Design Optimization of Hyperboloid Wooden House Concerning Structural, Cost, and Daylight Performance
Abstract
:1. Introduction
1.1. Development in Computational Architecture
1.2. Wood in Environment and Construction
1.3. Hyperboloid Structure
1.4. Form-Finding and Optimization in Architectural Design
1.5. Aims and Objectives
- Does the proposed approach lead to the optimization of the structural and daylight performance of the intended house?
- What is the parameter combination that produces the best design solutions in terms of structural and daylight objectives?
- What is the relationship between the geometry parameters and the structural objectives?
- What is the relationship between the opening parameters and the daylight objectives?
- What parameter is the most influential in each of the structural and daylight objectives?
- To conduct theoretical studies about the implementation of parametric design and MOO.
- To build a parametric system based on design objectives.
- To build the parametric system of the optimization process, both structural and daylight analysis.
- To conduct an empirical analysis based on the data obtained.
2. Materials and Methods
2.1. General Insight and Project Description
2.2. Geometry Modeling
2.3. Structural Simulation and Analysis Setting
2.4. Daylight Simulation Setting
2.5. Multi-Objective Optimization
2.6. Sensitivity Analysis and Fitness Function Calculation
3. Results
3.1. General Results
3.2. Structure Optimization Results
3.3. Fitness Function
3.4. Daylight Optimization Results
3.5. Sensitivity Analysis Results
3.6. Parameters to Objectives
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguiar, R.; Cardoso, C.; Leitão, A. Algorithmic design and analysis fusing disciplines. Disciplines and Disruption. In Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture, ACADIA, Cambridge, MA, USA, 2–4 November 2017; pp. 28–37. [Google Scholar]
- Yang, D.; Ren, S.; Turrin, M.; Sariyildiz, S.; Sun, Y. Multi-disciplinary and multi-objective optimization problem re-formulation in computational design exploration: A case of conceptual sports building design. Autom. Constr. 2018, 92, 242–269. [Google Scholar] [CrossRef]
- Menges, A.; Schwinn, T.; Krieg, O.D. Advancing Wood Architecture: A Computational Approach; Routldege: London, UK, 2016; ISBN 9781317392347. [Google Scholar]
- Preisinger, C. Linking structure and parametric geometry. Archit. Des. 2013, 83, 110–113. [Google Scholar] [CrossRef]
- Attia, S.; Hensen, J.L.M.; Beltrán, L.; De Herde, A. Selection criteria for building performance simulation tools: Contrasting architects’ and engineers’ needs. J. Build. Perform. Simul. 2012, 5, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Evins, R. A review of computational optimisation methods applied to sustainable building design. Renew. Sustain. Energy Rev. 2013, 22, 230–245. [Google Scholar] [CrossRef]
- Sakiyama, N.R.M.; Carlo, J.C.; Mazzaferro, L.; Garrecht, H. Building optimization through a parametric design platform: Using sensitivity analysis to improve a radial-based algorithm performance. Sustainability 2021, 13, 5739. [Google Scholar] [CrossRef]
- Turrin, M.; Yang, D.; D’Aquilio, A.; Sileryte, R.; Sun, Y. Computational Design for Sport Buildings. Procedia Eng. 2016, 147, 878–883. [Google Scholar] [CrossRef] [Green Version]
- Tsunetsugu, Y.; Miyazaki, Y.; Sato, H. Visual effects of interior design in actual-size living rooms on physiological responses. Build. Environ. 2005, 40, 1341–1346. [Google Scholar] [CrossRef]
- Matsubara, E.; Kawai, S. VOCs emitted from Japanese cedar (Cryptomeria japonica) interior walls induce physiological relaxation. Build. Environ. 2014, 72, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Think Wood Benefits of Using Wood in Construction. 2020; 16964. Available online: https://www.procurement.govt.nz/assets/procurement-property/documents/benefits-of-wood-construction-procurement.pdf (accessed on 15 January 2022).
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Menges, A. Performative wood: Integral computational design for timber constructions. ACADIA 09 reForm() Build a Better Tomorrow. In Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture, Chicago, IL, USA, 22–25 October 2009; Universal Publishers: Boca Raton, FL, USA; pp. 66–74. [Google Scholar]
- Heath, R. Material Information. Encycl. Public Relat. 2014, 151–157. [Google Scholar] [CrossRef]
- Gold, S.; Rubik, F. Consumer attitudes towards timber as a construction material and towards timber frame houses—Selected findings of a representative survey among the German population. J. Clean. Prod. 2009, 17, 303–309. [Google Scholar] [CrossRef]
- Dzwierzynska, J. Multi-objective optimizing curvilinear steel bar structures of hyperbolic paraboloid canopy roofs. Buildings 2020, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Maden, F. Geometric and Kinematic Analysis of Deployable Doubly Ruled Hyperboloids. MEGARON/Yıldız Tech. Univ. Fac. Archit. E-J. 2017, 12, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Danhaive, R.; Mueller, C.T. Design subspace learning: Structural design space exploration using performance-conditioned generative modeling. Autom. Constr. 2021, 127, 103664. [Google Scholar] [CrossRef]
- Flager, F.; Welle, B.; Bansal, P.; Soremekun, G.; Haymaker, J. Multidisciplinary process integration and design optimization of a classroom building. Electron. J. Inf. Technol. Constr. 2009, 14, 595–612. [Google Scholar]
- Brown, N.C.; Mueller, C.T. Design for structural and energy performance of long span buildings using geometric multi-objective optimization. Energy Build. 2016, 127, 748–761. [Google Scholar] [CrossRef] [Green Version]
- Dzwierzynska, J. Rationalized algorithmic-aided shaping a responsive curvilinear steel bar structure. Buildings 2019, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Dzwierzynska, J.; Prokopska, A. Pre-rationalized parametric designing of roof shells formed by repetitive modules of Catalan surfaces. Symmetry 2018, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Bande, L.; Alshamsi, A.; Alhefeiti, A.; Alderei, S.; Shaban, S.; Albattah, M.; Scoppa, M.D. Parametric design structures in low rise buildings in relation to the urban context in UAE. Sustainability 2021, 13, 8595. [Google Scholar] [CrossRef]
- Chi, D.A.; Moreno, D.; Navarro, J. Correlating daylight availability metric with lighting, heating and cooling energy consumptions. Build. Environ. 2018, 132, 170–180. [Google Scholar] [CrossRef]
- Emami, N.; Giles, H.; von Buelow, P. Structural, daylighting, and energy performance of perforated concrete shell structures. Autom. Constr. 2020, 117, 103249. [Google Scholar] [CrossRef]
- Khoraskani, R.; Kazemi, P.; Tahsildoost, M. Adaptation of Hyperboloid Structure for High-Rise Buildings with Exoskeleton. In Proceedings of the 5th International Conference on Architecture and Built Environment with AWARDs; 2017; Volume 62. Available online: https://www.researchgate.net/publication/325812043_ADAPTATION_OF_HYPERBOLOID_STRUCTURE_FOR_HIGH-RISE_BUILDINGS_WITH_EXOSKELETON (accessed on 16 December 2021).
- Bakmohammadi, P.; Noorzai, E. Optimization of the design of the primary school classrooms in terms of energy and daylight performance considering occupants’ thermal and visual comfort. Energy Rep. 2020, 6, 1590–1607. [Google Scholar] [CrossRef]
- Konis, K.; Gamas, A.; Kensek, K. Passive performance and building form: An optimization framework for early-stage design support. Sol. Energy 2016, 125, 161–179. [Google Scholar] [CrossRef]
- Naderi, E.; Sajadi, B.; Behabadi, M.A.; Naderi, E. Multi-objective simulation-based optimization of controlled blind specifications to reduce energy consumption, and thermal and visual discomfort: Case studies in Iran. Build. Environ. 2020, 169, 106570. [Google Scholar] [CrossRef]
- Pilechiha, P.; Mahdavinejad, M.; Pour Rahimian, F.; Carnemolla, P.; Seyedzadeh, S.; Pour, F. Multi-objective optimisation framework for designing office windows: Quality of view, daylight and energy efficiency. Appl. Energy 2020, 261, 114356. [Google Scholar] [CrossRef]
- Toutou, A. A Parametric Approach for Achieving Optimum Residential Building Performance in Hot Arid Zone. Master’s Thesis, Alexandria University, Alexandria, Egypt, 2018. [Google Scholar]
- Khidmat, R.P.; Fukuda, H.; Kustiani; Wibowo, A.P. A Benchmark Model for Predicting Building Energy and Daylight Performance in the Early Phase of Design Utilizing Parametric Design Exploration. IOP Conf. Ser. Earth Environ. Sci. 2021, 830, 012008. [Google Scholar] [CrossRef]
- Tseranidis, S.; Brown, N.C.; Mueller, C.T. Data-driven approximation algorithms for rapid performance evaluation and optimization of civil structures. Autom. Constr. 2016, 72, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Weldegiorgis, F.; Dhungana, A.R.A.J. Parametric Design and Optimization of Steel and Development of a Workflow for Design and Optimization Processes in Grasshopper 3D Environment; KTH Royal Institute of Technology: Stockholm, Sweden, 2020; ISBN 9789178736102. [Google Scholar]
- Cascone, F.; Faiella, D.; Tomei, V.; Mele, E. Stress lines inspired structural patterns for tall buildings. Eng. Struct. 2021, 229, 111546. [Google Scholar] [CrossRef]
- Fernando, S.; Weir, S.; Reinhardt, D.; Hannouch, A. Towards a multi-criteria framework for stereotomy—Workflows for subtractive fabrication in complex geometries. J. Comput. Des. Eng. 2019, 6, 468–478. [Google Scholar] [CrossRef] [Green Version]
- Kyu, Y.; Kim, H. Universal Visible Sky Factor: A method for calculating the three-dimensional visible sky ratio. Build. Environ. 2017, 123, 390–403. [Google Scholar] [CrossRef]
- Delgarm, N.; Sajadi, B.; Kowsary, F.; Delgarm, S. Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO). Appl. Energy 2016, 170, 293–303. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, N.; Wang, S. A parametric approach for performance optimization of residential building design in Beijing. Build. Simul. 2020, 13, 223–235. [Google Scholar] [CrossRef]
- Khidmat, R.P.; Ulum, M.S.; Lestari, A.D.E. Facade Components Optimization of Naturally Ventilated Building in Tropical Climates through Generative Processes. Case study: Sumatera Institute of Technology (ITERA), Lampung, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 537. [Google Scholar] [CrossRef]
- Eltaweel, A.; Yuehong, S.; Su, Y. Using integrated parametric control to achieve better daylighting uniformity in an office room: A multi-Step comparison study. Energy Build. 2017, 152, 137–148. [Google Scholar] [CrossRef]
- Grasshopper 3D. Available online: https://www.grasshopper3d.com/ (accessed on 8 October 2020).
- McNeel, R. Rhino 3D. Available online: https://www.rhino3d.com/ (accessed on 8 October 2020).
- Preisinger, C.; Heimrath, M. Karamba—A toolkit for parametric structural design. Struct. Eng. Int. J. Int. Assoc. Bridg. Struct. Eng. 2014, 24, 217–221. [Google Scholar] [CrossRef]
- Roudsari, M.S.; Pak, M. Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In Proceedings of the BS2013: 13th Conference of International Building Performance Simulation Association, Chambéry, France, 26–28 August 2013; pp. 3128–3135. [Google Scholar]
- Vierlinger, R. D IPLOMARBEIT Multi Objective Design Interface. Master’s Thesis, TU Wien, Vienna, Austria, 2015. [Google Scholar] [CrossRef]
- Fang, Y.; Cho, S. Design optimization of building geometry and fenestration for daylighting and energy performance. Sol. Energy 2019, 191, 7–18. [Google Scholar] [CrossRef]
- Ladybug EPW Map. Available online: https://www.ladybug.tools/epwmap/ (accessed on 6 October 2020).
- Open STAT File. Available online: http://grasshopperdocs.com/components/ladybug/openSTATFile.html (accessed on 15 January 2022).
- Nabil, A.; Mardaljevic, J. Useful daylight illuminance: A new paradigm for assessing daylight in buildings. Light. Res. Technol. 2005, 37, 41–59. [Google Scholar] [CrossRef]
- Nabil, A.; Mardaljevic, J. Useful daylight illuminances: A replacement for daylight factors. Energy Build. 2006, 38, 905–913. [Google Scholar] [CrossRef]
- Eltaweel, A.; Su, Y.; Lv, Q.; Lv, H. Advanced parametric louver systems with bi-axis and two-layer designs for an extensive daylighting coverage in a deep-plan office room. Sol. Energy 2020, 206, 596–613. [Google Scholar] [CrossRef]
- Eltaweel, A.; Su, Y. Controlling venetian blinds based on parametric design; via implementing Grasshopper’s plugins: A case study of an office building in Cairo. Energy Build. 2017, 139, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Yang, C.S.; Moon, H.J. A Study on Multi-Objective Parametric Design Tool for Surround-Type Movable Shading Device. Sustainability 2019, 11, 7096. [Google Scholar] [CrossRef] [Green Version]
- Shen, X. Environmental parametric multi-objective optimization for high performance facade design. In Proceedings of the CAADRIA 2018—23rd International Conference on Computer-Aided Architectural Design Research in Asia: Learning, Prototyping and Adapting, Beijing, China, 17–19 May 2018; Volume 2, pp. 103–112. [Google Scholar]
- Lakhdari, K.; Sriti, L.; Painter, B. Parametric optimization of daylight, thermal and energy performance of middle school classrooms, case of hot and dry regions. Build. Environ. 2021, 204, 108173. [Google Scholar] [CrossRef]
- Thornton Tomasetti CORE Studio, Design Explorer. Available online: http://core.thorntontomasetti.com/design-explorer/ (accessed on 3 February 2021).
- Zou, Y.; Zhan, Q.; Xiang, K. A comprehensive method for optimizing the design of a regular architectural space to improve building performance. Energy Rep. 2021, 7, 981–996. [Google Scholar] [CrossRef]
- Bernett, A.; Dogan, T. Early Design Decision-Making Framework Based on Multi-Objective Building Performance Simulation Incorporating Energy, Carbon Footprint and Cost. Proc. Build. Simul. 2019 16th Conf. IBPSA 2020, 16, 1617–1624. [Google Scholar] [CrossRef]
- Natanian, J.; Aleksandrowicz, O.; Auer, T. A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts. Appl. Energy 2019, 254, 113637. [Google Scholar] [CrossRef]
- Natanian, J.; Auer, T. Balancing urban density, energy performance and environmental quality in the Mediterranean: A typological evaluation based on photovoltaic potential. Energy Procedia 2018, 152, 1103–1108. [Google Scholar] [CrossRef]
- Talaei, M.; Mahdavinejad, M.; Azari, R.; Prieto, A.; Sangin, H. Multi-objective optimization of building-integrated microalgae photobioreactors for energy and daylighting performance. J. Build. Eng. 2021, 42, 102832. [Google Scholar] [CrossRef]
- Chahade, T.; Schober, K.U.; Morillas, L. Interactive structural design of hyperbolic grid shells. Proc. Inst. Civ. Eng. Struct. Build. 2021, 1–12. [Google Scholar] [CrossRef]
- Mirniazmandan, S.; Alaghmandan, M.; Barazande, F.; Rahimianzarif, E. Mutual effect of geometric modifications and diagrid structure on structural optimization of tall buildings. Archit. Sci. Rev. 2018, 61, 371–383. [Google Scholar] [CrossRef]
- Bialozor, R.; Olszowski, M. Parametric modelling as a shift of decision-making process in structural engineering Parametric modelling as a shift of decision-making process in structural. In Proceedings of the ICEUBI 2017 International Congress on Engineering, Covilha, Portugal, 5–7 December 2017; Available online: https://www.researchgate.net/publication/321713211_Parametric_modelling_as_a_shift_of_decision-making_process_in_structural_engineering (accessed on 17 November 2021).
- Dragoljevic, M.; Viscuso, S.; Zanelli, A. Data-driven design of deployable structures: Literature review and multi-criteria optimization approach. Curved Layer. Struct. 2021, 8, 241–258. [Google Scholar] [CrossRef]
- Khidmat, R.P. Facade components optimization using Generative Algorithm. case study: ITERA, Lampung. J. Arsit. Perenc. 2019, 2, 20–27. [Google Scholar]
- Emami, N. Disregarded solution spaces: A proposed approach to draw connections between computationally generated solution spaces and actual built case studies. Int. J. Archit. Comput. 2021, 19, 273–290. [Google Scholar] [CrossRef]
- Zhang, R.; Waibel, C.; Wortmann, T. Aerodynamic Shape Optimization for High-Rise Conceptual Design. In Proceedings of the eCAADe 2020—38th International Conference on Education and Research in Computer Aided Architectural Design in Europe: Architecture and Fabrication in The Cognitive Age, Berlin, Germany, 16–18 September 2020; Volume 1, pp. 37–45. [Google Scholar]
- USGBC LEED v4 CREDITS for Building Design and Construction. LEED Publ. 2019, 131. Available online: https://www.usgbc.org/resources/leed-v4-building-design-and-construction-current-version (accessed on 27 May 2021).
Parameters | Lower Limit | Upper Limit | Interval | Units | Driven Factor | Movement |
---|---|---|---|---|---|---|
Radius-bottom | 1.5 | 2.5 | 0.1 | m | 11 | |
Offset distance | −0.2 | 0 | 0.01 | m | 21 | |
Timber members | 3 | 5 | 1 | unit | Twist | 3 |
Twist | 2 | 5 | 1 | unit | 4 | |
Height | 4 | 7 | 1 | m | 4 | |
Radius-top 1 | 0.1 | 0.4 | 0.01 | m | Radius bottom | 31 |
Radius-top 2 | 0.1 | 0.3 | 0.01 | m | Radius bottom and top | 21 |
Roof slope | 5 | 15 | 1 | Degree (°) | 11 |
ElemId | Element | Units |
---|---|---|
Young’s modulus (E) | 960 | kN/cm2 |
Shear’s modulus (G) | 450 | kN/cm2 |
Specific weight (Gamma) | 39.5 | kN/cm2 |
Coefficient of thermal expansion (AlphaT) | 0.000003 | 1/°C |
Yield stress (FY) | 1.3 | kN/cm2 |
Name | Japanese Timber |
Parameters | Lower Limit | Upper Limit | Interval | Unit | Driven Factor | Movement |
---|---|---|---|---|---|---|
Movement list top | 0 | 8 | 1 | unit | 9 | |
Movement list bottom | 0 | 8 | 1 | unit | 9 | |
Glazing ratio | 5 | 9 | 1 | % | 0.1 | 5 |
Radius-Bottom | Offset Distance | Timber Members | Twist | Height | Radius-Top 1 | Radius-Top 2 | Roof Slope | NFA | D | C | BV | Timber Volume | Ranking | Solution Number |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.5 | −0.18 | 5 | 2 | 4 | 2.09 | 2.628 | 7 | 0.840007 | 0.477199 | 62,567.32626 | 36.781507 | 1.013919 | 1 | 9052 |
1.5 | −0.2 | 5 | 2 | 4 | 2.09 | 2.628 | 7 | 0.771499 | 0.644391 | 62,510.88343 | 36.781508 | 1.012752 | 2 | 7974 |
2.5 | −0.2 | 5 | 2 | 4 | 2.871 | 3.264 | 8 | 1.490737 | 0.433516 | 67,534.92485 | 74.876282 | 1.12736 | 3 | 7470 |
1.5 | −0.19 | 5 | 3 | 4.2 | 2.079 | 2.616 | 6 | 0.755567 | 0.367732 | 104,091.2108 | 38.433623 | 1.576698 | 4 | 7939 |
2.5 | −0.09 | 5 | 2 | 4.1 | 2.915 | 3.528 | 7 | 1.559383 | 0.529867 | 69,522.70367 | 81.22864 | 1.168452 | 5 | 10,056 |
2.5 | −0.19 | 4 | 2 | 4 | 2.86 | 3.24 | 5 | 1.544786 | 0.420685 | 57,526.35573 | 64.761463 | 0.974208 | 6 | 6612 |
2.5 | −0.19 | 5 | 2 | 4.3 | 2.915 | 3.54 | 5 | 1.586519 | 0.591833 | 70,858.80102 | 85.557888 | 1.196072 | 7 | 9415 |
2.5 | −0.08 | 5 | 4 | 5.7 | 2.992 | 3.624 | 5 | 1.069103 | 0.634972 | 189,466.6977 | 116.958725 | 2.933119 | 8 | 9518 |
2.5 | −0.19 | 5 | 3 | 4.8 | 2.871 | 3.264 | 8 | 1.414321 | 0.459468 | 119,503.7762 | 89.888523 | 1.906061 | 9 | 8798 |
Rank | Movement Item Top FF | Movement Item Bottom FF | Glazing Ratio FF | UDI Summer FF (m2) | UDI Winter FF (m2) | Glazing Area FF (m2) | Solution Number |
---|---|---|---|---|---|---|---|
1 | 8 | 7 | 9 | 159.866523 | 136.44026 | 7.9648 | 397 |
2 | 8 | 5 | 9 | 154.025604 | 138.908534 | 8.021715 | 379 |
3 | 8 | 4 | 9 | 153.782105 | 135.71133 | 8.10186 | 370 |
4 | 7 | 7 | 9 | 150.854576 | 136.910236 | 8.04021 | 396 |
5 | 7 | 4 | 9 | 145.344506 | 134.664192 | 8.177271 | 369 |
6 | 8 | 6 | 9 | 155.822131 | 126.311041 | 7.986382 | 389 |
7 | 7 | 5 | 9 | 140.49215 | 142.017143 | 8.097126 | 378 |
8 | 8 | 8 | 9 | 151.082026 | 134.135437 | 7.856945 | 406 |
9 | 5 | 7 | 9 | 147.017711 | 130.940005 | 7.942779 | 394 |
10 | 7 | 6 | 9 | 144.570966 | 128.956859 | 8.061792 | 387 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khidmat, R.P.; Fukuda, H.; Kustiani. Design Optimization of Hyperboloid Wooden House Concerning Structural, Cost, and Daylight Performance. Buildings 2022, 12, 110. https://doi.org/10.3390/buildings12020110
Khidmat RP, Fukuda H, Kustiani. Design Optimization of Hyperboloid Wooden House Concerning Structural, Cost, and Daylight Performance. Buildings. 2022; 12(2):110. https://doi.org/10.3390/buildings12020110
Chicago/Turabian StyleKhidmat, Rendy Perdana, Hiroatsu Fukuda, and Kustiani. 2022. "Design Optimization of Hyperboloid Wooden House Concerning Structural, Cost, and Daylight Performance" Buildings 12, no. 2: 110. https://doi.org/10.3390/buildings12020110
APA StyleKhidmat, R. P., Fukuda, H., & Kustiani. (2022). Design Optimization of Hyperboloid Wooden House Concerning Structural, Cost, and Daylight Performance. Buildings, 12(2), 110. https://doi.org/10.3390/buildings12020110