Analyzing Critical Factors for the Smart Construction Site Development: A DEMATEL-ISM Based Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Application of Advanced Technologies in SCS
2.1.1. Application of Single Advanced Technology
2.1.2. Application of the Integration of Advanced Technologies
2.2. Management in Smart Construction Sites
2.3. Revolution of Construction Organization by SCS Development
2.4. Practice of Smart Construction Site
2.5. Framework and Critical Factors for Smart Construction Site Development
3. Research Methodology
3.1. Research Framework
3.2. The DEMATEL-ISM Approach
4. Factor Analysis and Results
4.1. Factor Attribute Analysis Based on DEMATEL
4.2. Hierarchy of Factors Using ISM
4.3. DEMATEL-ISM Model of Factors in Smart Construction Site Development
5. Research Findings and Implications
5.1. Research Findings
5.2. Implications
6. Conclusions
7. Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Xiahou, X.; Yuan, J.; Liu, Y.; Tang, Y.; Li, Q. Exploring the driving factors of construction industrialization development in China. Int. J. Environ. Res. Public Health 2018, 15, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalal, M.P.; Koosha, S.M. Identifying organizational variables affecting project management office characteristics and analyzing their correlations in the Iranian project-oriented organizations of the construction industry. Int. J. Proj. Manag. 2015, 33, 458–466. [Google Scholar] [CrossRef]
- Xiahou, X.; Yuan, J.; Xie, H.; Skibniewski, M.J.; Li, Q. Exploring driving factors of smart city development under the physical-human society-cyber (PHC) space model. Int. J. Constr. Manag. 2020, 1–11. [Google Scholar] [CrossRef]
- Liu, H.; Song, J.; Wang, G. A Scientometric Review of Smart Construction Site in Construction Engineering and Management: Analysis and Visualization. Sustainability 2021, 13, 8860. [Google Scholar] [CrossRef]
- Dakhli, Z.; Danel, T.; Lafhaj, Z. Smart construction site: Ontology of Information System Architecture. In Proceedings of the Modular and Offsite Construction (MOC) Summit, Banff, AB, Canada, 21–24 May 2019; Al-Hussein, M., Ed.; University of Alberta: Edmonton, AB, Canada, 2019; pp. 41–50. [Google Scholar]
- Yu, Z.; Peng, H.; Zeng, X.; Sofi, M.; Xing, H.; Zhou, Z. Smarter construction site management using the latest information technology. Proc. Inst. Civ. Eng.–Civ. Eng. 2018, 172, 89–95. [Google Scholar] [CrossRef]
- Niu, Y.; Lu, W.; Chen, K.; Huang, G.G.; Anumba, C. Smart construction objects. J. Comput. Civ. Eng. 2016, 30, 04015070. [Google Scholar] [CrossRef] [Green Version]
- Edirisinghe, R. Digital skin of the construction site Smart sensor technologies towards the future smart construction site. Eng. Constr. Archit. Manag. 2019, 26, 184–223. [Google Scholar] [CrossRef] [Green Version]
- Hwang, B.-G.; Ngo, J.; Teo, J.Z.K. Challenges and strategies for the adoption of smart technologies in the construction industry: The case of Singapore. J. Manag. Eng. 2022, 38, 05021014. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, S.; Liao, L.; Zhang, L. A digital construction framework integrating building information modeling and reverse engineering technologies for renovation projects. Autom. Constr. 2019, 102, 45–58. [Google Scholar] [CrossRef]
- Zhu, A.; Pauwels, P.; De Vries, B. Smart component-oriented method of construction robot coordination for prefabricated housing. Autom. Constr. 2021, 129, 103778. [Google Scholar] [CrossRef]
- Lu, C.; Liu, J.; Liu, Y.; Liu, Y. Intelligent construction technology of railway engineering in China. Front. Eng. Manag. 2019, 6, 503–516. [Google Scholar] [CrossRef]
- Kuenzel, R.; Teizer, J.; Mueller, M.; Blickle, A. SmartSite: Intelligent and autonomous environments, machinery, and processes to realize smart road construction projects. Autom. Constr. 2016, 71, 21–33. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Zeng, W. Smart construction site in mega construction projects: A case study on island tunneling project of Hong Kong-Zhuhai-Macao Bridge. Front. Eng. Manag. 2018, 5, 78–87. [Google Scholar] [CrossRef]
- Jiang, W.; Ding, L.; Zhou, C. Cyber physical system for safety management in smart construction site. Eng. Constr. Archit. Manag. 2020, 28, 788–808. [Google Scholar] [CrossRef]
- Sanguinetti, P.; Abdelmohsen, S.; Lee, J.; Lee, J.; Sheward, H.; Eastman, C. General system architecture for BIM: An integrated approach for design and analysis. Adv. Eng. Inform. 2012, 26, 317–333. [Google Scholar] [CrossRef]
- Liu, Y.; Van Nederveen, S.; Hertogh, M. Understanding effects of BIM on collaborative design and construction: An empirical study in China. Int. J. Proj. Manag. 2017, 35, 686–698. [Google Scholar] [CrossRef]
- Zou, Y.; Kiviniemi, A.; Jones, S.W. A review of risk management through BIM and BIM-related technologies. Saf. Sci. 2017, 97, 88–98. [Google Scholar] [CrossRef]
- Ding, L.; Zhou, Y.; Akinci, B. Building Information Modeling (BIM) application framework: The process of expanding from 3D to computable nD. Autom. Constr. 2014, 46, 82–93. [Google Scholar] [CrossRef]
- Ghosh, A.; Edwards, D.J.; Hosseini, M.R. Patterns and trends in Internet of Things (IoT) research: Future applications in the construction industry. Eng. Constr. Archit. Manag. 2020, 28, 457–481. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, J. Bibliometric analysis and critical review of the research on big data in the construction industry. Eng. Constr. Archit. Manag. 2021. [Google Scholar] [CrossRef]
- Kayili, M.T.; Celebi, G. Environmental properties of environmentally friendly construction materials: Recycled ldpe composites filled by blast furnace dust. J. Green Build. 2021, 16, 135–153. [Google Scholar] [CrossRef]
- Mneymneh, B.E.; Abbas, M.; Khoury, H. Vision-Based Framework for Intelligent Monitoring of Hardhat Wearing on Construction Sites. J. Comput. Civ. Eng. 2019, 33, 04018066. [Google Scholar] [CrossRef]
- Chen, Y.; Kamara, J.M. A framework for using mobile computing for information management on construction sites. Autom. Constr. 2011, 20, 776–788. [Google Scholar] [CrossRef]
- Stumm, S.; Braumann, J.; von Hilchen, M.; Brell-Cokcan, S. On-Site Robotic Construction Assistance for Assembly Using A-Priori Knowledge and Human-Robot Collaboration. In Advances in Robot Design and Intelligent Control; Rodic, A., Borangiu, T., Eds.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2017; Volume 540, pp. 583–592. [Google Scholar]
- de Soto, B.G.; Agusti-Juan, I.; Hunhevicz, J.; Joss, S.; Graser, K.; Habert, G.; Adey, B.T. Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall. Autom. Constr. 2018, 92, 297–311. [Google Scholar] [CrossRef]
- Barlish, K.; Sullivan, K. How to measure the benefits of BIM—A case study approach. Autom. Constr. 2012, 24, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Lu, W.; Wu, Z. Effects of collaboration networks on technology innovation in the solar photovoltaic (pv) sector: A case study of China. J. Green Build. 2020, 15, 139–157. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Q. Analysis on the Application of BIM and RFID in Life Cycle Management of Prefabricated Building. IOP Conf. Ser. Mater. Sci. Eng. 2020, 780, 03201. [Google Scholar] [CrossRef]
- Li, C.Z.; Zhong, R.Y.; Xue, F.; Xu, G.; Chen, K.; Huang, G.G.; Shen, G.Q. Integrating RFID and BIM technologies for mitigating risks and improving schedule performance of prefabricated house construction. J. Clean. Prod. 2017, 165, 1048–1062. [Google Scholar] [CrossRef]
- Begić, H.; Galić, M. A Systematic Review of Construction 4.0 in the Context of the BIM 4.0 Premise. Buildings 2021, 11, 337. [Google Scholar] [CrossRef]
- Wang, X.; Truijens, M.; Hou, L.; Wang, Y.; Zhou, Y. Integrating Augmented Reality with Building Information Modeling: Onsite construction process controlling for liquefied natural gas industry. Autom. Constr. 2014, 40, 96–105. [Google Scholar] [CrossRef]
- Irizarry, J.; Karan, E.P.; Jalaei, F. Integrating BIM and GIS to improve the visual monitoring of construction supply chain management. Autom. Constr. 2013, 31, 241–254. [Google Scholar] [CrossRef]
- Singh, V.; Gu, N.; Wang, X. A theoretical framework of a BIM-based multi-disciplinary collaboration platform. Autom. Constr. 2011, 20, 134–144. [Google Scholar] [CrossRef]
- Hammad, A.; Vahdatikhaki, F.; Cheng, Z.; Mawlana, M.; Doriani, A. Towards the smart construction site: Improving productivity and safety of construction projects using multi-agent systems, real-time simulation and automated machine control. In Proceedings of the Winter Simulation Conference, Berlin, Germany, 9–12 December 2012; pp. 1–12. [Google Scholar]
- Teizer, J.; Neve, H.; Li, H.; Wandahl, S.; König, J.; Ochner, B.; König, M.; Lerche, J. Construction resource efficiency improvement by Long Range Wide Area Network tracking and monitoring. Autom. Constr. 2020, 116, 103245. [Google Scholar] [CrossRef]
- Park, J.; Cai, H.; Dunston, P.S.; Ghasemkhani, H. Database-Supported and Web-Based Visualization for Daily 4D BIM. J. Constr. Eng. Manag. 2017, 143, 04017078. [Google Scholar] [CrossRef]
- Wu, W.; Yang, H.; Li, Q.; Chew, D. An integrated information management model for proactive prevention of struck-by-falling-object accidents on construction sites. Autom. Constr. 2013, 34, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Ding, L.Y. Safety barrier warning system for underground construction sites using Internet-of-Things technologies. Autom. Constr. 2017, 83, 372–389. [Google Scholar] [CrossRef]
- Yang, H.; Chew, D.A.; Wu, W.; Zhou, Z.; Li, Q. Design and implementation of an identification system in construction site safety for proactive accident prevention. Accid. Anal. Prev. 2012, 48, 193–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Liu, W.; Zhang, W.; Skitmor, M. A BIM-RFID unsafe on-site behavior warning system. In ICCREM 2014: Smart Construction and Management in the Context of New Technology, Proceedings of the 2014 International Conference on Construction and Real Estate Management, Kunming, China, 27–28 September; Wang, Y., Ye, H., Shen, G.Q.P., Bai, Y., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2014; pp. 330–339. [Google Scholar]
- Han, K.K.; Golparvar-Fard, M. Appearance-based material classification for monitoring of operation-level construction progress using 4D BIM and site photologs. Autom. Constr. 2015, 53, 44–57. [Google Scholar] [CrossRef]
- Pradhananga, N.; Teizer, J. Automatic spatio-temporal analysis of construction site equipment operations using GPS data. Autom. Constr. 2013, 29, 107–122. [Google Scholar] [CrossRef]
- Elghaish, F.; Abrishami, S.; Samra, S.A.; Gaterell, M.; Hosseini, M.R.; Wise, R. Cash Flow System Development Framework within Integrated Project Delivery (IPD) using BIM tools. Int. J. Constr. Manag. 2019, 21, 555–570. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.S.; Cheng, J.C.P. A BIM-based automated site layout planning framework for congested construction sites. Autom. Constr. 2015, 59, 24–37. [Google Scholar] [CrossRef]
- Kang, H.; Sung, S.; Hong, J.; Jung, S.; Hong, T.; Park, H.S.; Lee, D.-E. Development of a real-time automated monitoring system for managing the hazardous environmental pollutants at the construction site. J. Hazard. Mater. 2021, 402, 123483. [Google Scholar] [CrossRef] [PubMed]
- Succar, B. Building information modelling framework: A research and delivery foundation for industry stakeholders. Autom. Constr. 2009, 18, 357–375. [Google Scholar] [CrossRef]
- Jung, Y.; Joo, M. Building information modelling (BIM) framework for practical implementation. Autom. Constr. 2011, 20, 126–133. [Google Scholar] [CrossRef]
- Niu, Y.; Anumba, C.; Lu, W. Taxonomy and Deployment Framework for Emerging Pervasive Technologies in Construction Projects. J. Constr. Eng. Manag. 2019, 145, 04019028. [Google Scholar] [CrossRef] [Green Version]
- Griffin, A.; Hughes, R.; Freeman, C.; Illingworth, J.; Hodgson, T.; Lewis, M.; Perez, E. Using advanced manufacturing technology for smarter construction. Proc. Inst. Civ. Eng.–Civ. Eng. 2019, 172, 15–21. [Google Scholar] [CrossRef]
- Chen, G.; Chen, J.; Tang, Y.; Ning, Y.; Li, Q. Collaboration strategy selection in BIM-enabled construction projects: A perspective through typical collaboration profiles. Eng. Constr. Archit. Manag. 2021. [Google Scholar] [CrossRef]
- Management of House and Urban Regulations Development. Guidance on Promoting the Coordinated Development of Intelligent Construction and Building Industrialization. Available online: http://www.gov.cn/zhengce/zhengceku/2020-07/28/content_5530762.htm (accessed on 22 December 2021).
- Adel, T.K.; Pirooznezhad, L.; Ravanshadnia, M.; Tajaddini, A. Global policies on green building construction from 1990 to 2019: A scientometric study. J. Green Build. 2021, 16, 227–245. [Google Scholar] [CrossRef]
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F3 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F5 | 2 | 1 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
F6 | 2 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
F7 | 1 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
F8 | 2 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F9 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F10 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
F11 | 2 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 3 | 0 | 1 | 1 | 1 | 1 | 2 | 1 |
F12 | 2 | 1 | 1 | 2 | 3 | 3 | 3 | 2 | 1 | 3 | 0 | 0 | 1 | 1 | 3 | 1 | 1 |
F13 | 2 | 1 | 0 | 1 | 2 | 2 | 2 | 1 | 1 | 3 | 0 | 0 | 0 | 0 | 3 | 1 | 1 |
F14 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
F15 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 1 | 1 | 0 | 0 | 0 |
F17 | 2 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
Factors | fi | ei | mi | ni | Ranks | Factor Attribution |
---|---|---|---|---|---|---|
F1 | 0.065 | 0.911 | 0.976 | −0.846 | 4 | effect |
F2 | 0 | 0.664 | 0.664 | −0.664 | 12 | effect |
F3 | 0.098 | 0.582 | 0.68 | −0.484 | 10 | effect |
F4 | 0 | 0.666 | 0.666 | −0.666 | 11 | effect |
F5 | 0.268 | 0.431 | 0.699 | −0.163 | 9 | effect |
F6 | 0.34 | 0.394 | 0.734 | −0.054 | 7 | effect |
F7 | 0.27 | 0.394 | 0.664 | −0.124 | 12 | effect |
F8 | 0.24 | 0.324 | 0.564 | −0.084 | 15 | effect |
F9 | 0.032 | 0.442 | 0.474 | −0.41 | 16 | effect |
F10 | 0.275 | 0.516 | 0.791 | −0.241 | 6 | effect |
F11 | 1.287 | 0.114 | 1.401 | 1.173 | 1 | cause |
F12 | 1.13 | 0.072 | 1.202 | 1.058 | 2 | cause |
F13 | 0.782 | 0.108 | 0.89 | 0.674 | 5 | cause |
F14 | 0.88 | 0.108 | 0.988 | 0.772 | 3 | cause |
F15 | 0.109 | 0.602 | 0.711 | −0.493 | 8 | effect |
F16 | 0.409 | 0.177 | 0.586 | 0.232 | 14 | cause |
F17 | 0.461 | 0.141 | 0.602 | 0.32 | 13 | cause |
Factor | Reachable Set R(i) | Antecedent Set A(i) | C(i) | Hierarchy |
---|---|---|---|---|
F1 | 1,2 | 1,5,6,7,8,10,11,12,13,14,15,16,17 | 1 | Ⅱ |
F2 | 2 | 1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,17 | 2 | Ⅰ |
F3 | 2,3,4,9 | 3,5,6,7,8,10,11,12,13,14,15,16,17 | 3 | Ⅲ |
F4 | 4 | 3,4,5,6,7,8,10,11,12,13,14,15,16,17 | 4 | Ⅰ |
F5 | 1,2,3,4,5,9,10,15 | 5,11,12,13,14,16,17 | 5 | Ⅴ |
F6 | 1,2,3,4,6,9,10,15 | 6,11,12,13,14,16,17 | 6 | Ⅴ |
F7 | 1,2,3,4,7,9,10,15 | 7,11,12,13,14,16,17 | 7 | Ⅴ |
F8 | 1,2,3,4,8,9 | 8,11,12,13,14,16,17 | 8 | Ⅳ |
F9 | 2,9 | 3,5,6,7,8,9,10,11,12,13,14,16,17 | 9 | Ⅱ |
F10 | 1,2,3,4,9,10,15 | 5,6,7,10,11,12,13,14,15,16,17 | 10,15 | Ⅳ |
F11 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 | 11,12,13,14,16 | 11,12,13,14,16 | Ⅶ |
F12 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 | 11,12,13,14,16 | 11,12,13,14,16 | Ⅶ |
F13 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 | 11,12,13,14,16 | 11,12,13,14,16 | Ⅶ |
F14 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 | 11,12,13,14,16 | 11,12,13,14,16 | Ⅶ |
F15 | 1,2,3,4,10,15 | 5,6,7,10,11,12,13,14,15,16,17 | 10,15 | Ⅳ |
F16 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 | 11,12,13,14,16 | 11,12,13,14,16 | Ⅶ |
F17 | 1,2,3,4,5,6,7,8,9,10,15,17 | 11,12,13,14,16,17 | 17 | Ⅵ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiahou, X.; Wu, Y.; Duan, T.; Lin, P.; Li, F.; Qu, X.; Liu, L.; Li, Q.; Liu, J. Analyzing Critical Factors for the Smart Construction Site Development: A DEMATEL-ISM Based Approach. Buildings 2022, 12, 116. https://doi.org/10.3390/buildings12020116
Xiahou X, Wu Y, Duan T, Lin P, Li F, Qu X, Liu L, Li Q, Liu J. Analyzing Critical Factors for the Smart Construction Site Development: A DEMATEL-ISM Based Approach. Buildings. 2022; 12(2):116. https://doi.org/10.3390/buildings12020116
Chicago/Turabian StyleXiahou, Xiaer, Yifan Wu, Tianle Duan, Peng Lin, Funing Li, Xiaojun Qu, Long Liu, Qiming Li, and Jiaxin Liu. 2022. "Analyzing Critical Factors for the Smart Construction Site Development: A DEMATEL-ISM Based Approach" Buildings 12, no. 2: 116. https://doi.org/10.3390/buildings12020116
APA StyleXiahou, X., Wu, Y., Duan, T., Lin, P., Li, F., Qu, X., Liu, L., Li, Q., & Liu, J. (2022). Analyzing Critical Factors for the Smart Construction Site Development: A DEMATEL-ISM Based Approach. Buildings, 12(2), 116. https://doi.org/10.3390/buildings12020116