Contemporary and Novel Hold-Down Solutions for Mass Timber Shear Walls
Abstract
:1. Introduction
1.1. Mass Timber Construction
1.2. Mass Timber Shear Walls
1.3. Objectives
2. Contemporary and Novel Hold-Down Solutions
2.1. Nailed Steel Brackets
2.2. Dowelled Slotted-In Steel Plates
2.3. Pinching-Free Connectors
2.4. X-RAD System
2.5. Holz–Stahl–Komposit System
2.6. Internal Hollow Steel Tubes
2.7. Slip–Friction Devices
2.8. Volume Damping Devices
2.9. Self-Tapping Screw Connections
2.10. Internal Perforated Steel Plates
2.11. Hyperelastic Pads with Internal Steel Rods
3. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, M.; Karsh, J.E. Tall Wood—The Case for Tall Wood Buildings; Wood Enterprise Coalition: Vancouver, BC, Canada, 2012. [Google Scholar]
- Karacabeyli, E.; Gagnon, S. Cross-Laminated Timber (CLT) Handbook; FPInnovations: Vancouver, BC, Canada, 2019. [Google Scholar]
- Dietsch, P.; Brandner, R. Self-tapping screws and threaded rods as reinforcement for structural timber elements–A state-of-the-art report. Constr. Build. Mater. 2015, 97, 78–89. [Google Scholar] [CrossRef]
- Pan, Y.; Tannert, T.; Kaushik, K.; Xiong, H.; Ventura, C. Seismic Performance of a Proposed Wood-Concrete Hybrid System for High-rise Buildings. Eng. Struct. 2021, 238, 112194. [Google Scholar] [CrossRef]
- Karacabeyli, E.; Lum, C. Technical Guide for the Design and Construction of Tall Wood Buildings in Canada; Special Publication (SP-55E); FPInnovations: Vancouver, BC, Canada, 2014. [Google Scholar]
- Smith, I.; Frangi, A. Use of Timber in Tall Multi-Storey Buildings; SED 13; IABSE: Zurich, Switzerland, 2014; ISBN 978-3-85748-133-8. [Google Scholar]
- Malo, K.A.; Abrahamsen, R.B.; Bjertnæs, M.A. Some structural design issues of the 14-story timber framed building ‘Treet’ in Norway. Eur. J. Wood Wood Prod. 2016, 74, 407–424. [Google Scholar] [CrossRef] [Green Version]
- Woschitz, R.; Zotter, J. High-rise timber building HoHo Vienna–The structural concept. Österr. Ing. Archit. Z. 2017, 162, 63–68. [Google Scholar]
- Connolly, T.; Loss, C.; Iqbal, A.; Tannert, T. Feasibility Study of Mass-Timber Cores for the UBC Tall Wood Building. Buildings 2018, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Staub-French, S.; Pilon, A.; Poirier, E.; Teshnizi, Z.; Fallahi, A.; Moudgil, M.; Tannert, T.; Froese, T. Design Process Innovation on Brock Commons Tallwood House. Constr. Innov. 2021, 22, 23–40. [Google Scholar]
- Brandner, R.; Flatscher, G.; Ringhofer, A.; Schickhofer, G.; Thiel, A. Cross laminated timber: Overview and development. Eur. J. Wood Prod. 2016, 74, 331–351. [Google Scholar] [CrossRef]
- Tannert, T.; Follesa, M.; Fragiacomo, M.; González, P.; Isoda, H.; Moroder, D.; Xiong, H.; van de Lindt, J.W. Seismic Design of CLT Buildings. Wood Fiber Sci. 2018, 50, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Loss, C.; Tannert, T.; Tesfamariam, S. State-of-the-art review of displacement-based seismic design of timber buildings. Constr. Build. Mater. 2018, 191, 481–497. [Google Scholar] [CrossRef]
- National Research Council Canada. NBCC—National Building Code of Canada; National Research Council Canada: Ottawa, ON, Canada, 2020.
- International Code Council, Inc. IBC—International Building Code; International Code Council, Inc.: Washington, DC, USA, 2021. [Google Scholar]
- CSA Group. CSA O86—Engineering Design in Wood; CSA Group: Mississauga, ON, Canada, 2019. [Google Scholar]
- Shahnewaz, M.; Dickof, C.; Tannert, T. Seismic Behaviour of Balloon Frame CLT Shearwalls with Different Ledgers. ASCE J. Struct. Eng. 2021, 147, 04021137. [Google Scholar] [CrossRef]
- Chen, Z.; Popovski, M. Mechanics-based analytical models for balloon-type cross-laminated timber (CLT) shear walls under lateral loads. Eng. Struct. 2019, 208, 109916. [Google Scholar] [CrossRef]
- Shen, Y.; Schneider, J.; Tesfamariam, S.; Stiemer, S.F.; Chen, Z. Cyclic behavior of bracket connections for cross-laminated timber (CLT): Assessment and comparison of experimental and numerical models studies. J. Build. Eng. 2021, 39, 102197. [Google Scholar] [CrossRef]
- Jalilifar, E.; Koliou, M.; Pang, W. Experimental and Numerical Characterization of Monotonic and Cyclic Performance of Cross-Laminated Timber Dowel-Type Connections. J. Struct. Eng. 2021, 147, 04021102. [Google Scholar] [CrossRef]
- Nolet, V.; Casagrande, D.; Doudak, G. Multipanel CLT shearwalls: An analytical methodology to predict the elastic-plastic behavior. Eng. Struct. 2019, 179, 640–654. [Google Scholar] [CrossRef]
- Deng, P.; Pei, S.; van de Lindt, J.W.; Amini, M.O.; Liu, H. Lateral behavior of panelized CLT walls: A pushover analysis based on minimal resistance assumption. Eng. Struct. 2019, 191, 469–478. [Google Scholar] [CrossRef]
- Ceccotti, A.; Sandhaas, C.; Okabe, M.; Yasumura, M.; Minowa, C.; Kawai, N. SOFIE project—3D shaking table test on a seven-storey full-scale cross-laminated timber building. Earthq. Eng. Struct. Dyn. 2013, 42, 2003–2021. [Google Scholar] [CrossRef]
- Dujic, B.; Aicher, S.; Zarnic, R. Investigation on in-plane loaded wooden elements—Influence of loading on boundary conditions. Otto Graf J. 2005, 16, 259–272. [Google Scholar]
- Popovski, M.; Pei, S.; van de Lindt, J.W.; Karacabeyli, E. Force modification factors for CLT structures for NBCC. In Materials and Joints in Timber Structures; RILEM Bookseries 9; Aicher, S., Reinhardt, H.W., Garrecht, H., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 543–553. [Google Scholar]
- Schneider, J. Conventional and novel timber steel hybrid connections: Testing, performance and assessment. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2015. [Google Scholar]
- Benedetti, F.; Rosales, V.; Opazo-Vega, A.; Norambuena-Contreras, J.; Jara-Cisterna, A. Experimental and numerical evaluation of hold-down connections on radiata pine Cross-Laminated-Timber shear walls: A case study in Chile. Eur. J. Wood Wood Prod. 2019, 77, 79–92. [Google Scholar] [CrossRef]
- Ottenhaus, L.-M.; Li, M.; Smith, T.; Quenneville, P. Mode Cross-Over and Ductility of Dowelled LVL and CLT Connections under Monotonic and Cyclic Loading. J. Struct. Eng. 2018, 144, 04018074. [Google Scholar] [CrossRef]
- Ottenhaus, L.-M.; Li, M.; Smith, T. Structural performance of large-scale dowelled CLT connections under monotonic and cyclic loading. Eng. Struct. 2018, 176, 41–48. [Google Scholar] [CrossRef]
- Brown, J.R.; Li, M. Structural performance of dowelled cross-laminated timber hold-down connections with increased row spacing and end distance. Constr. Build. Mater. 2021, 271, 121595. [Google Scholar] [CrossRef]
- Bocquet, J.-F.; Epinal, F.; Lemaître, R.; Bader, T.K. Design recommendations and example calculations for dowel-type connections with multiple shear planes. Des. Connect. Timber Struct. 2018, 241, 241–295. [Google Scholar]
- Chan, N.; Hashemi, A.; Zarnani, P.; Quenneville, P. Pinching-Free Connector for Timber Structures. J. Struct. Eng. 2021, 147, 04021036. [Google Scholar] [CrossRef]
- RothoBlaas. X-RAD Manual; RB: Cortaccia, Bolzano, Italy, 2018. [Google Scholar]
- Polastri, A.; Giongo, I.; Piazza, M. An innovative connection system for CLT structures. Struct. Eng. Int. 2017, 27, 502–511. [Google Scholar] [CrossRef]
- Polastri, A.; Giongo, I.; Angeli, A.; Brandner, R. Mechanical characterization of a prefabricated connection system for Cross Laminated Timber structures in seismic regions. Eng. Struct. 2018, 167, 705–715. [Google Scholar] [CrossRef]
- Bathon, L.; Bletz-Mühldorfer, O.; Schmidt, J.; Diehl, F. Fatigue performance of adhesive connections for wooden wind towers. In Joints in Timber Structures; Springer: Dordrecht, The Netherlands, 2014; Volume 9, pp. 375–380. [Google Scholar]
- Zhang, X. Seismic design of timber steel hybrid high-rise buildings. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2017. [Google Scholar]
- Zhang, X.; Popovski, M.; Tannert, T. High-capacity hold-down for mass-timber buildings. Constr. Build. Mater. 2018, 164, 688–703. [Google Scholar] [CrossRef]
- Schneider, J.; Tannert, T.; Tesfamariam, S.; Stiemer, S.F. Experimental assessment of a novel steel tube connector in cross-laminated timber. Eng. Struct. 2018, 177, 283–290. [Google Scholar] [CrossRef]
- Mpidi Bita, H.; Tannert, T. Numerical Optimisation of Novel Connection for Cross-Laminated Timber Buildings. Eng. Struct. 2018, 175, 273–283. [Google Scholar] [CrossRef]
- Loo, W.Y.; Quenneville, P.; Chouw, N. A numerical study of the seismic behaviour of timber shear walls with slip-friction connectors. Eng. Struct. 2012, 34, 233–243. [Google Scholar] [CrossRef]
- Loo, W.Y.; Quenneville, P.; Chouw, N. A new type of symmetric slip-friction connector. J. Constr. Steel Res. 2014, 94, 11–22. [Google Scholar] [CrossRef]
- Hashemi, A.; Masoudnia, R.; Quenneville, P. Seismic performance of hybrid self-centring steel-timber rocking core walls with slip friction connections. J. Constr. Steel Res. 2016, 126, 201–213. [Google Scholar] [CrossRef]
- Hashemi, A.; Zarnani, P.; Masoudnia, R.; Quenneville, P. Seismic resistant rocking coupled walls with innovative Resilient Slip Friction (RSF) joints. J. Constr. Steel Res. 2017, 129, 215–226. [Google Scholar] [CrossRef]
- Hashemi, A.; Zarnani, P.; Masoudnia, R.; Quenneville, P. Experimental Testing of Rocking Cross-Laminated Timber Walls with Resilient Slip Friction Joints. J. Struct. Eng. 2018, 144, 04017180. [Google Scholar] [CrossRef]
- Hashemi, A.; Zarnani, P.; Quenneville, P. Earthquake resistant timber panelised structures with resilient connections. Structures 2020, 28, 225–234. [Google Scholar] [CrossRef]
- Wrzesniak, D.; Rodgers, G.W.; Fragiacomo, M.; Chase, J.G. Experimental testing of damage-resistant rocking glulam walls with lead extrusion dampers. Constr. Build. Mater. 2016, 102, 1145–1153. [Google Scholar] [CrossRef]
- Vishnupriya, V.; Rodgers, G.W.; Mander, J.B.; Chase, J.G. Precision Design Modelling of HF2V Devices. Structures 2018, 14, 243–250. [Google Scholar] [CrossRef]
- Sullivan, K.; Miller, T.H.; Gupta, R. Behavior of cross-laminated timber diaphragm connections with self-tapping screws. Eng. Struct. 2018, 168, 505–524. [Google Scholar] [CrossRef]
- Tuhkanen, E.; Ojamaa, M. Early experimental investigations on slotted-in steel plate connections with self-perforating dowels in CLT. Wood Mat. Sci. Eng. 2019, 16, 102–109. [Google Scholar] [CrossRef]
- Daneshvar, H.; Dickof, C.; Letarte, J.P.; Niederwestberg, J.; Spencer, J.; Chui, Y.H. Seismic performance of end brace connections in ductile braced timber frame. In Proceedings of the International Network on Timber Engineering Research (INTER), Tacoma, WA, USA, 26–29 August 2019. [Google Scholar]
- Dickof, C.; Jackson, R.; Daneshvar, H.; Niederwestberg, J.; Chui, Y.H. Perforated plates as dissipative connections in mass timber seismic force resisting systems. In Proceedings of the World Conference on Timber Engineering (WCTE), Santiago, Chile, 11–14 January 2021. [Google Scholar]
- Daneshvar, H.; Niederwestberg, J.; Letarte, J.-P.; Dickof, C.; Chui, Y.H. Seismic Performance of base shear connections in cross laminated timber shearwalls. In Proceedings of the World Conference on Timber Engineering (WCTE), Santiago, Chile, 11–14 January 2021. [Google Scholar]
- Dong, W.; Li, M.; He, M.; Li, Z. Experimental testing and analytical modeling of glulam moment connections with self-drilling dowels. J. Struct. Eng. 2021, 147, 04021047. [Google Scholar] [CrossRef]
- Nicolas, J.H. Pilot Study of a High Capacity Ductile Seismic Hold-Down for Cross-Laminated Timber. Master’s Thesis, Montana State University, Bozeman, MT, USA, 2019. [Google Scholar]
- Drexler, M.; Dires, S.; Tannert, T. Internal Perforated-steel-plate connections for CLT shear walls. In Proceedings of the World Conference on Timber Engineering, Santiago, Chile, 11–14 January 2021. [Google Scholar]
- Asgari, H.; Tannert, T.; Ebadi, M.M.; Loss, C.; Popovski, P. Hyperelastic hold-down solution for CLT shear walls. Constr. Build. Mater. 2021, 289, 123173. [Google Scholar] [CrossRef]
- Ajibola, O.A. High-capacity hyperelastic hold-down for cross-laminated timber shear walls. In Project Report; University of Northern British Columbia: Prince George, BC, Canada, 2021. [Google Scholar]
- Brown, J.R.; Li, M.; Tannert, T.; Moroder, D. Experimental study on orthogonal joints in cross-laminated timber with self-tapping screws installed with mixed angles. Eng. Struct. 2021, 228, 111560. [Google Scholar] [CrossRef]
- Casagrande, D.; Doudak, G.; Masroor, M. A proposal for capacity-based design of multi-storey CLT buildings. In Proceedings of the International Network on Timber Engineering Research (INTER), Online Conference, 16–19 August 2021. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tannert, T.; Loss, C. Contemporary and Novel Hold-Down Solutions for Mass Timber Shear Walls. Buildings 2022, 12, 202. https://doi.org/10.3390/buildings12020202
Tannert T, Loss C. Contemporary and Novel Hold-Down Solutions for Mass Timber Shear Walls. Buildings. 2022; 12(2):202. https://doi.org/10.3390/buildings12020202
Chicago/Turabian StyleTannert, Thomas, and Cristiano Loss. 2022. "Contemporary and Novel Hold-Down Solutions for Mass Timber Shear Walls" Buildings 12, no. 2: 202. https://doi.org/10.3390/buildings12020202
APA StyleTannert, T., & Loss, C. (2022). Contemporary and Novel Hold-Down Solutions for Mass Timber Shear Walls. Buildings, 12(2), 202. https://doi.org/10.3390/buildings12020202