Autom. Constr. 2020, 114, 103179. [Google Scholar] [CrossRef]
- Wei, Y.; Akinci, B. Panorama-to-model registration through integration of image retrieval and semantic reprojection. Autom. Constr. 2022, 140, 104356. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, Q.; Guo, Y.; Zheng, W.; Zhang, L.; Wang, Q.; Zhou, R.; Ding, Y.; Wang, W.; Pirasteh, S.; et al. Multi-level voxel representations for digital twin models of tunnel geological environment. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2022, 112, 102887. [Google Scholar] [CrossRef]
- Tasca, P.; Aste, T.; Pelizzon, L.; Perony, N. Banking Beyond Banks and Money; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Lee, D.; Lee, S.H.; Masoud, N.; Krishnan, M.S.; Li, V.C. Integrated digital twin and blockchain framework to support accountable information sharing in construction projects. Autom. Constr. 2021, 127, 103688. [Google Scholar] [CrossRef]
- Hunhevicz, J.J.; Motie, M.; Hall, D.M. Digital building twins and blockchain for performance-based (smart) contracts. Autom. Constr. 2021, 133, 103981. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, X.; Kang, K.; Wang, Z.; Zhong, R.Y.; Huang, G.Q. Blockchain-enabled cyber-physical smart modular integrated construction. Comput. Ind. 2021, 133, 103553. [Google Scholar] [CrossRef]
- Li, C.Z.; Chen, Z.; Xue, F.; Kong, X.T.; Xiao, B.; Lai, X.; Zhao, Y. A blockchain- and IoT-based smart product-service system for the sustainability of prefabricated housing construction. J. Clean. Prod. 2020, 286, 125391. [Google Scholar] [CrossRef]
- Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Schmidt, M.; Moreno, M.V.; Schülke, A.; Macek, K.; Mařík, K.; Pastor, A.G. Optimizing legacy building operation: The evolution into data-driven predictive cyber-physical systems. Energy Build. 2017, 148, 257–279. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. A BIM-data mining integrated digital twin framework for advanced project management. Autom. Constr. 2021, 124, 103564. [Google Scholar] [CrossRef]
- Dutta, S.; Cai, Y.; Huang, L.; Zheng, J. Automatic re-planning of lifting paths for robotized tower cranes in dynamic BIM environments. Autom. Constr. 2020, 110, 102998. [Google Scholar] [CrossRef]
- Desogus, G.; Quaquero, E.; Rubiu, G.; Gatto, G.; Perra, C. BIM and IoT Sensors Integration: A Framework for Consumption and Indoor Conditions Data Monitoring of Existing Buildings. Sustainability 2021, 13, 4496. [Google Scholar] [CrossRef]
- Wernerová, E.; Endel, S.; Kutá, D. Implementation of the BIM Method at the VŠB-Technical University of Ostrava. Int. J. Eng. Res. Afr. 2020, 47, 133–138. [Google Scholar] [CrossRef]
- Adibfar, A.; Costin, A.M. Creation of a Mock-up Bridge Digital Twin by Fusing Intelligent Transportation Systems (ITS) Data into Bridge Information Model (BrIM). J. Constr. Eng. Manag. 2022, 148, 04022094. [Google Scholar] [CrossRef]
- Moretti, N.; Xie, X.; Merino, J.; Brazauskas, J.; Parlikad, A.K. An openBIM Approach to IoT Integration with Incomplete As-Built Data. Appl. Sci. 2020, 10, 8287. [Google Scholar] [CrossRef]
- Rausch, C.; Haas, C. Automated shape and pose updating of building information model elements from 3D point clouds. Autom. Constr. 2021, 124, 103561. [Google Scholar] [CrossRef]
- Huynh, D.; Nguyen-Ky, S. Engaging Building Automation Data Visualisation Using Building Information Modelling and Progressive Web Application. Open Eng. 2020, 10, 434–442. [Google Scholar] [CrossRef]
- Wang, W.; Guo, H.; Li, X.; Tang, S.; Li, Y.; Xie, L.; Lv, Z. BIM Information Integration Based VR Modeling in Digital Twins in Industry 5.0. J. Ind. Inf. Integr. 2022, 28, 100351. [Google Scholar] [CrossRef]
- Torrecilla-García, J.; Pardo-Ferreira, M.; Rubio-Romero, J. Aproximación inicial al enfoque basado en BIM-based Digital Twinning en la toma de decisiones sobre Seguridad y Salud Laboral en la industria de la construcción. Dir. Y Organ. 2022, 76, 5–12. [Google Scholar] [CrossRef]
- Lei, Y.; Rao, Y.; Wu, J.; Lin, C.-H. BIM based cyber-physical systems for intelligent disaster prevention. J. Ind. Inf. Integr. 2020, 20, 100171. [Google Scholar] [CrossRef]
- Yuan, X.; Anumba, C.J.; Parfitt, M.K. Cyber-physical systems for temporary structure monitoring. Autom. Constr. 2016, 66, 1–14. [Google Scholar] [CrossRef]
- Taraben, J.; Morgenthal, G. Methods for the Automated Assignment and Comparison of Building Damage Geometries. Adv. Eng. Inform. 2021, 47, 101186. [Google Scholar] [CrossRef]
- Al-Saeed, Y.; Edwards, D.J.; Scaysbrook, S. Automating construction manufacturing procedures using BIM digital objects (BDOs): Case study of knowledge transfer partnership project in UK. Constr. Innov. 2020, 20, 345–377. [Google Scholar] [CrossRef]
- Schimanski, C.P.; Pasetti Monizza, G.; Marcher, C.; Matt, D.T. Pushing Digital Automation of Configure-to-Order Services in Small and Medium Enterprises of the Construction Equipment Industry: A Design Science Research Approach. Appl. Sci. 2019, 9, 3780. [Google Scholar] [CrossRef] [Green Version]
- Kosse, S.; Vogt, O.; Wolf, M.; König, M.; Gerhard, D. Digital Twin Framework for Enabling Serial Construction. Front. Built Environ. 2022, 8, 864722. [Google Scholar] [CrossRef]
- Huang, L.; Pradhan, R.; Dutta, S.; Cai, Y. BIM4D-based scheduling for assembling and lifting in precast-enabled construction. Autom. Constr. 2021, 133, 103999. [Google Scholar] [CrossRef]
- Agostinelli, S.; Cumo, F.; Guidi, G.; Tomazzoli, C. Cyber-Physical Systems Improving Building Energy Management: Digital Twin and Artificial Intelligence. Energies 2021, 14, 2338. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Rungskunroch, P.; Welsh, J. A Digital-Twin Evaluation of Net Zero Energy Building for Existing Buildings. Sustainability 2018, 11, 159. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhang, H.; Wang, Q.; Wang, H. Digital-Twin-Based Evaluation of Nearly Zero-Energy Building for Existing Buildings Based on Scan-to-BIM. Adv. Civ. Eng. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Banfi, F.; Brumana, R.; Salvalai, G.; Previtali, M. Digital Twin and Cloud BIM-XR Platform Development: From Scan-to-BIM-to-DT Process to a 4D Multi-User Live App to Improve Building Comfort, Efficiency and Costs. Energies 2022, 15, 4497. [Google Scholar] [CrossRef]
- Xing, K.; Kim, K.; Ness, D. Cloud-BIM Enabled Cyber-Physical Data and Service Platforms for Building Component Reuse. Sustainability 2020, 12, 10329. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Lian, Q. Digital twin aided sustainability-based lifecycle management for railway turnout systems. J. Clean. Prod. 2019, 228, 1537–1551. [Google Scholar] [CrossRef]
- Lydon, G.P.; Caranovic, S.; Hischier, I.; Schlueter, A. Coupled simulation of thermally active building systems to support a digital twin. Energy Build. 2019, 202, 109298. [Google Scholar] [CrossRef]
- Kyvelou, P.; Buchanan, C.; Gardner, L. Numerical simulation and evaluation of the world’s first metal additively manufactured bridge. Structures 2022, 42, 405–416. [Google Scholar] [CrossRef]
- Lilis, G.; Van Cutsem, O.; Kayal, M. A High-Speed Integrated building emulation engine based on discrete event simulation. J. Syst. Arch. 2018, 92, 53–65. [Google Scholar] [CrossRef]
- Omer, M.; Margetts, L.; Hadi Mosleh, M.; Hewitt, S.; Parwaiz, M. Use of gaming technology to bring bridge inspection to the office. Struct. Infrastruct. Eng. 2019, 15, 1292–1307. [Google Scholar] [CrossRef] [Green Version]
- Funari, M.F.; Hajjat, A.E.; Masciotta, M.G.; Oliveira, D.V.; Lourenço, P.B. A Parametric Scan-to-FEM Framework for the Digital Twin Generation of Historic Masonry Structures. Sustainability 2021, 13, 11088. [Google Scholar] [CrossRef]
- Xue, F.; Lu, W.; Chen, Z.; Webster, C.J. From LiDAR point cloud towards digital twin city: Clustering city objects based on Gestalt principles. ISPRS J. Photogramm. Remote Sens. 2020, 167, 418–431. [Google Scholar] [CrossRef]
- Pantoja-Rosero, B.; Achanta, R.; Kozinski, M.; Fua, P.; Perez-Cruz, F.; Beyer, K. Generating LOD3 building models from structure-from-motion and semantic segmentation. Autom. Constr. 2022, 141, 104430. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, W.; Luo, H. Building digital twins of existing highways using map data based on engineering expertise. Autom. Constr. 2021, 134, 104081. [Google Scholar] [CrossRef]
- Münzinger, M.; Prechtel, N.; Behnisch, M. Mapping the urban forest in detail: From LiDAR point clouds to 3D tree models. Urban For. Urban Green. 2022, 74, 127637. [Google Scholar] [CrossRef]
- Wang, X.; Liang, C.-J.; Menassa, C.C.; Kamat, V.R. Interactive and Immersive Process-Level Digital Twin for Collaborative Human–Robot Construction Work. J. Comput. Civ. Eng. 2021, 35, 04021023. [Google Scholar] [CrossRef]
- Kikuchi, N.; Fukuda, T.; Yabuki, N. Future landscape visualization using a city digital twin: Integration of augmented reality and drones with implementation of 3D model-based occlusion handling. J. Comput. Des. Eng. 2022, 9, 837–856. [Google Scholar] [CrossRef]
- Shim, C.-S.; Dang, N.-S.; Lon, S.; Jeon, C.-H. Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin model. Struct. Infrastruct. Eng. 2019, 15, 1319–1332. [Google Scholar] [CrossRef]
- Antonino, M.; Nicola, M.; Claudio, D.M.; Luciano, B.; Fulvio, R.C. Office building occupancy monitoring through image recognition sensors. Int. J. Saf. Secur. Eng. 2019, 9, 371–380. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, L.; Li, S.; Pitt, M. Semi-automatic geometric digital twinning for existing buildings based on images and CAD drawings. Autom. Constr. 2019, 115, 103183. [Google Scholar] [CrossRef]
- Pang, H.E.; Biljecki, F. 3D building reconstruction from single street view images using deep learning. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2022, 112, 102859. [Google Scholar] [CrossRef]
- Alpaydin, E. Intorduction to Mahcine Learning; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Döllner, J. Geospatial Artificial Intelligence: Potentials of Machine Learning for 3D Point Clouds and Geospatial Digital Twins. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Alanne, K.; Sierla, S. An overview of machine learning applications for smart buildings. Sustain. Cities Soc. 2021, 76, 103445. [Google Scholar] [CrossRef]
- Konstantakopoulos, I.C.; Barkan, A.R.; He, S.; Veeravalli, T.; Liu, H.; Spanos, C. A deep learning and gamification approach to improving human-building interaction and energy efficiency in smart infrastructure. Appl. Energy 2019, 237, 810–821. [Google Scholar] [CrossRef]
- Austin, M.; Delgoshaei, P.; Coelho, M.; Heidarinejad, M. Architecting Smart City Digital Twins: Combined Semantic Model and Machine Learning Approach. J. Manag. Eng. 2020, 36, 04020026. [Google Scholar] [CrossRef]
- Kamari, M.; Ham, Y. AI-based risk assessment for construction site disaster preparedness through deep learning-based digital twinning. Autom. Constr. 2022, 134, 104091. [Google Scholar] [CrossRef]
- Liu, Z.; Li, A.; Sun, Z.; Shi, G.; Meng, X. Digital Twin-Based Risk Control during Prefabricated Building Hoisting Operations. Sensors 2022, 22, 2522. [Google Scholar] [CrossRef]
- Gichane, M.M.; Byiringiro, J.B.; Chesang, A.K.; Nyaga, P.M.; Langat, R.K.; Smajic, H.; Kiiru, C.W. Digital Triplet Approach for Real-Time Monitoring and Control of an Elevator Security System. Designs 2020, 4, 9. [Google Scholar] [CrossRef]
- Pan, Y.; Braun, A.; Brilakis, I.; Borrmann, A. Enriching geometric digital twins of buildings with small objects by fusing laser scanning and AI-based image recognition. Autom. Constr. 2022, 140, 104375. [Google Scholar] [CrossRef]
- Zhang, J.; Zi, L.; Hou, Y.; Wang, M.; Jiang, W.; Deng, D. A Deep Learning-Based Approach to Enable Action Recognition for Construction Equipment. Adv. Civ. Eng. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, D.; Lou, R.; Alazab, A. Artificial intelligence for securing industrial-based cyber–physical systems. Future Gener. Comput. Syst. 2021, 117, 291–298. [Google Scholar] [CrossRef]
- Saini, G.S.; Pournazari, P.; Ashok, P.; van Oort, E. Intelligent Action Planning for Well Construction Operations Demonstrated for Hole Cleaning Optimization and Automation. Energies 2022, 15, 5749. [Google Scholar] [CrossRef]
- Tariq, R.; Torres-Aguilar, C.; Xamán, J.; Zavala-Guillén, I.; Bassam, A.; Ricalde, L.J.; Carvente, O. Digital twin models for optimization and global projection of building-integrated solar chimney. Build. Environ. 2022, 213, 108807. [Google Scholar] [CrossRef]
- Fernández-Cabán, P.L.; Whiteman, M.L.; Phillips, B.; Masters, F.J.; Davis, J.R.; Bridge, J.A. Cyber-physical design and optimization of tall building dynamics using aeroelastic wind tunnel modeling. J. Wind Eng. Ind. Aerodyn. 2020, 198, 104092. [Google Scholar] [CrossRef]
- Abdelaziz, K.M.; Hobeck, J.D. Optimum aeroelastic control via iterative neural network training for wind-resistant cyber–physical buildings. Appl. Soft Comput. 2021, 114, 108100. [Google Scholar] [CrossRef]
- Turner, C.J.; Oyekan, J.; Stergioulas, L.; Griffin, D. Utilizing Industry 4.0 on the Construction Site: Challenges and Opportunities. IEEE Trans. Ind. Inform. 2020, 17, 746–756. [Google Scholar] [CrossRef]
- Ishikawa, K. Guide to Quality Control; Asian Productivity Organization: Tokyo, Japan, 1976; ISBN 92-833-1036-5. [Google Scholar]
- Bradley, E. Reliability Engineering: A Life Cycle Approach; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Vähä, P.; Heikkilä, T.; Kilpeläinen, P.; Järviluoma, M.; Gambao, E. Extending automation of building construction—Survey on potential sensor technologies and robotic applications. Autom. Constr. 2013, 36, 168–178. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, G.; Yang, H.; Li, W.; Liu, J. Precision versus intelligence: Autonomous supporting pressure balance control for slurry shield tunnel boring machines. Autom. Constr. 2020, 114, 103173. [Google Scholar] [CrossRef]
- Li, M.; Lu, Q.; Bai, S.; Zhang, M.; Tian, H.; Qin, L. Digital twin-driven virtual sensor approach for safe construction operations of trailing suction hopper dredger. Autom. Constr. 2021, 132, 103961. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, H.; Xu, J. Towards fully BIM-enabled building automation and robotics: A perspective of lifecycle information flow. Comput. Ind. 2022, 135, 103570. [Google Scholar] [CrossRef]
- Cai, P.; Chandrasekaran, I.; Zheng, J.; Cai, Y. Automatic Path Planning for Dual-Crane Lifting in Complex Environments Using a Prioritized Multiobjective PGA. IEEE Trans. Ind. Inform. 2018, 14, 829–845. [Google Scholar] [CrossRef]
- Liang, C.-J.; Kamat, V.R.; Menassa, C.C. Teaching robots to perform quasi-repetitive construction tasks through human demonstration. Autom. Constr. 2020, 120, 103370. [Google Scholar] [CrossRef]
- Zhang, Y.; Meina, A.; Lin, X.; Zhang, K.; Xu, Z. Digital Twin in Computational Design and Robotic Construction of Wooden Architecture. Adv. Civ. Eng. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.; Masoud, N.; Krishnan, M.; Li, V.C. Digital twin-driven deep reinforcement learning for adaptive task allocation in robotic construction. Adv. Eng. Inform. 2022, 53, 101710. [Google Scholar] [CrossRef]
- Jiang, W.; Ding, L.; Zhou, C. Digital twin: Stability analysis for tower crane hoisting safety with a scale model. Autom. Constr. 2022, 138, 104257. [Google Scholar] [CrossRef]
- Liu, Z.-S.; Meng, X.-T.; Xing, Z.-Z.; Cao, C.-F.; Jiao, Y.-Y.; Li, A.-X. Digital Twin-Based Intelligent Safety Risks Prediction of Prefabricated Construction Hoisting. Sustainability 2022, 14, 5179. [Google Scholar] [CrossRef]
- Kan, C.; Fang, Y.; Anumba, C.J.; I Messner, J. A cyber–physical system (CPS) for planning and monitoring mobile cranes on construction sites. Proc. Inst. Civ. Eng.-Manag. Procure. Law 2018, 171, 240–250. [Google Scholar] [CrossRef]
- Wu, S.; Hou, L.; Zhang, G.; Chen, H. Real-time mixed reality-based visual warning for construction workforce safety. Autom. Constr. 2022, 139, 104257. [Google Scholar] [CrossRef]
- Akanmu, A.A.; Olayiwola, J.; Ogunseiju, O.; McFeeters, D. Cyber-physical postural training system for construction workers. Autom. Constr. 2020, 117, 103272. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E. Digital Twin and Web-Based Virtual Gaming Technologies for Online Education: A Case of Construction Management and Engineering. Appl. Sci. 2020, 10, 4678. [Google Scholar] [CrossRef]
- He, R.; Li, M.; Gan, V.J.L.; Ma, J. BIM-enabled computerized design and digital fabrication of industrialized buildings: A case study. J. Clean. Prod. 2021, 278, 123505. [Google Scholar] [CrossRef]
- Orozco-Messana, J.; Lopez-Mateu, V.; Pellicer, T.M. City Regeneration through Modular Phase Change Materials (PCM) Envelopes for Climate Neutral Buildings. Sustainability 2022, 14, 8902. [Google Scholar] [CrossRef]
- Marini, M.; Panicacci, S.; Donati, M.; Fanucci, L.; Fanchini, E.; Pepperosa, A.; Morichi, M.; Albéri, M.; Chiarelli, E.; Montuschi, M.; et al. An Easily Integrable Industrial System for Gamma Spectroscopic Analysis and Traceability of Stones and Building Materials. Sensors 2021, 21, 352. [Google Scholar] [CrossRef] [PubMed]
- Meža, S.; Mauko Pranjić, A.; Vezočnik, R.; Osmokrović, I.; Lenart, S. Digital Twins and Road Construction Using Secondary Raw Materials. J. Adv. Transp. 2021, 2021, 8833058. [Google Scholar] [CrossRef]
- Züst, S.; Züst, R.; Züst, V.; West, S.; Stoll, O.; Minonne, C. A graph based Monte Carlo simulation supporting a digital twin for the curatorial management of excavation and demolition material flows. J. Clean. Prod. 2021, 310, 127453. [Google Scholar] [CrossRef]
- Hao, J.L.; Cheng, B.; Lu, W.; Xu, J.; Wang, J.; Bu, W.; Guo, Z. Carbon emission reduction in prefabrication construction during materialization stage: A BIM-based life-cycle assessment approach. Sci. Total Environ. 2020, 723, 137870. [Google Scholar] [CrossRef] [PubMed]
- Chiachío, M.; Megía, M.; Chiachío, J.; Fernandez, J.; Jalón, M.L. Structural digital twin framework: Formulation and technology integration. Autom. Constr. 2022, 140, 104333. [Google Scholar] [CrossRef]
- Moussallam, N.; Ziegler, R.; Rudolph, J.; Bergholz, S. A Method for Monitoring Vibrational Fatigue of Structure and Components. J. Press. Vessel Technol. 2022, 144, 031304. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Y. Key Component Capture and Safety Intelligent Analysis of Beam String Structure Based on Digital Twins. Symmetry 2022, 14, 1152. [Google Scholar] [CrossRef]
- García-Macías, E.; Ubertini, F. Real-time Bayesian damage identification enabled by sparse PCE-Kriging meta-modelling for continuous SHM of large-scale civil engineering structures. J. Build. Eng. 2022, 59, 105004. [Google Scholar] [CrossRef]
- Riggio, M.; Mrissa, M.; Krész, M.; Včelák, J.; Sandak, J.; Sandak, A. Leveraging Structural Health Monitoring Data Through Avatars to Extend the Service Life of Mass Timber Buildings. Front. Built Environ. 2022, 8. [Google Scholar] [CrossRef]
- Samuel, I.J.; Salem, O.; He, S. Defect-oriented supportive bridge inspection system featuring building information modeling and augmented reality. Innov. Infrastruct. Solut. 2022, 7, 247. [Google Scholar] [CrossRef]
- Flores-Fuentes, W. Bridge Load Classifier Based on Deep Learning for Structural Displacement Correlation. Program. Comput. Softw. 2020, 46, 526–535. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, K.; Luo, H. Underpass clearance checking in highway widening projects using digital twins. Autom. Constr. 2022, 141, 104406. [Google Scholar] [CrossRef]
- Han, T.; Ma, T.; Fang, Z.; Zhang, Y.; Han, C. A BIM-IoT and intelligent compaction integrated framework for advanced road compaction quality monitoring and management. Comput. Electr. Eng. 2022, 100, 107981. [Google Scholar] [CrossRef]
- Angjeliu, G.; Coronelli, D.; Cardani, G. Development of the simulation model for Digital Twin applications in historical masonry buildings: The integration between numerical and experimental reality. Comput. Struct. 2020, 238, 106282. [Google Scholar] [CrossRef]
- Kong, Q.; Zhu, J.; Ho, S.C.M.; Song, G. Tapping and listening: A new approach to bolt looseness monitoring. Smart Mater. Struct. 2018, 27, 07LT02. [Google Scholar] [CrossRef]
- Mahmoodian, M.; Shahrivar, F.; Setunge, S.; Mazaheri, S. Development of Digital Twin for Intelligent Maintenance of Civil Infrastructure. Sustainability 2022, 14, 8664. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, J.C.P.; Chen, W.; Chen, K. Digital Twins for Construction Sites: Concepts, LoD Definition, and Applications. J. Manag. Eng. 2022, 38, 04021094. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, M.; Guo, D.; Wu, W.; Zhong, R.Y.; Huang, G.Q. Digital twin-enabled smart modular integrated construction system for on-site assembly. Comput. Ind. 2021, 136, 103594. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, M.; Li, M.; Liu, X.; Zhong, R.Y.; Pan, W.; Huang, G.Q. Digital twin-enabled real-time synchronization for planning, scheduling, and execution in precast on-site assembly. Autom. Constr. 2022, 141, 104397. [Google Scholar] [CrossRef]
- Zhou, Y.; Su, Y.; Xu, Z.; Wang, X.; Wu, J.; Guan, X. A hybrid physics-based/data-driven model for personalized dynamic thermal comfort in ordinary office environment. Energy Build. 2021, 238, 110790. [Google Scholar] [CrossRef]
- Karbasi, A.; Farhadi, A. A cyber-physical system for building automation and control based on a distributed MPC with an efficient method for communication. Eur. J. Control 2021, 61, 151–170. [Google Scholar] [CrossRef]
- Clausen, A.; Arendt, K.; Johansen, A.; Sangogboye, F.C.; Kjærgaard, M.B.; Veje, C.T.; Jørgensen, B.N. A digital twin framework for improving energy efficiency and occupant comfort in public and commercial buildings. Energy Inform. 2021, 4, 40. [Google Scholar] [CrossRef]
- Zhou, N.; Chang-Richards, A.; Wang, K.I.-K.; Dirks, K.N. Prototyping an IoT-based system for monitoring building indoor environment. J. Eng. Des. Technol. 2022, 20, 965–992. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, H.; Wang, Q.; Sun, B.; Liu, W.; Qu, K.; Shen, X. Digital Twin Evaluation of Environment and Health of Public Toilet Ventilation Design Based on Building Information Modeling. Buildings 2022, 12, 470. [Google Scholar] [CrossRef]
- Shahinmoghadam, M.; Natephra, W.; Motamedi, A. BIM- and IoT-based virtual reality tool for real-time thermal comfort assessment in building enclosures. Build. Environ. 2021, 199, 107905. [Google Scholar] [CrossRef]
- Zhang, J.; Kwok, H.H.; Luo, H.; Tong, J.C.; Cheng, J.C. Automatic relative humidity optimization in underground heritage sites through ventilation system based on digital twins. Build. Environ. 2022, 216, 108999. [Google Scholar] [CrossRef]
- Bonci, A.; Carbonari, A.; Cucchiarelli, A.; Messi, L.; Pirani, M.; Vaccarini, M. A cyber-physical system approach for building efficiency monitoring. Autom. Constr. 2019, 102, 68–85. [Google Scholar] [CrossRef]
- Gomes, L.; Almeida, C.; Vale, Z. Recommendation of Workplaces in a Coworking Building: A Cyber-Physical Approach Supported by a Context-Aware Multi-Agent System. Sensors 2020, 20, 3597. [Google Scholar] [CrossRef]
- Seghezzi, E.; Locatelli, M.; Pellegrini, L.; Pattini, G.; Di Giuda, G.; Tagliabue, L.; Boella, G. Towards an Occupancy-Oriented Digital Twin for Facility Management: Test Campaign and Sensors Assessment. Appl. Sci. 2021, 11, 3108. [Google Scholar] [CrossRef]
- Schrotter, G.; Hürzeler, C. The Digital Twin of the City of Zurich for Urban Planning. PFG–J. Photogramm. Remote. Sens. Geoinf. Sci. 2020, 88, 99–112. [Google Scholar] [CrossRef] [Green Version]
- White, G.; Zink, A.; Codecá, L.; Clarke, S. A digital twin smart city for citizen feedback. Cities 2021, 110, 103064. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, J. A study on setting the direction of digital twin implementation for urban regeneration business. Int. J. Adv. Appl. Sci. 2022, 9, 147–154. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Dang, Y.; Lv, Z. Digital twins and artificial intelligence in transportation infrastructure: Classification, application, and future research directions. Comput. Electr. Eng. 2022, 101, 107983. [Google Scholar] [CrossRef]
- Wei, Y.; Lei, Z.; Altaf, S. An Off-Site Construction Digital Twin Assessment Framework Using Wood Panelized Construction as a Case Study. Buildings 2022, 12, 566. [Google Scholar] [CrossRef]
- Böke, J.; Knaack, U.; Hemmerling, M. Automated adaptive façade functions in practice - Case studies on office buildings. Autom. Constr. 2020, 113, 103113. [Google Scholar] [CrossRef]
- Ding, F.; Kareem, A. Tall Buildings with Dynamic Facade Under Winds. Engineering 2020, 6, 1443–1453. [Google Scholar] [CrossRef]
- Porsani, G.B.; Del Valle de Lersundi, K.; Gutiérrez, A.S.-O.; Bandera, C.F. Interoperability between Building Information Modelling (BIM) and Building Energy Model (BEM). Appl. Sci. 2021, 11, 2167. [Google Scholar] [CrossRef]
- Demianenko, M.; De Gaetani, C.I. A Procedure for Automating Energy Analyses in the BIM Context Exploiting Artificial Neural Networks and Transfer Learning Technique. Energies 2021, 14, 2956. [Google Scholar] [CrossRef]
- Jia, R.; Jin, B.; Jin, M.; Zhou, Y.; Konstantakopoulos, I.C.; Zou, H.; Kim, J.; Li, D.; Gu, W.; Arghandeh, R.; et al. Design Automation for Smart Building Systems. Proc. IEEE 2018, 106, 1680–1699. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Ding, L.; Zhou, C. Cyber physical system for safety management in smart construction site. Eng. Constr. Arch. Manag. 2020, 28, 788–808. [Google Scholar] [CrossRef]
- Hoisting, B. Digital Twin-Based Safety Risk Coupling of Prefabricated Building Hoisting. Sensors 2021, 21, 3583. [Google Scholar]
- Greif, T.; Stein, N.; Flath, C.M. Peeking into the void: Digital twins for construction site logistics. Comput. Ind. 2020, 121, 103264. [Google Scholar] [CrossRef]
- Tran, H.; Nguyen, T.N.; Christopher, P.; Bui, D.-K.; Khoshelham, K.; Ngo, T.D. A digital twin approach for geometric quality assessment of as-built prefabricated façades. J. Build. Eng. 2021, 41, 102377. [Google Scholar] [CrossRef]
- Yang, B.; Lv, Z.; Wang, F. Digital Twins for Intelligent Green Buildings. Buildings 2022, 12, 856. [Google Scholar] [CrossRef]
- Çetin, S.; Gruis, V.; Straub, A. Digitalization for a circular economy in the building industry: Multiple-case study of Dutch social housing organizations. Resour. Conserv. Recycl. Adv. 2022, 15, 200110. [Google Scholar] [CrossRef]
- Davies, I. The RIBA Plan of Work 2013. In Contract Administration, 1st ed.; RIBA Publishing: Islington, UK, 2019; pp. 10–11. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, H.; Chen, Q.; de Soto, B.G. Developing a conceptual framework for the application of digital twin technologies to revamp building operation and maintenance processes. J. Build. Eng. 2022, 49, 104028. [Google Scholar] [CrossRef]
- Quirk, D.; Lanni, J.; Chauhan, N. Digital twins: Details of implementation. ASHRAE J. 2020, 62, 20–24. [Google Scholar]
- Lu, Q.; Xie, X.; Parlikad, A.K.; Schooling, J.M. Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance. Autom. Constr. 2020, 118, 103277. [Google Scholar] [CrossRef]
- Wu, Z.; Chang, Y.; Li, Q.; Cai, R. A Novel Method for Tunnel Digital Twin Construction and Virtual-Real Fusion Application. Electronics 2022, 11, 1413. [Google Scholar] [CrossRef]
- Pregnolato, M.; Gunner, S.; Voyagaki, E.; De Risi, R.; Carhart, N.; Gavriel, G.; Tully, P.; Tryfonas, T.; Macdonald, J.; Taylor, C. Towards Civil Engineering 4.0: Concept, workflow and application of Digital Twins for existing infrastructure. Autom. Constr. 2022, 141, 104421. [Google Scholar] [CrossRef]
- Keskin, B.; Salman, B.; Koseoglu, O. Architecting a BIM-Based Digital Twin Platform for Airport Asset Management: A Model-Based System Engineering with SysML Approach. J. Constr. Eng. Manag. 2022, 148, 04022020. [Google Scholar] [CrossRef]
- Oliveira, P.P. Digital twin development for airport management. J. Airpt. Manag. 2020, 14, 246–259. [Google Scholar]
- Francisco, A.; Asce, S.M.; Mohammadi, N.; Asce, A.M.; Taylor, J.E.; Asce, M. Smart City Digital Twin–Enabled Energy Management: Toward Real-Time Urban Building Energy Benchmarking. J. Manag. Eng. 2020, 36, 04019045. [Google Scholar] [CrossRef]
- Thomas, B.L.; Cook, D.J. Activity-Aware Energy-Efficient Automation of Smart Buildings. Energies 2016, 9, 624. [Google Scholar] [CrossRef] [Green Version]
- Henzel, J.; Wrόbel, Ł.; Fice, M.; Sikora, M. Energy Consumption Forecasting for the Digital-Twin Model of the Building. Energies 2022, 15, 4318. [Google Scholar] [CrossRef]
- Pozas, B.M.; Holgado, B.M.; Bonilla, M.L.; Ramírez, S.B.; de Castro, P.B.G. Iterative Optimization of a Social Inmotics-Based Method in Order to Make Buildings Smart and Resilient. Sustain. Cities Soc. 2022, 82. [Google Scholar] [CrossRef]
- Alibrandi, U. Risk-Informed Digital Twin of Buildings and Infrastructures for Sustainable and Resilient Urban Communities. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2022, 8, 04022032. [Google Scholar] [CrossRef]
- Bass, B.; New, J.; Copeland, W. Potential Engergy, Demand, Emissions, and Cost Savings Distributions for Buildings in a Utility’s Service Area. Energies 2021, 14, 132. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Zeng, W. Development and Application of Digital Twin Technology for Integrated Regional Energy Systems in Smart Cities. Sustain. Comput. Inform. Syst. 2022, 36, 100781. [Google Scholar] [CrossRef]
- RIBA. RIBA Sustainable Outcomes Guide. 2019. Available online: https://www.architecture.com/-/media/GatherContent/Test-resources-page/Additional-Documents/RIBASustainableOutcomesGuide2019pdf (accessed on 18 December 2019).
- HosseiniHaghighi, S.; de Uribarri, P.M.; Padsala, R.; Eicker, U. Characterizing and structuring urban GIS data for housing stock energy modelling and retrofitting. Energy Build. 2021, 256, 111706. [Google Scholar] [CrossRef]
- Yitmen, I.; Alizadehsalehi, S.; Akıner, I.; Akıner, M. An Adapted Model of Cognitive Digital Twins for Building Lifecycle Management. Appl. Sci. 2021, 11, 4276. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, M.; Yu, F.; Xu, J.; Gao, S. Digital Twin Hospital Buildings: An Exemplary Case Study through Continuous Lifecycle Integration. Adv. Civ. Eng. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Peng, S.; Phil-Ebosie, O. Digital Twin Aided Sustainability and Vulnerability Audit for Subway Stations. Sustainability 2020, 12, 7873. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Sresakoolchai, J.; Ma, W.; Phil-Ebosie, O. Digital Twin Aided Vulnerability Assessment and Risk-Based Maintenance Planning of Bridge Infrastructures Exposed to Extreme Conditions. Sustainability 2021, 13, 2051. [Google Scholar] [CrossRef]
- Zu, Y.; Dai, R. Distributed path planning for building evacuation guidance. Cyber-Phys. Syst. 2017, 3, 1–21. [Google Scholar] [CrossRef]
- Cai, P.; Cai, Y.; Chandrasekaran, I.; Zheng, J. Parallel genetic algorithm based automatic path planning for crane lifting in complex environments. Autom. Constr. 2016, 62, 133–147. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Autom. Constr. 2020, 122, 103517. [Google Scholar] [CrossRef]
- Li, P.; Lu, Y.; Yan, D.; Xiao, J.; Wu, H. Scientometric mapping of smart building research: Towards a framework of human-cyber-physical system (HCPS). Autom. Constr. 2021, 129, 103776. [Google Scholar] [CrossRef]
- Sacks, R.; Brilakis, I.; Pikas, E.; Xie, H.S.; Girolami, M. Construction with digital twin information systems. Data-Cent. Eng. 2020, 1. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.; Yang, B.; Wu, T.; Lei, K.; Zhang, B.; Fang, T. Vision-Based Framework for Automatic Progress Monitoring of Precast Walls by Using Surveillance Videos during the Construction Phase. J. Comput. Civ. Eng. 2021, 35, 04020056. [Google Scholar] [CrossRef]
- Jia, M.; Komeily, A.; Wang, Y.; Srinivasan, R.S. Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Autom. Constr. 2019, 101, 111–126. [Google Scholar] [CrossRef]
- Lu, Q.; Parlikad, A.K.; Woodall, P.; Don Ranasinghe, G.; Xie, X.; Liang, Z.; Konstantinou, E.; Heaton, J.; Schooling, J. Developing a Digital Twin at Building and City Levels: Case Study of West Cambridge Campus. J. Manag. Eng. 2020, 36, 05020004. [Google Scholar] [CrossRef]
- Khan, F.; Kumar, R.L.; Kadry, S.; Nam, Y.; Meqdad, M.N. Cyber physical systems: A smart city perspective. Int. J. Electr. Comput. Eng. (IJECE) 2021, 11, 3609–3616. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Xu, N. Digital Twin for Sustainability Evaluation of Railway Station Buildings. Front. Built Environ. 2018, 4, 77. [Google Scholar] [CrossRef] [Green Version]
- Sepasgozar, S.M.E.; Hui, F.K.P.; Shirowzhan, S.; Foroozanfar, M.; Yang, L.; Aye, L. Lean Practices Using Building Information Modeling (BIM) and Digital Twinning for Sustainable Construction. Sustainability 2021, 13, 161. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E.; Karimi, R.; Shirowzhan, S.; Mojtahedi, M.; Ebrahimzadeh, S.; McCarthy, D. Delay causes and emerging digital tools: A novel model of delay analysis, including integrated project delivery and PMBOK. Buildings 2019, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Simchenko, N.A.; Tsohla, S.Y.; Chuvatkin, P.P. Effects of supply chain digital twins in the development of digital industry. Int. J. Supply Chain Manag. 2020, 9, 799–805. [Google Scholar]
- Tetik, M.; Peltokorpi, A.; Seppänen, O.; Holmström, J. Direct digital construction: Technology-based operations management practice for continuous improvement of construction industry performance. Autom. Constr. 2019, 107, 102910. [Google Scholar] [CrossRef]
- Love, P.E.D.; Matthews, J. The ‘how’ of benefits management for digital technology: From engineering to asset management. Autom. Constr. 2019, 107, 102930. [Google Scholar] [CrossRef]
Journal | No. of Publications |
---|---|
Automation in Construction | 32 |
Sustainability Switzerland | 12 |
Applied Sciences Switzerland | 8 |
Energies | 7 |
Journal of Cleaner Production | 7 |
Buildings | 5 |
Energy and Buildings | 5 |
Journal of Management in Engineering | 5 |
Advances in Civil Engineering | 4 |
Journal of Construction Engineering and Management | 4 |
Sensors Switzerland | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Lim, K.Y.H.; Cai, Y. Digital Twin and Industry 4.0 Enablers in Building and Construction: A Survey. Buildings 2022, 12, 2004. https://doi.org/10.3390/buildings12112004
Hu W, Lim KYH, Cai Y. Digital Twin and Industry 4.0 Enablers in Building and Construction: A Survey. Buildings. 2022; 12(11):2004. https://doi.org/10.3390/buildings12112004
Chicago/Turabian StyleHu, Wei, Kendrik Yan Hong Lim, and Yiyu Cai. 2022. "Digital Twin and Industry 4.0 Enablers in Building and Construction: A Survey" Buildings 12, no. 11: 2004. https://doi.org/10.3390/buildings12112004
APA StyleHu, W., Lim, K. Y. H., & Cai, Y. (2022). Digital Twin and Industry 4.0 Enablers in Building and Construction: A Survey. Buildings, 12(11), 2004. https://doi.org/10.3390/buildings12112004