Out-of-Plane Tensile Properties of Cross Laminated Timber (CLT)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Plan and Setup
- influence of the stiffness of the load transmission blocks according to the EN 408 [38] test configuration;
- influence from the layer orientation, i.e., orthogonal vs. unidirectional;
- influence of the ratio between neighboring layer thicknesses in orthogonally laminated members with symmetric layup, i.e., tℓ,i/tℓ,i+1 = 1.0 vs. tℓ,i/tℓ,i+1 ≠ 1.0;
- influence of parallel action between lamellas within layers.
2.2. Materials
- apart from series 1s (single layer), maximum variation of density within each specimen;
- maximum variation of density within each series;
- minimum variation of density between all series.
- in series 5sGL seven sub-series each with three specimens built up using segments of the same board at equal layer position;
- in series 5sCL seven sub-series each with three specimens built up using segments from the same boards and apart from the orthogonal lamination following the same principles as in series 5sGL; this allows a direct comparison and analysis of the effect of orthogonal vs. unidirectional lamination;
- in series 7sCL seven sub-series each with three specimens built up using segments of the same board at equal layer position in each specimen from the same sub-series but in addition segments for layer five and six from boards not represented in series 1s;
- in series 5sCL3002 five sub-series each with four specimens built up using segments from ten different boards and segments of the same board at equal layer position, one of the sub-series with segments from boards not represented in series 1s.
2.3. Methods
2.3.1. Setup for Testing CLT in Tension Out-of-Plane
2.3.2. Measurements and Calculation of Properties
2.3.3. Statistical Data Analyses
3. Results and Discussion
3.1. Analysis of Failure Modes and Fracture Processes
3.2. Overview of Physical Properties from Tensile Tests Out-of-Plane
3.3. Comparison of Statistical Distribution Models
3.4. Sub-Series Analysis
3.4.1. General Comments
3.4.2. Analysis of the Effect of Layer Orientation—Unidirectional vs. Orthogonal
3.4.3. Analysis of Inter and Intra Variation
3.5. Analysis of General Relationships
3.6. Analysis of Serial and Parallel System Effects on the Tensile Properties Out-of-Plane
4. Summary and Conclusions
- Generally, in timber engineering, stresses in tension perpendicular to the grain should be avoided wherever possible. However, as there are a number of design situations where this is not possible, reliable tensile properties perpendicular to the grain are needed for the base material and also for the structural timber products produced from it.
- In regulating these properties, (i) the non-homogeneous stress distribution within the volume exposed to tension perpendicular to the grain, caused by the cylindrical orthotropy of timber, (ii) the layup, i.e., the number and orientation of layers to each other, as well as (iii) the dependency of tensile properties on moisture content and their vulnerability to moisture variations need to be considered.
- The non-homogeneous stress distribution, which is neglected in calculating tensile properties perpendicular to the grain from standard tests, for example, according to EN 408 [38], affects the base material as well as the product properties; latter, by an increased depth or layer effect at least in unidirectionally laminated products like glulam.
- As the distribution of tensile stresses perpendicular to the grain is less heterogeneous in boards/lamellas with larger radial distance to the pith and more pronounced in boards/lamellas taken close to the pith, and as the distance to the pith is also an indicator for the strength class of the base material and products made thereof, for example in glulam increasing properties in tension perpendicular to the grain with increasing glulam strength class would be expected; this was also anchored in the former glulam standard EN 1194 [81]. However, in respect to ease of use and the uncertainties in the properties, primarily caused by the influence of moisture, long-term behavior and variability in local stresses and associated design situations, together with constant values for all strength classes, as currently anchored in for example, EN 14080 [8], are seen as being more promising.
- For the adjustment of tensile properties perpendicular to the grain to moisture contents others than tested and/or regulated, the outcomes from Gerhards [61] might be a valuable basis, within 6% ≤ u ≤ 20% with 3% and 2% per percent difference in moisture content, respectively, for the modulus of elasticity and strength in tension perpendicular to the grain.
- In the context of the investigations carried out here, the power of the lognormal and Weibull distribution models in the representation of the tensile strength out-of-plane was analyzed. The lognormal distribution proved to be more suitable for the majority of the test series, both qualitatively and quantitatively. This outcome is also consistent with observations made experimentally, where a successive rather than an ideally brittle failure mechanism, as underlying the Weibull theory, was found. The preference for the lognormal distribution can be argued also with the hierarchical material structure of the natural raw material timber and the multiplicative process that underlies a lognormal distribution. Consequently, the lognormal distribution is recommended for the characterization of tensile properties perpendicular to the grain of structural timber and the structural timber products made from it.
- In the framework of the investigations presented here, the intra (between) and inter (within) variations in tensile properties out-of-plane and the density were analyzed. Despite the given uncertainties caused by the small number of replicants per series the outcomes are in good agreement with previous investigations made on the tensile properties out-of-plane of the base material structural timber but also more generally with data for other elastic and strength properties of structural timber and structural timber products. This information on the intra and inter variation of timber properties provides a valuable basis for more realistic probabilistic-numerical models of CLT and other structural timber products.
- In respect to the influence of the number of layers and the layer orientation, a significant difference was found between unidirectional and orthogonal laminates both numerically and experimentally. In contrast to unidirectionally laminated products such as glulam, in orthogonally laminated products such as CLT the distribution of tensile stresses out-of-plane over the volume is much more homogeneous. Consequently, every layer takes part in the serial system action, which is not the case in glulam where the stresses accumulate and concentrate in the specimen center. Thus, in glulam the ratio between maximum and average stresses is much higher which is reflected in a more pronounced serial system effect, i.e., depth or number of layer effect.
- In contrast to CLT the much higher serial system effects in glulam affect both the modulus of elasticity and strength in tension out-of-plane. In CLT, the modulus of elasticity and strength in tension out-of-plane are on average 50% and 70% higher, respectively, than in glulam. This outcome refers to the analysis of seven sub-series of glulam and CLT featuring similar boundary conditions, for example, number of layers, layup, base material, test setup and execution.
- Considering the already mentioned uncertainties associated with these properties in real structures and the demand for ease of use in the design process, in analogy to the recommendations for regulation of the properties of CLT in compression out-of-plane in Brandner [42] also for the tensile properties out-of-plane, it is proposed to set the properties for CLT 30% higher than for glulam. These plus 30% do not account for the additional parallel system effects in CLT as a plane-like product, which provides an additional benefit, featuring more planar distributed tensile stresses out-of-plane such as, for example, in joints between CLT floor elements executed as double surface splines or half-lapped joints.
- In analogy to the proposed setup and specimen dimensions for testing CLT in compression out-of-plane in Brandner [42] with reference to Brandner et al. [20] and PT SC5.T1 [21], also for the determination of the tensile properties out-of-plane of CLT, the proposal is to use specimens with dimensions ℓCLT × wCLT × dCLT = 150 × 150 × 150 mm3 but in the plane not greater than ℓCLT × wCLT = 300 × 300 mm2, which corresponds to a reference five-layer CLT element with constant layer thicknesses tℓ = 30mm and reference lamination width wℓ = 150 mm. In contrast to the tests presented here, these specimens shall be taken arbitrarily from CLT plates including typical timber growth (e.g., knots; sawing pattern) and CLT product characteristics (e.g., gaps; stress reliefs).
- When determining tensile properties perpendicular to the grain from tests, a homogeneous stress distribution over the specimen side face is assumed. However, as already mentioned several times before, at least for structural timber and unidirectionally laminated members, this is usually far from reality. In tapered or curved beams and plates, the shape of the building components already causes tensile stresses perpendicular to the grain which also accumulate in certain areas of the component. In addition to the volume, the distribution of these tensile stresses perpendicular to the grain is considered for example in the design code EC 5 (EN 1995-1-1 [79]) via the coefficient kdis. It remains to be clarified to what extent the assumptions made in the determination of the tensile properties perpendicular to the grain of products and those in the determination of the volume exposed to tensile stresses perpendicular to the grain as well as the distribution of the tensile stresses perpendicular to the grain (kdis) itself led to a coherent overall result in the course of the design. However, the treatment of the basic tensile properties perpendicular to the grain as properties based on a uniform stress distribution in the design of components and details subjected to tensile stresses perpendicular to the grain is generally questioned as being critical.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spengler, R. Festigkeitsverhalten von Brettschichtholz unter zweiachsiger Beanspruchung, Teil 1, Ermittlung des Festigkeitsverhaltens von Brettlamellen aus Fichte durch Versuche. Berichte zur Zuverlässigkeitstheorie der Bauwerke; Technische Universität München: München, Germany, 1982; Heft 62. (In German) [Google Scholar]
- Hemmer, K. Versagensarten des Holzes der Weißtanne (Abies Alba) unter mehrachsiger Beanspruchung. Ph.D. Thesis, TH Karlsruhe, Karlsruhe, Germany, 1984. (In German). [Google Scholar]
- SIA 265 Timber Structures. SN; Swiss Society of Engineers and Architects: Zurich, Switzerland, 2002.
- Ranta-Maunus, A. Duration of load effect in tension perpendicular to grain in curved glulam. In Proceedings of the International Council for Building Research Studies and Documentation, Working Commission W18–Timber Structures (CIB-W18) Meeting, Savonlinna, Finland, 12–14 August 1998; Görlacher, R., Ed.; Lehrstuhl für Ingenieurholzbau und Baukonstruktionen, Universität Karlsruhe: Karlsruhe, Germany, 1998; CIB-W18/31-9-1. [Google Scholar]
- Aicher, S.; Dill-Langer, G. DOL effect in tension perpendicular to grain of glulam depending on service classes and volume. In Proceedings of the International Council for Building Research Studies and Documentation, Working Commission W18–Timber Structures (CIB-W18) Meeting, Vancouver, BC, Canada, 25–28 August 1997; Görlacher, R., Ed.; Lehrstuhl für Ingenieurholzbau und Baukonstruktionen, Universität Karlsruhe: Karlsruhe, Germany, 1997; 30-9-1. [Google Scholar]
- Barrett, J.D. Effect of size on tension perpendicular-to-grain strength of Douglas-Fir. Wood Fiber 1974, 6, 126–143. [Google Scholar]
- EN 338 Structural timber–Strength Classes; CEN: Brussels, Belgium, 2016.
- EN 14080 Timber Structures–Glued Laminated Timber and Glued Solid Timber–Requirements; CEN: Brussels, Belgium, 2013.
- Aicher, S.; Dill-Langer, G. Zugfestigkeit senkrecht zur Faserrichtung von qualitativ hochwertigem Brettschichtholz gemäß CEN Festigkeitsklassen GL32 und GL36. Otto Graf J. 1995, 6. (In German) [Google Scholar]
- Canisius, T. End conditions for tension testing of solid timber perpendicular to grain. In Proceedings of the International Council for Building Research Studies and Documentation, Working Commission W18–Timber Structures (CIB-W18) Meeting, Copenhagen, Denmark, 18–21 April 1995; Görlacher, R., Ed.; Lehrstuhl für Ingenieurholzbau und Baukonstruktionen, Universität Karlsruhe: Karlsruhe, Germany, 1995; 28-6-6. [Google Scholar]
- Blaß, H.J.; Schmid, M. Tensile strength of timber perpendicular to grain. Holz als Roh-und Werkstoff 2001, 58, 456–466. (In German) [Google Scholar]
- Dill-Langer, G. Schädigung von Brettschichtholz bei Zugbeanspruchung rechtwinklig zur Faserrichtung. Ph.D. Thesis, Materialprüfungsanstalt, Institut für Werkstoffe im Bauwesen, Universität Stuttgart, Stuttgart, Germany, 2004. (In German). [Google Scholar]
- Pedersen, M.U.; Clorius, C.O.; Damkilde, L.; Hoffmeyer, P. A simple size effect model for tension perpendicular to the grain. Wood Sci. Technol. 2003, 37, 125–140. [Google Scholar] [CrossRef]
- Aicher, S.; Höfflin, L.; Dill-Langer, G. Damage evolution and acoustic emission of wood at tension perpendicular to fiber. Holz als Roh-und Werkstoff 2001, 59, 104–116. [Google Scholar] [CrossRef]
- Mistler, H.L. Die Tragfähigkeit des am Endauflagers unten rechtwinkelig ausgeklinkten Brettschichtträgers. Ph.D. Thesis, Lehrstuhl für Ingenieurholzbau und Baukonstruktionen, Technische Hochschule Karlsruhe, Karlsruhe, Germany, 1979. (In German). [Google Scholar]
- Mistler, H.L. Über die Querzugfestigkeit von Fichten-Brettschichtholz in Abhängigkeit von der Bauteilgröße und der Verteilung der Beanspruchung. In Ingenieurholzbau in Forschung und Praxis; Ehlbeck, J., Steck, G., Eds.; Bruder Verlag: Karlsruhe, Germany, 1982. (In German) [Google Scholar]
- Astrup, T.; Clorius, C.O.; Damkilde, L.; Hoffmeyer, P. Size effect of glulam beams in tension perpendicular to grain. Wood Sci. Technol. 2007, 41, 361–372. [Google Scholar] [CrossRef]
- Silly, G.; Thiel, A.; Augustin, M. Options for the Resource Optimised Production of Laminar Load Carrying Members Based on Wood Products; World Conference on Timber Engineering (WCTE): Vienna, Austria, 2016. [Google Scholar]
- Franzoni, L.; Lebée, A.; Lyon, F.; Forêt, G. Elastic behavior of Cross Laminated Timber and timber panels with regular gaps: Thick-plate modeling and experimental validation. Eng. Struct. 2017, 141, 402–416. [Google Scholar] [CrossRef] [Green Version]
- Brandner, R.; Flatscher, G.; Ringhofer, A.; Schickhofer, G.; Thiel, A. Cross Laminated Timber (CLT): Overview and Development. Eur. J. Wood Wood Prod. 2016, 74, 331–351. [Google Scholar] [CrossRef]
- PT SC5.T1 Chapters for CLT on the Basis of the Eurocode 5: Document & Background Document. In Properties, Testing and Design of Cross Laminated Timber. A State-of-the-art Report by COST Action FP1402/WG 2; Brandner, R.; Tomasi, R.; Moosbrugger, T.; Serrano, E.; Dietsch, P. (Eds.) Shaker Verlag: Düren, Germany, 2018. [Google Scholar]
- ÖNORM B 1995-1-1 Eurocode 5: Design of Timber Structures–Part 1-1: General–Common Rules and Rules for Buildings–Consolidated Version with National Specifications, National Comments and National Supplements for the Implementation of ÖNORM EN 1995-1-1; ASI: Vienna, Austria, 1995.
- Bidakov, A. CLT strength in tension perpendicular to grain. In Properties, Testing and Design of Cross Laminated Timber. A State-of-the-Art Report by COST Action FP1402/WG 2; Brandner, R., Tomasi, R., Moosbrugger, T., Serrano, E., Dietsch, P., Eds.; Shaker Verlag: Düren, Germany, 2018. [Google Scholar]
- Bidakov, A.M.; Raspopov, I.A. Test method of CLT by tension perpendicular to grain. Acad. J. Ser. Ind. Mach. Build. Civ. Eng. 2018, 1, 148–158. [Google Scholar] [CrossRef]
- Markwardt, L.J.; Youngquist, W.G. Tension Test Methods for Wood, Wood-Base Materials, and Sandwich Constructions; Report No. 2055; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 1956. [Google Scholar]
- Bröker, F.W. Tensile strength of spruce perpendicular to the grain under different load directions. Holz als Roh-und Werkstoff 1984, 42, 474. (In German) [Google Scholar]
- Stecher, G.; Maderebner, R.; Zingerle, P.; Flach, M.; Kraler, A. Curved Cross Laminated Timber Elements. In Proceedings of the World Conference on Timber Engineering (WCTE), Vienna, Austria, 22–25 August 2016. [Google Scholar]
- Stecher, G. Zur Berechnung der Tragfähigkeit und Verformung einfach gekrümmter Brettsperrholzelemente. Ph.D. Thesis, Universität Innsbruck, Innsbruck, Austria, 2017. (In German). [Google Scholar]
- ETA-16/0055 Radiusholz–Massive plattenförmige Holzbauelemente für tragende Bauteile in Bauwerken; Holzbau Unterrainer, OIB: Vienna, Austria, 2016.
- Serrano, E. Cross Laminated Timber Plates with Notches–Analyses based on fracture mechanics. In Timber–Bonds, Connections and Structures; Dill-Langer, G., Ed.; MPA University of Stuttgart: Stuttgart, Germany, 2018; ISBN 978-3-946789-01-7. [Google Scholar]
- Serrano, E. Cross laminated timber plates with a notch at the support. In Thematic Conference on Computational Methods in Wood Mechanics—From Material Properties to Timber Structures (CompWood 2019); ECCOMAS: Växjö, Sweden, 2019. [Google Scholar]
- Serrano, E.; Gustafsson, P.J.; Danielsson, H. Prediction of load-bearing capacity of notched cross laminated timber plates. In Proceedings of the International Network on Timber Engineering Research (INTER) Meeting, Tacoma, WA, USA, 26–29 August 2019; Görlacher, R., Ed.; Timber Scientific Publishing, KIT Holzbau und Baukonstruktionen: Karlsruhe, Germany, 2019. 52-12-2. [Google Scholar]
- Serrano, E.; Danielsson, H. Fracture Mechanics Based Design of CLT plates–Notches at Supports and Half and-Half Joints. In Proceedings of the International Network on Timber Engineering Research (INTER) Meeting, online, 17–19 August 2020; Görlacher, R., Ed.; Timber Scientific Publishing, KIT Holzbau und Baukonstruktionen: Karlsruhe, Germany, 2020; 53-12-2. [Google Scholar]
- Malagic, A.; Augustin, M.; Silly, G.; Thiel, A.; Schickhofer, G. Load-bearing Capacity and Fracture Behaviour of Notched Cross Laminated Timber Plates. In Proceedings of the International Network on Timber Engineering Research (INTER) Meeting, online, 16–19 August 2021; Görlacher, R., Ed.; Timber Scientific Publishing, KIT Holzbau und Baukonstruktionen: Karlsruhe, Germany, 2021; 54-12-5. [Google Scholar]
- Azinović, B.; Serrano, E.; Kramar, M.; Pazlar, T. Experimental investigation of the axial strength of glued-in rods in cross laminated timber. Mater. Struct. 2018, 51, 143. [Google Scholar] [CrossRef]
- Ayansola, G.S.; Tannert, T.; Vallee, T. Experimental Investigations of Glued-in Rod Connections in CLT. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3970702 (accessed on 11 September 2021).
- Jantscher, L. Querzugkenngrößen von Brettsperrholz (BSP). Master’s Thesis, Graz University of Technology, Institute of Timber Engineering and Wood Technology, Graz, Austria, 2020. (In German). [Google Scholar]
- EN 408:2010+A1 Timber Structures–Structural Timber and Glued Laminated Timber–Determination of Some Physical and Mechanical Properties; CEN: Brussels, Belgium, 2012.
- Stuefer, A. Einflussparameter auf die Querzugfestigkeit von BSH-Lamellen. Bachelor’s Thesis, Graz University of Technology, Graz, Austria, 2011. (In German). [Google Scholar]
- JCSS 3.5 JCSS Probabilistic Model Code–Part 3: Resistance Models–3.5 Properties of Timber; Joint Committee on Structural Safety (JCSS): Zurich, Switzerland, 2006; Available online: www.jcss.byg.dtu.dk (accessed on 11 September 2021).
- Aicher, S.; Dill-Langer, G.; Klöck, W. Evaluation of different size effect models for tension perpendicular to grain strength of glulam. In Proceedings of the International Council for Research and Innovation in Building and Construction, Working Commission W18–Timber Structures (CIB-W18) Meeting, Kyoto, Japan, 16–19 September 2002; Görlacher, R., Ed.; Lehrstuhl für Ingenieurholzbau und Baukonstruktionen, Universität Karlsruhe: Karlsruhe, Germany, 2002; 35-6-2. [Google Scholar]
- Brandner, R. Cross laminated timber (CLT) in compression perpendicular to plane: Testing, properties, design and recommendations for harmonizing design provisions for structural timber products. Eng. Struct. 2018, 171, 944–960. [Google Scholar] [CrossRef]
- DIN 4074-1 Strength Grading of Wood–Part 1: Coniferous Sawn Timber; DIN: Berlin, Germany, 2012.
- Blaß, H.J.; Schmid, M. Ermittlung der Querzugfestigkeit von Voll-und Brettschichtholz. In Research Report 1998; Versuchsanstalt für Stahl, Holz und Steine, Abteilung Ingenieurholzbau, Universität Fridericiana Karlsruhe: Karlsruhe, Germany, 1998. (In German) [Google Scholar]
- Ehlbeck, J.; Kürth, J. Ermittlung der Querzugfestigkeit von Voll-und Brettschichtholz–Entwicklung eines Prüfverfahrens. In Research Report 1994; Versuchsanstalt für Stahl, Holz und Steine, Abteilung Ingenieurholzbau, Universität Karlsruhe: Karlsruhe, Germany, 1995. (In German) [Google Scholar]
- EN 13183-1 Moisture Content of a Piece of Sawn Timber–Part 1: Determination by Oven Dry Method; CEN: Brussels, Belgium, 2002.
- EN 384 Structural Timber–Determination of Characteristic Values of Mechanical Properties and Density; CEN: Brussels, Belgium, 2016.
- ETA-11/0190 Würth Selbstbohrende Schrauben–Selbstbohrende Schrauben als Holzverbindungsmittel; Adolf Würth GmbH & Co. KG, DIBt: Berlin, Germany, 2018.
- ETA-12/0067 Sherpa XS, S, M, L, XL und XXL–Dreidimensionale Nagelplatte (Träger-Endverbinder für Holz-Holz Verbindungen und Holz-Beton oder Holz-Stahl Verbindungen); Vinzenz Harrer GmbH; OIB: Vienna, Austria, 2019.
- Weibull, W. A Statistical Theory of the Strength of Materials; Royal Swedish Academy of Engineering Sciences: Stockholm, Sweden, 1939; Handling Nr. 151. [Google Scholar]
- Brandner, R. Stochastic System Actions and Effects in Engineered Timber Products and Structures; Monographic Series TU Graz 2013; Verlag der Technischen Universität Graz: Graz, Austria, 2013; ISBN 978-3-85125-263-7. [Google Scholar]
- Köhler, J.; Fink, G. Aspects of code based design of timber structures. In Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Vancouver, BC, Canada, 12–15 July 2015; Haukaas, T., Ed.; University of British Columbia Library: Vancouver, BC, Canada, 2015. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 15 August 2020).
- Bury, K.V. Statistical Models in Applied Science; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1975; ISBN 0-471-12590-3. [Google Scholar]
- EN 14358 Timber Structures–Calculation and Verification of Characteristic Values; CEN: Brussels, Belgium, 2016.
- Riberholt, H.; Madsen, P.H. Strength Distribution of Timber Structures—Measured Variation of the Cross Sectional Strength of Structural Lumber; Structural Research Laboratory, Technical University of Denmark: Lyngby, Denmark, 1979; No. R 114. [Google Scholar]
- Ditlevsen, O.; Källsner, B. System effects influencing the bending strength of timber beams. In Proceedings of the Working Conference on Reliability and Optimization of Structural Systems 1998, IFIP 8th WG 7.5, Krakow, Poland, 11–13 May 1998. [Google Scholar]
- Ditlevsen, O.; Källsner, B. Span-dependent distributions of the bending strength of spruce timber. J. Eng. Mech. 2005, 131, 485–499. [Google Scholar] [CrossRef]
- Köhler, J. Reliability of Timber Structures. Ph.D. Thesis, ETH Zurich, Institut für Baustatik und Konstruktion, Zürich, Switzerland, 2007. IBK-Bericht Nr. 301. [Google Scholar]
- Brandner, R. Stochastic Modelling in Timber Engineering. In Habilitation; Graz University of Technology: Graz, Austria, 2018. [Google Scholar]
- Gerhards, C.C. Effect of moisture content and temperature on the mechanical properties of wood: An analysis of immediate effects. Wood Fiber 1982, 14, 4–36. [Google Scholar]
- EN 16351 Timber Structures–Cross Laminated Timber–Requirements; CEN: Brussels, Belgium, 2015.
- Halili, Y. Versuchstechnische Ermittlung von Querdruckkenngrößen für Brettsperrholz. Master’s Thesis, Graz University of Technology, Graz, Austria, 2008. (In German). [Google Scholar]
- Bogensperger, T.; Augustin, M.; Schickhofer, G. Properties of CLT-panels exposed to compression perpendicular to their plane. In Proceedings of the International Council for Research and Innovation in Building and Construction, Working Commission W18–Timber Structures (CIB-W18) Meeting, Alghero, Italy, 29 August–1 September 2011; Görlacher, R., Ed.; Ingenieurholzbau und Baukonstruktionen, Karlsruhe Institute of Technology: Karlsruhe, Germany, 2011; 44-12-1. [Google Scholar]
- Ciampitti, A. Untersuchung ausgewählter Einflussparameter auf die Querdruckkenngrößen von Brettsperrholz. Master’s Thesis, Graz University of Technology, Graz, Austria, 2013. (In German). [Google Scholar]
- Brandner, R.; Schickhofer, G. Spatial correlation of tensile perpendicular to grain properties in Norway spruce timber. Wood Sci. Technol. 2014, 48, 337–352. [Google Scholar] [CrossRef]
- Kandler, G.; Füssl, J.; Eberhardsteiner, J. Stochastic finite element approaches for wood-based products: Theoretical framework and review of methods. Wood Sci. Technol. 2015, 49, 1055–1097. [Google Scholar] [CrossRef]
- Ehrhart, T.; Brandner., R. Rolling shear: Test configurations and properties of some European soft- and hardwood species. Eng. Struct. 2018, 172, 554–572. [Google Scholar] [CrossRef]
- Leicester, R.H. Configuration factors for the bending strength of timber. In Proceedings of the International Council for Building Research Studies and Documentation, Working Commission W18–Timber Structures (CIB-W18) Meeting, Beit Oren, Israel, June 1985; Görlacher, R., Ed.; Lehrstuhl für Ingenieurholzbau und Baukonstruktionen, Universität Karlsruhe: Karlsruhe, Germany, 1985. 18-6-2. [Google Scholar]
- Taylor, S.E. Modeling Spatial Variability of Localized Lumber Properties. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 1988. [Google Scholar]
- Taylor, S.E.; Bender, D.A. Stochastic model for localized tensile strength and modulus of elasticity in lumber. Wood Fiber Sci. 1991, 23, 501–519. [Google Scholar]
- Richburg, B.A.; Bender, D.A. Localized tensile strength and modulus of elasticity of E-rated laminated grades of lumber. Wood Fiber Sci. 1992, 24, 225–232. [Google Scholar]
- Lam, F.; Wang, Y.T.; Barrett, J.D. Simulation of correlated nonstationary lumber properties. J. Mater. Civil. Eng. 1994, 6, 34–53. [Google Scholar] [CrossRef]
- Williamson, J.A. Statistical dependence of timber strength. In Proceedings of the IUFRO/S 5.02 Timber Engineering Meeting, Sydney, Australia, 30 May 1994; pp. 353–363. [Google Scholar]
- Källsner, B.; Ditlevsen, O.; Salmela, K. Experimental verification of a weak zone model for timber in bending. In Proceedings of the IUFRO S 5.02—Timber Engineering 1997, Copenhagen, Denmark, 18–20 June 1997. [Google Scholar]
- Isaksson, T. Modeling the Variability of Bending Strength in Structural Timber. Ph.D. Thesis, Division of Structural Engineering, Lund University, Lund, Sweden, 1999. Report TVBK-1015. [Google Scholar]
- Daniels, H.E. The statistical theory of the strength of bundles of threads. I. Proc. R. Soc. Lond. Ser. A 1945, 183, 405–435. [Google Scholar]
- Brandner, R.; Schickhofer, G. Probabilistic models for the modulus of elasticity and shear in serial and parallel acting timber elements. Wood Sci. Technol. 2015, 49, 121–146. [Google Scholar] [CrossRef]
- EN 1995-1-1:2004 + AC:2006 + A1:2008 + A2:2014 Eurocode 5: Design of Timber Structures—Part 1-1: General–Common Rules and Rules for Buildings; CEN: Brussels, Belgium, 2014.
- Brandner, R.; Stadlober, E. Samples of iid Lognormals: Approximations for Characteristics of Minima. Commun. Stat.–Simul. Comput. 2016, 45, 504–518. [Google Scholar] [CrossRef]
- EN 1194 Timber Structures–Glued Laminated Timber: Strength Classes and Determination of Characteristic Values; CEN: Brussels, Belgium, 1999.
Reference | Structural Timber | Glulam |
---|---|---|
Markwardt and Youngquist [25] | CV(ft,90) = 11–30% (16%) various deciduous and coniferous timber species; clear wood; ASTM | – |
Blaß and Schmid [11] | CV(ft,90) = 19–61% (29%) Norway spruce; series with 61% includes specimens with pith | CV(ft,90) = 22–33% (29%)|V = Vref = 0.01 m3 CV(ft,90) = 17–34% (26%)|V < Vref Norway spruce; series from different producers |
Aicher et al. [41] | – | CV(ft,90) = 9–36% (26%) Norway spruce; test data from various references |
Barrett [6] | – | CV(ft,90) = 12–39% (30%) Douglas fir; test data from various references |
Stuefer [39] | CV(ft,90) = 20–29% Norway spruce | CV(ft,90) = 19–29% Norway spruce |
Astrup et al. [17] | – | CV(ft,90) = 14–27% Norway spruce; material selected for special tests |
Dill-Langer [12] | – | CV(ft,90) = 11–18% Norway spruce; material selected for special tests |
Series | Layup (mm) | Planned Sample Size | Comments/Aims |
---|---|---|---|
Series 1 (1s) | 30 | 40 | base material (single layer) tests |
Series 2 (5sGL *) | 30|30|30|30|30 | 21 | comparison with glulam |
Series 3 (3sCL) | 30|30|30 | 20 | serial effect; n = 3 |
Series 4 (5sCL *) | 30|30|30|30|30 | 21 | CLT reference series |
Series 5 (7sCL *) | 30|30|30|30|30|30|30 | 21 | serial effect; n = 7 |
Series 6 (5sCL3002 *) | 30|30|30|30|30 | 20 | parallel effect; four nodes |
Series 7 (5sVL) | 40|20|40|20|40 | 20 | varying layer thicknesses |
Total | 163 | - |
Series | Specimen Thickness t (mm) | Measurement Base h0 (mm) | h0/t (%) | Share of Cross Grain in Both Faces Along h0 (%)|(%) |
---|---|---|---|---|
1s | 30 | 25 | 83 | 100|0 |
5sGL | 150 | 145 | 97 | 100|0 |
3sCL | 90 | 75 | 83 | 60|40 |
5sCL | 150 | 145 | 97 | 59|41 |
7sCL | 210 | 200 | 95 | 55|45 |
5sCL3002 | 150 | 145 | 97 | 59|41 |
5sVL | 160 | 145 | 91 | 72|28 |
Series | 1s | 5sGL | 3sCL | 5sCL | 7sCL | 5sCL3002 | 5sVL |
---|---|---|---|---|---|---|---|
Dead load (N) | 130 | 136 | 133 | 136 | 139 | 602 | 136 |
Series | 1s | 5sGL * | 3sCL | 5sCL * | 7sCL * | 5sCL3002 * | 5sVL | On Average |
---|---|---|---|---|---|---|---|---|
Inter interface and mixed fractures (%) | 78 | 67 | 75 | 76 | 70 | 26 | 58 | 67 |
Inter adhesion failure (%) | 0 | 5 | 0 | 5 | 10 | 11 | 6 | 4 |
Intra interface fracture (%) | – | 14 | 5 | 14 | 10 | 37 | 18 | 12 |
Intra W-, tangential or mixed fracture (%) | 22 | 14 | 20 | 5 | 10 | 26 | 18 | 17 |
Series | 1s | 5sGL * | 3sCL | 5sCL * | 7sCL * | 5sCL3002 * | 5sVL |
---|---|---|---|---|---|---|---|
Sample size N (−) | 40 | 21 | 20 | 21 | 20 | 19 | 17 |
No. of specimens with observed partial failures n (−) | 27 | 16 | 17 | 16 | 10 | 19 | 14 |
n/N (%) | 68 | 76 | 85 | 76 | 50 | 100 | 82 |
ζmin (%)|ζmax (%) | 16|96 | 13|97 | 18|96 | 18|96 | 78|96 | 16|82 | 13|97 |
ζmean (%) | 59 | 68 | 69 | 68 | 92 | 50 | 71 |
CV(ζ) (%) | 44 | 41 | 42 | 43 | 7 | 42 | 37 |
Series | 1s | 5sGL * | 3sCL | 5sCL * | 7sCL * | 5sCL3002 * | 5sVL |
---|---|---|---|---|---|---|---|
Sample size (–) | 40 | 21 | 20 | 21 | 20 | 19 | 17 |
umean (%)|CV(u) (%) | 14.2|3.9 | 14.3|2.8 | 14.3|3.6 | 14.3|2.2 | 14.5|1.9 | 14.1|2.6 | 13.7|5.7 |
ρ12,mean (kg/m3)|CV(ρ12) (%) | 450|12.1 | 460|9.8 | 461|10.8 | 472|9.1 | 446|8.4 | 449|7.4 | 441|9.8 |
Et,90,mean (MPa)|CV(Et,90) (%) | 969|16.2 | 448|13.1 | 733|11.0 | 681|9.6 | 664|6.4 | 718|6.1 | 678|12.5 |
ft,90,min (MPa)|ft,90,max (MPa) | 1.13|3.43 | 0.58|1.64 | 1.27|2.62 | 0.96|2.09 | 1.00|1.85 | 1.18|1.85 | 0.82|1.80 |
ft,90,mean (MPa)|CV(ft,90) (%) | 1.98|27.3 | 0.92|34.1 | 1.78|21.6 | 1.51|22.6 | 1.39|18.4 | 1.58|12.4 | 1.41|18.5 |
ft,90,50,emp (MPa) | 1.93 | 0.83 | 1.70 | 1.45 | 1.40 | 1.62 | 1.48 |
ft,90,05,emp (MPa) | 1.21 | 0.59 | 1.27 | 0.97 | 1.00 | 1.20 | 0.84 |
ft,90,05,LN (MPa) | 1.23 | 0.50 | 1.22 | 1.02 | 1.01 | 1.28 | 1.03 |
ft,90,05,W (MPa) | 1.01 | 0.40 | 1.05 | 0.93 | 0.93 | 1.26 | 0.99 |
ft,90,k,LN (MPa) | 1.17 | 0.46 | 1.15 | 0.96 | 0.96 | 1.24 | 0.97 |
wf,mean (mm)|CV(wf) (%) (1) | 1.19|23.5 | 0.96|25.2 | 1.26|18.6 | 1.23|18.8 | 1.24|15.7 | 3.48|18.9 | 1.19|15.7 |
Series | 1s | 5sGL * | 3sCL | 5sCL * | 7sCL * | 5sCL3002 * | 5sVL |
---|---|---|---|---|---|---|---|
n | 40 | 21 | 20 | 21 | 20 | 19 | 17 |
X = ft,90~2pLN(x|λ; ε) | |||||||
0.6500 | −0.1332 | 0.5539 | 0.3899 | 0.3096 | 0.4510 | 0.3274 | |
0.2590 | 0.3034 | 0.2030 | 0.2277 | 0.1826 | 0.1269 | 0.2036 | |
0.0017 | 0.0044 | 0.0021 | 0.0025 | 0.0017 | 0.0008 | 0.0024 | |
0.0008 | 0.0022 | 0.001 | 0.0012 | 0.0008 | 0.0004 | 0.0012 | |
∑ln(L) | −28.7178 | −1.9531 | −7.5611 | −6.9083 | −0.559 | 3.6882 | −2.6293 |
X = ft,90~2pW(x|α; β) | |||||||
2.1871 | 1.0275 | 1.9319 | 1.6495 | 1.4903 | 1.663 | 1.5154 | |
3.8343 | 3.1086 | 4.8504 | 5.082 | 6.2322 | 10.6824 | 6.9623 | |
0.0142 | 0.0129 | 0.0253 | 0.021 | 0.0199 | 0.023 | 0.0225 | |
0.1946 | 0.2417 | 0.6261 | 0.7507 | 1.1726 | 4.1143 | 1.869 | |
CoVar(α;β) | 0.0092 | 0.0059 | 0.009 | 0.0056 | 0.0032 | 0.0014 | 0.0031 |
∑ln(L) | −32.5705 | −4.8495 | −9.6462 | −6.8432 | −0.7391 | 5.7298 | −0.0241 |
Sub-Series | A | B | C | D | E | F | G | |
---|---|---|---|---|---|---|---|---|
Series 5sGL | Sub-series sample size (–) | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
umean (%) | 14.4 | 14.2 | 14.3 | 14.0 | 14.5 | 14.4 | 14.0 | |
ρ12,mean (kg/m3)|CV(ρ12) (%) | 480|2.0 | 454|2.9 | 487|1.4 | 435|9.0 | 507|5.0 | 432|10.5 | 429|1.8 | |
ρ12,1,mean (kg/m3) | 471 (1) | 435 (2) | 484 (2) | 409 | 549 (2) | 453 (1) | 428 (2) | |
ρ12,mean/ρ12,1,mean (–) | 1.02 | 1.04 | 1.01 | 1.06 | 0.92 | 0.95 | 1.00 | |
Et,90,mean (MPa)|CV(Et,90) (%) | 448|6.4 | 486|4.2 | 423|4.0 | 374|4.6 | 546|3.1 | 457|11.3 | 399|5.5 | |
Et,90,1,mean (MPa) | 850 (1) | 886 (2) | 968 (2) | 879 | 1082 (2) | 1051 (1) | 1007 (2) | |
Et,90,mean/Et,90,1,mean (–) | 0.53 | 0.55 | 0.44 | 0.43 | 0.50 | 0.44 | 0.40 | |
ft,90,mean (MPa)|CV(ft,90) (%) | 0.79|30.3 | 0.85|15.8 | 0.81|21.7 | 0.76|8.6 | 1.50|13.3 | 0.93|45.5 | 0.79|26.6 | |
ft,90,1,mean (MPa) | 1.75 (1) | 1.87 (2) | 1.85 (2) | 1.79 | 1.54 (2) | 1.79 (1) | 1.99 (2) | |
ft,90,mean/ft,90,1,mean (–) | 0.45 | 0.45 | 0.44 | 0.42 | 0.97 | 0.52 | 0.40 | |
Series 5sCL | Sub-series sample size (–) | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
umean (%) | 14.6 | 14.3 | 14.3 | 14.0 | 14.7 | 14.1 | 14.1 | |
ρ12,mean(kg/m3)|CV(ρ12) (%) | 485|2.0 | 469|1.7 | 494|1.6 | 453|4.8 | 543|1.6 | 409|10.9 | 451|2.9 | |
ρ12,1,mean (kg/m3) | 471 (1) | 435 (2) | 484 (1) | 409 | 542 (1) | 404 (2) | 435 (1) | |
ρ12,mean/ρ12,1,mean (–) | 1.03 | 1.08 | 1.02 | 1.11 | 1.00 | 1.01 | 1.04 | |
Et,90,mean (MPa)|CV(Et,90) (%) | 671|3.7 | 719|0.8 | 622|4.2 | 621|8.4 | 792|2.4 | 713|4.9 | 631|3.4 | |
Et,90,1,mean (MPa) | 850 (1) | 886 (2) | 974 (1) | 879 | 1119 (1) | 926 (2) | 957 (1) | |
Et,90,mean/Et,90,1,mean (–) | 0.79 | 0.81 | 0.64 | 0.71 | 0.71 | 0.77 | 0.66 | |
ft,90,mean (MPa)|CV(ft,90) (%) | 1.33|15.6 | 1.46|27.0 | 1.27|13.2 | 1.39|27.1 | 2.05|2.3 | 1.79|5.1 | 1.30|6.0 | |
ft,90,1,mean (MPa) | 1.75 (1) | 1.87 (2) | 1.85 (1) | 1.79 | 1.42 (1) | 1.96 (2) | 1.57 (1) | |
ft,90,mean/ft,90,1,mean (–) | 0.76 | 0.78 | 0.69 | 0.78 | 1.44 | 0.91 | 0.83 |
Series | 5sGL | 5sCL | 7sCL | 5sCL3002 |
---|---|---|---|---|
# sub-series|spec. per sub-series | 7|3 | 7|3 | 7|3 | 5|4 |
#1|#2|#3|#4 (1) | 1|4|2|– | 1|2|4|– | 1|4|2|– | 1|5 (2)|0|0 |
ρequi(ρ12) = ρequi(ρ12,local) (–) | 0.80 | 0.97 | 0.85 | 0.93 |
ρequi(ρ12,global) (–) | 0.90 | 0.80 | 0.88 | 0.72 |
ρequi(Et,90) (–) | 0.75 | 0.93 | 0.85 | 0.88 |
ρequi(ft,90) (–) | 0.50 | 0.77 | 0.50 | 0.32 |
Reference | Comments | ktest (–)|CV(ft,90,test) (%) (1) | k2pW (–)|CV(ft,90) (%) (2) |
---|---|---|---|
Blaß and Schmid [11] | BS 11/14; N = {1; 2; 10} | 1/2.4; r2 = 0.98| 17 … 33 | 1/4.2|27 |
BS 16; N = {2; 3; 10} | 1/2.7; r2 = 0.99|16 … 24 | 1/5.8|20 | |
BS 18; N = {2; 3; 10} | 1/2.4; r2 = 1.00|15 … 33 | 1/4.8|24 | |
Astrup et al. [17] | glulam; N = {1; 2; …; 6} | 1/3.3; r2 = 0.97|14 … 27 | 1/6.1|19 |
Stuefer [39] | glulam; N = {1; 3; 6} | 1/3.7; r2 = 1.00|19; 29 | 1/4.8|24 |
own tests | series 1s vs. 5sGL; N = {1; 5} | 1/2.1; r2 = NaN (3)|27; 34 | 1/3.7|30 |
N; N × M (1) | xmean,2pW/xmean (2) | CV(x2pW)/CV(x) (2) | x05,2pW/x05 (2) | xmean,2pLN/xmean (2) | CV(x2pLN)/CV(x) (2) | x05,2pLN/x05 (2) |
---|---|---|---|---|---|---|
1 | 1.00 | 1.00 | 0.83 | 1.00 | 1.00 | 1.02 |
3 | 0.85 | 1.26 | 0.61 | 0.87 | 0.89 | 0.86 |
5 | 0.89 | 1.21 | 0.70 | 0.94 | 0.76 | 1.06 |
7 | 0.89 | 1.48 | 0.63 | 0.97 | 0.87 | 1.00 |
5 × 2 | 0.72 | 2.20 | 0.48 | 0.90 … 1.00 (3) | 1.11 … 1.02 (3) | 0.93 … 1.05 (3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandner, R.; Jantscher, L. Out-of-Plane Tensile Properties of Cross Laminated Timber (CLT). Buildings 2022, 12, 135. https://doi.org/10.3390/buildings12020135
Brandner R, Jantscher L. Out-of-Plane Tensile Properties of Cross Laminated Timber (CLT). Buildings. 2022; 12(2):135. https://doi.org/10.3390/buildings12020135
Chicago/Turabian StyleBrandner, Reinhard, and Lukas Jantscher. 2022. "Out-of-Plane Tensile Properties of Cross Laminated Timber (CLT)" Buildings 12, no. 2: 135. https://doi.org/10.3390/buildings12020135
APA StyleBrandner, R., & Jantscher, L. (2022). Out-of-Plane Tensile Properties of Cross Laminated Timber (CLT). Buildings, 12(2), 135. https://doi.org/10.3390/buildings12020135