Dynamic Concentrated Solar Building Skin Design Based on Multiobjective Optimization
Abstract
:1. Introduction
- The equilibrium relationship between the indoor light environment and the energy output of the solar-concentrating skin under different states of dynamic concentrating skin, trying to solve the optimal integration problem of dynamic concentrating skin and building integration, providing different design solutions for integration and reducing energy consumption and carbon emissions.
- The intrinsic connection between the design parameters and the performance optimization target determines how the design parameters affect the performance optimization target, optimization range, and weight size of the design parameters by analyzing the relationship between the parameters and the performance.
- Through the optimal design of a dynamic concentrating epidermis, we attempt to construct a multiobjective optimization technology framework applicable to dynamic skin using the design–simulation–analysis method to solve the single-threaded optimization design.
2. Methodology
2.1. Optimize Platforms and Processes
2.2. System Description
2.2.1. Design of BICPV
2.2.2. Constructing Parametric Information Models
- (1)
- Determining design parameters
- (2)
- Constructing parametric models
2.3. Constructing Evaluation Functions
2.3.1. Determine Optimization Objectives
2.3.2. Construction of Optimal Objective Evaluation Function
2.4. Simulation Parameters Setting
2.4.1. Climate Data and Sky Models
2.4.2. Calculation of the Equivalent Model of the Concentrated Light Surface
2.4.3. Material Parameters and Optimization Platform Setting
3. Results
3.1. Optimization Interval Analysis
3.2. Correlation Analysis of Performance Indicators and Design Parameters
3.3. Comparative Analysis of Integrated Solar-Concentrating Skin, Integrated Common Skin, and No Integrated Skin
4. Discussion
4.1. Research Innovation
4.2. Limitations and Future Directions
5. Conclusions
- The optimization interval of the number of solar-concentrating modules is between 15 and 17, and the best one is 17. The width optimization interval is 0.13 m–0.16 m, and the best is 0.16 m; the length optimization interval is 2.6 m–3.0 m, and the best is 3.0 m; the angle optimization is 25°–46°, and the best is 25°.
- The correlation between DGP, UDI, and capacity efficiency is highly negative, and the correlation between UDI and capacity efficiency is moderately positive. When DGP is between 50% and 80%, UDI and CE decrease as DGP increases; when DGP is between 80% and 100%, CE decreases and then increases with DGP, and UDI increases and then decreases with DGP.
- The correlation between each design parameter and the performance target is angle > width > amount > length.
- By comparing the dynamic concentrating skin with the normal skin and the no-skin case, it was found that the dynamic concentrating skin can effectively reduce glare and increase the effective natural light level while achieving energy output. The daylight glare probability reduction rate can reach approximately 70% and the useful daylight illuminance can be increased by approximately 10%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GlobalABC 2021 Global Status Report for Buildings and Construction. Available online: https://globalabc.org/sites/default/files/2021-10/GABC_Buildings-GSR-2021_BOOK.pdf (accessed on 6 November 2022).
- Bian, M.; Zhang, X.; Yin, C.; Yang, L.; He, T.; Li, B.; Wang, M.; Wang, B.; He, Z. Research Status of Application Technology of Photovoltaic Modules on Building Facade. Build. Sci. 2020, 36, 127–135. (In Chinese) [Google Scholar] [CrossRef]
- Irshad, K.; Habib, K.; Saidur, R.; Kareem, M.; Saha, B.B. Study of thermoelectric and photovoltaic facade system for energy efficient building development: A review. J. Clean. Prod. 2019, 209, 1376–1395. [Google Scholar] [CrossRef]
- Zheng, J.; Sheng, G.; Cai, X.; Zhao, Y.; Xiao, X.; Xu, G. Recent Progress in Semi-Transparent Photovoltaic Devices and Their Applications. Adv. NR Energy 2021, 9, 461–478. [Google Scholar] [CrossRef]
- Luo, T.; Yan, D.; Jiang, Y.; Zhao, J. Study on Lighting Energy Simulation Method for Office Buildings (Part I). Build. Sci. 2017, 33, 101–109. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, X.; Yan, D.; Hong, T.; Ren, X. Data analysis and stochastic modeling of lighting energy use in large office buildings in China. Energy Build. 2015, 86, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Shao, Z.; Sun, Y.; Soebarto, V.; Gao, F.; Zillante, G.; Zuo, J. Indoor daylight distribution in a room with integrated dynamic solar concentrating facade. Energy Build. 2018, 158, 1–13. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, D.; Flor, J.-F.; Shank, K.; Baig, H.; Wilson, R.; Liu, H.; Sundaram, S.; Mallick, T.K.; Wu, Y. Analysis of the daylight performance of window integrated photovoltaics systems. Renew. Energy 2020, 145, 153–163. [Google Scholar] [CrossRef]
- Ullah, I. Fiber-based daylighting system using trough collector for uniform illumination. Sol. Energy 2020, 196, 484–493. [Google Scholar] [CrossRef]
- Nick, N.; Anna, D.; Justin, S. Development of a Modeling Strategy for Adaptive Multifunctional Solar Energy Building Envelope Systems. Available online: https://www.researchgate.net/publication/275214357 (accessed on 27 September 2022).
- Zhu, L.; Chen, M.; Shao, Z.; Li, Q.; Sun, Y. Experimental and Simulation Study on Optical and Electrical Properties of Building Integrated 500×Solar Concentrating Photovoltaic Module. Acta Energ. Sol. Sin. 2021, 42, 247–252. (In Chinese) [Google Scholar] [CrossRef]
- Anna, D.; Matt, G.; Peter, S.; Jason, V.; Nick, N.; Kenton, P.; Mohamed, A.; Brandon, A.; Satoshi, K. Next Generation High-Efficiency Solar Power Systems for Building Envelopes. Available online: https://www.case.rpi.edu/research/icsolar (accessed on 27 September 2022).
- Novelli, N.; Phillips, K.; Shultz, J.; Derby, M.M.; Salvas, R.; Craft, J.; Stark, P.; Jensen, M.; Derby, S.; Dyson, A. Experimental investigation of a building-integrated, transparent, concentrating photovoltaic and thermal collector. Renew. Energy 2021, 176, 617–634. [Google Scholar] [CrossRef]
- Chemisana, D. Building integrated concentrating photovoltaics: A review. Renew. Sustain. Energy Rev. 2011, 15, 603–611. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A.; Wilberforce, T.; Olabi, A. Building-integrated photovoltaic/thermal (BIPVT) systems: Applications and challenges. Sustain. Energy Technol. Assess. 2021, 45, 101151. [Google Scholar] [CrossRef]
- Parupudi, R.V.; Singh, H.; Kolokotroni, M. Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses. Appl. Energy 2020, 279, 115839. [Google Scholar] [CrossRef]
- Baig, H.; Chemisana, D.; Sundaram, S.; Mallick, T. Conjugate refractive–reflective based building integrated photovoltaic system. Mater. Lett. 2018, 228, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Hong, M.; Feng, C.; Xu, Z.; Zhang, L.; Zheng, H.; Wu, G. Performance study of a new type of transmissive concentrating system for solar photovoltaic glass curtain wall. Energy Convers. Manag. 2019, 201, 112167. [Google Scholar] [CrossRef]
- Xuan, Q.; Li, G.; Lu, Y.; Zhao, B.; Zhao, X.; Su, Y.; Ji, J.; Pei, G. Design, optimization and performance analysis of an asymmetric concentrator-PV type window for the building south wall application. Sol. Energy 2019, 193, 422–433. [Google Scholar] [CrossRef]
- Xuan, Q.; Li, G.; Lu, Y.; Zhao, B.; Wang, F.; Pei, G. Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building. Energy 2021, 214, 118932. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Xie, L.; Hao, X.; Mallick, T.; Wu, Y.; Baig, H.; Shanks, K.; Sun, Y.; Yan, X. Comprehensive analysis of electrical-optical performance and application potential for 3D concentrating photovoltaic window. Renew. Energy 2022, 189, 369–382. [Google Scholar] [CrossRef]
- Eltaweel, A.; Yuehong, S. Using integrated parametric control to achieve better daylighting uniformity in an office room: A multi-Step comparison study. Energy Build. 2017, 152, 137–148. [Google Scholar] [CrossRef]
- Rashwan, A.; El Gizawi, L.; Sheta, S. Evaluation of the effect of integrating building envelopes with parametric patterns on daylighting performance in office spaces in hot-dry climate. Alex. Eng. J. 2019, 58, 551–557. [Google Scholar] [CrossRef]
- Kim, H.; Clayton, M.J. A multi-objective optimization approach for climate-adaptive building envelope design using parametric behavior maps. Build. Environ. 2020, 185, 107292. [Google Scholar] [CrossRef]
- Salimzadeh, N.; Vahdatikhaki, F.; Hammad, A. Parametric modeling and surface-specific sensitivity analysis of PV module layout on building skin using BIM. Energy Build. 2020, 216, 109953. [Google Scholar] [CrossRef]
- Bahdad, A.; Fadzil, S.; Onubi, H.; BenLasod, S. Multi-dimensions optimization for optimum modifications of light-shelves parameters for daylighting and energy efficiency. Int. J. Environ. Sci. Technol. 2022, 19, 2659–2676. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Z.; Chen, W. A Study on Automatic Form Optimization Procedures of Building Performance Design Based on “Ladybug+ Honeybee; IOP Conference Series: Earth Environment Science; IOP Publishing: Bristol, UK, 2020; p. 012020. [Google Scholar] [CrossRef]
- Kharvari, F. An empirical validation of daylighting tools: Assessing radiance parameters and simulation settings in Ladybug and Honeybee against field measurements. Sol. Energy 2020, 207, 1021–1036. [Google Scholar] [CrossRef]
- Fang, Y.; Cho, S. Design optimization of building geometry and fenestration for daylighting and energy performance. Sol. Energy 2019, 191, 7–18. [Google Scholar] [CrossRef]
- Sun, C.; Liu, Q.; Han, Y. Many-objective optimization design of a public building for energy, daylighting and cost performance improvement. Appl. Sci. 2020, 10, 2435. [Google Scholar] [CrossRef] [Green Version]
- Toutou, A.; Fikry, M.; Mohamed, W. The parametric based optimization framework daylighting and energy performance in residential buildings in hot arid zone. Alex. Eng. J. 2018, 57, 3595–3608. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, M.; Tang, S. A multi-objective optimization design method for gymnasium facade shading ratio integrating energy load and daylight comfort. Build. Environ. 2022, 207, 108527. [Google Scholar] [CrossRef]
- Mahdavinejad, M.; Nazar, N.S. Daylightophil high-performance architecture: Multi-objective optimization of energy efficiency and daylight availability in BSk climate. Energy Procedia 2017, 115, 92–101. [Google Scholar] [CrossRef]
- Zhang, A.; Bokel, R.; van den Dobbelsteen, A.; Sun, Y.; Huang, Q.; Zhang, Q. Optimization of thermal and daylight performance of school buildings based on a multi-objective genetic algorithm in the cold climate of China. Energy Build. 2017, 139, 371–384. [Google Scholar] [CrossRef]
- Yi, Y.K. Building facade multi-objective optimization for daylight and aesthetical perception. Build. Environ. 2019, 156, 178–190. [Google Scholar] [CrossRef]
- Zomorodian, Z.S.; Tahsildoost, M. Assessing the effectiveness of dynamic metrics in predicting daylight availability and visual comfort in classrooms. Renew. Energy 2019, 134, 669–680. [Google Scholar] [CrossRef]
- Nabil, A.; Mardaljevic, J. Useful daylight illuminances: A replacement for daylight factors. Energy Build. 2006, 38, 905–913. [Google Scholar] [CrossRef]
- Wienold, J.; Christoffersen, J. Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy Build. 2006, 38, 743–757. [Google Scholar] [CrossRef]
- Wu, W.; Liu, K. An Introduction of New Daylighting Evaluation Criteria: A Replacement for Daylight Factor. Nanjing. China Illum. Eng. J. 2012, 23, 1–7+24. [Google Scholar] [CrossRef]
- Wienold, J. Dynamic Daylight Glare Evaluation. In Proceedings of the Building Simulation, Eleventh International IBPSA Conference, Glasgow, Scotland, 27–30 July 2009; Available online: http://ibpsa.org/proceedings/BS2009/BS09_0944_951.pdf (accessed on 6 November 2022).
- Laboratory, N.R.E. Weather Data by Location, Asia WMO Region 2-Chin. Available online: https://energyplus.net/weather-location/asia_wmo_region_2/CHN/CHN_Jiangsu.Xuzhou.580270_CSWD (accessed on 6 November 2022).
- Kim, S.K.; Lee, K.S. A Study on the Aesthetic Elements for Building Integrated Photovoltaics (BIPV) Design. J. Archit. Inst. Korea 2021, 37, 53–64. [Google Scholar] [CrossRef]
- Foo, A.Y.; Saw, M.H.; Khoo, Y.S.; Tay, S.E.R. Developing a Methodology towards Designing Aesthetical BIPV Modules. In Proceedings of the IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 0272–0277. [Google Scholar]
- Liang, S.; Zheng, H.; Wang, X.; Ma, X.; Zhao, Z. Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules. Renew. Energy 2022, 191, 71–83. [Google Scholar] [CrossRef]
- Xuan, Q.; Li, G.; Jiang, B.; Zhao, X.; Zhao, B.; Ji, J.; Pei, G. Analysis and quantification of effects of the diffuse solar irradiance on the daylighting performance of the concentrating photovoltaic/daylighting system. Build. Environ. 2021, 193, 107654. [Google Scholar] [CrossRef]
- Xuan, Q.; Li, G.; Zhao, B.; Jiang, B.; Sun, D.; Zhang, X.; Tang, J.; Zhuang, Y.; Liu, J.; Li, L. Evaluation of the smart daylighting control performance of the concentrating photovoltaic/daylighting system as the skylight in the building. Sol. Energy 2022, 238, 17–29. [Google Scholar] [CrossRef]
- Liang, S.; Zheng, H.; Liu, S.; Ma, X. Optical design and validation of a solar concentrating photovoltaic-thermal (CPV-T) module for building louvers. Energy 2022, 239, 122256. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y. Design, development and characterisation of a Building Integrated Concentrating Photovoltaic (BICPV) smart window system. Sol. Energy 2021, 220, 722–734. [Google Scholar] [CrossRef]
- Eltaweel, A.; Su, Y.; Lv, Q.; Lv, H. Advanced parametric louver systems with bi-axis and two-layer designs for an extensive daylighting coverage in a deep-plan office room. Sol. Energy 2020, 206, 596–613. [Google Scholar] [CrossRef]
Solar-Concentrating Module Design Parameters | Calculation Range | Parametric Design Basis | Corresponding Slide Bar Parameters | |
---|---|---|---|---|
Size of the solar-concentrating module | Reduced length of the solar-concentrating module (m) | 0.4 (2.6), 0.3 (2.7), 0.2 (2.8), 0.1 (2.9), 0(3) | The calculation range is determined by the maximum length of the window length | 4, 3, 2, 1, 0 |
Reduced width of the solar-concentrating module (m) | 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16 | The calculation range is determined by the maximum width of the module when the window height accommodates the maximum number of modules | 0, 1, 2, 3, 4, 5, 6 | |
Quantity of solar-concentrating modules (number) | 11, 12, 13, 14, 15, 16, 17 | The calculation range is determined by the maximum amount calculated from the window height | 0, 1, 2, 3, 4, 5, 6 | |
Rotation angle of the solar-concentrating module (°) | 24, 35, 45, 53, 56, 53, 46, 36, 25, 13 | The calculation range is determined by the calculation time period and the direction of solar radiation | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 |
Optimization Goals | Definition Description | Suitable Range | Evaluation Criteria |
---|---|---|---|
Daylight glare probability (DGP) | Refers to the glare indicator used to describe the probability of uncomfortable glare in the room, and is based on DGI, CGI indicator updated (2006) [38] | DGP < 0.35 | DGP < 0.35: imperceptible glare; 0.35 ≤ DGP < 0.40: perceptible glare; 0.40 ≤ DGP < 0.45: disturbing glare; DGP ≥ 0.45: unbearable glare [40] |
Useful daylight illuminance (UDI) | Refers to the range of illumination values that can meet the normal visual work of workers | 500 lux–2000 lux | Effective lighting illumination value 100 lux–2000 lux [39] |
Capacity efficiency (CE) | Refers to the energy value generated by the concentrating epidermis after absorbing direct light | ---- | The greater the energy efficiency, the better |
Material Assignment Type | Parameter Setting |
---|---|
Wall | 0.5, 0.5, 0.5, 0, 0 |
Double glazing | 0.872, 0.872, 0.872, 0, 0 |
The solar-concentrating skin | 0.450, 0.450, 0.450, 0, 0, 0, 0.300 (“τ” calculated by Equation (4)) |
Calculation Module | Parameter Name | Input Parameter Setting |
---|---|---|
Octopus | Genome | Corresponding slide bar parameters (Table 1) |
Octopus | Daylight glare probability (DGP) Useful daylight illuminance (UDI) Capacity efficiency (CE) | |
Population size | 100 | |
Max generation | 0 | |
Elitism | 0.500 | |
Mut.Probability | 0.200 | |
CrossOver Rate | 0.800 |
Number | Amount (Number) | Width (m) | Length (m) | Angle (°) | DGP (%) | UDI (%) | CE (Kw·h) |
---|---|---|---|---|---|---|---|
1 | 16 | 0.14 | 2.6 | 24 | 100 | 58.37 | 42.05 |
2 | 15 | 0.14 | 2.8 | 25 | 87 | 58.78 | 59.11 |
3 | 15 | 0.14 | 3 | 25 | 87 | 58.60 | 63.33 |
4 | 15 | 0.15 | 3 | 25 | 93 | 57.57 | 67.85 |
5 | 15 | 0.15 | 2.9 | 25 | 87 | 57.70 | 65.59 |
6 | 16 | 0.13 | 3 | 25 | 93 | 58.77 | 62.73 |
7 | 16 | 0.14 | 2.8 | 25 | 93 | 57.84 | 63.05 |
8 | 16 | 0.15 | 2.6 | 25 | 100 | 57.32 | 62.73 |
9 | 16 | 0.13 | 2.7 | 25 | 87 | 59.16 | 56.45 |
10 | 16 | 0.15 | 2.7 | 25 | 100 | 56.77 | 65.14 |
11 | 16 | 0.13 | 2.8 | 25 | 93 | 58.96 | 58.54 |
12 | 17 | 0.13 | 2.9 | 25 | 87 | 57.71 | 64.42 |
13 | 17 | 0.13 | 3 | 25 | 87 | 57.59 | 66.65 |
14 | 17 | 0.15 | 2.6 | 36 | 80 | 57.89 | 139.5 |
15 | 17 | 0.14 | 2.6 | 36 | 80 | 58.96 | 130.2 |
16 | 17 | 0.16 | 2.9 | 45 | 100 | 56.75 | 227.87 |
17 | 17 | 0.16 | 3 | 46 | 100 | 56.65 | 259.35 |
18 | 17 | 0.16 | 2.7 | 53 | 73 | 59.97 | 285.37 |
19 | 17 | 0.16 | 2.8 | 53 | 73 | 59.73 | 295.94 |
20 | 17 | 0.16 | 3 | 53 | 73 | 59.32 | 317.08 |
21 | 17 | 0.16 | 2.6 | 53 | 73 | 60.16 | 263.54 |
22 | 16 | 0.16 | 3 | 56 | 53 | 60.82 | 312.84 |
23 | 17 | 0.16 | 2.7 | 56 | 67 | 60.52 | 299.15 |
24 | 17 | 0.16 | 2.8 | 56 | 67 | 60.35 | 310.23 |
25 | 17 | 0.16 | 3 | 56 | 67 | 60.14 | 332.39 |
26 | 17 | 0.16 | 2.9 | 56 | 67 | 60.25 | 321.31 |
Name | Parameters and Performance Indicators | Optimal Interval | Percentage of Maximum Parameters (Interval) and Percentage | Percentage of Minimum Parameters (Interval) and Percentage | |
---|---|---|---|---|---|
Design parameters | Size of the solar-concentrating module | Length of the solar-concentrating module (m) | 2.6–3.0 | 3.0, 31% | 2.7, 15% |
Width of the solar-concentrating module (m) | 0.13–0.16 | 0.16, 42% | 0.13, 19% | ||
Quantity of solar-concentrating modules (number) | 15–17 | 17, 54% | 15, 15% | ||
Rotation angle (°) | 24–56 | 25, 46% | 56, 4% | ||
Performance indicators | DGP (%) | 53–100 | 80–90, 31% | 50–60, 4% | |
UDI (%) | 56.65–60.82 | 56–60, 77% | 60–60.82, 23% | ||
CE (Kw·h) | 42.05–332.39 | 42.05–90, 50% | 100–332.39, 50% |
1-DGP Optimal Solution | 2-UDI Optimal Solution | ||||||
---|---|---|---|---|---|---|---|
DGP<0.4 | 100% | Module size | 2.6 m × 0.14 m | DGP<0.4 | 53% | Module size | 3.0 m × 0.16 m |
UDI100–2000LUX | 58.37% | Module amount | 16 | UDI100–2000LUX | 60.82% | Module amount | 16 |
CE | 42.05 Kw·h | Rotation angle | 24° | CE | 312.84 Kw·h | Rotation angle | 56° |
3-CE Optimal Solution | 4-Comprehensive optimal solution | ||||||
DGP<0.4 | 67% | Module size | 3.0 m × 0.16 m | DGP<0.4 | 80% | Module size | 2.6 m × 0.14 m |
UDI100–2000LUX | 60.14% | Module amount | 17 | UDI100–2000LUX | 57.89% | Module amount | 17 |
CE | 332.39 Kw·h | Rotation angle | 56° | CE | 139.50 Kw·h | Rotation angle | 36° |
Parameter | DGP | UDI | CE |
---|---|---|---|
Amount | |||
Width | |||
Length | |||
Angle |
Scheme Name | Performance Goals | Solar-concentrating Module | General Module | No Module | Relative Optimization Value 1 | Relative Optimization Value 2 |
---|---|---|---|---|---|---|
Scheme 1 | DGP (%) | 53 | 0 | 0 | 53 | 53 |
UDI (%) | 60.82 | 60.72 | 50.92 | 0.1 | 9.9 | |
CE (Kw·h) | 312.84 | 0 | 0 | 312.84 | 312.84 | |
Scheme 2 | DGP (%) | 73 | 0 | 0 | 73 | 73 |
UDI (%) | 60.16 | 60.49 | 50.92 | −0.33 | 9.24 | |
CE (Kw·h) | 263.54 | 0 | 0 | 263.54 | 263.54 | |
Scheme 3 | DGP (%) | 1 | 0 | 0 | 1 | 1 |
UDI (%) | 56.75 | 62.51 | 50.92 | −5.76 | 5.83 | |
CE (Kw·h) | 227.87 | 0 | 0 | 227.87 | 227.87 |
Different Integration Schemes | DGP Visualization | UDI Visualization |
---|---|---|
The solar-concentrating skin | ||
Common skin | ||
non-skin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Z.; Wang, B.; Xu, Y.; Sun, L.; Ge, X.; Cai, L.; Chang, C. Dynamic Concentrated Solar Building Skin Design Based on Multiobjective Optimization. Buildings 2022, 12, 2026. https://doi.org/10.3390/buildings12112026
Shao Z, Wang B, Xu Y, Sun L, Ge X, Cai L, Chang C. Dynamic Concentrated Solar Building Skin Design Based on Multiobjective Optimization. Buildings. 2022; 12(11):2026. https://doi.org/10.3390/buildings12112026
Chicago/Turabian StyleShao, Zebiao, Bo Wang, Yao Xu, Liang Sun, Xichen Ge, Lvpei Cai, and Cheng Chang. 2022. "Dynamic Concentrated Solar Building Skin Design Based on Multiobjective Optimization" Buildings 12, no. 11: 2026. https://doi.org/10.3390/buildings12112026
APA StyleShao, Z., Wang, B., Xu, Y., Sun, L., Ge, X., Cai, L., & Chang, C. (2022). Dynamic Concentrated Solar Building Skin Design Based on Multiobjective Optimization. Buildings, 12(11), 2026. https://doi.org/10.3390/buildings12112026