The Effect of Adding Phragmites australis Fibers on the Properties of Concrete
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Materials
2.2. Mix Proportions
2.3. Mixing and Specimen Preparation
2.4. Testing Methods
3. Results and Discussion
3.1. Density
3.2. Compressive Strength
3.3. Ultra-Pulse Velocity
3.4. Total Water Absorption
3.5. Capillary Water Absorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Darwish, I.; Kurdi, A.; Mahmoud, H.; El-Kair, H.A. Mechanical properties and durability of Portland cement concrete incorporating ground steel making slag. AEJ Alex. Eng. J. 1997, 36, 1–14. [Google Scholar]
- El-Kurdi, A.A.; Abdel-Hakam, A.; El-Gohary, M.M. Study the effect of silica fume, polypropylene fibre, steel fibre, limestone powder and bentonite on the fire resistance of concrete. Int. J. Res. Anal. Allied Sci. Eng. 2014, 1, 13–29. [Google Scholar]
- Herki, B.A.; Khatib, J.M. Valorisation of waste expanded polystyrene in concrete using a novel recycling technique. Eur. J. Environ. Civ. Eng. 2017, 21, 1384–1402. [Google Scholar] [CrossRef]
- Khatib, J.M.; Mangat, P.S.; Wright, L. Sulphate resistance of blended binders containing FGD waste. Proc. Inst. Civ. Eng. (ICE)-Constr. Mater. 2008, 161, 119–128. [Google Scholar] [CrossRef]
- Khatib, J.M.; Kayali, O.; Siddique, R. Dimensional change and strength of mortars containing fly ash and metakaolin. J. Mater. Civ. Eng. 2009, 21, 523–528. [Google Scholar] [CrossRef]
- Khatib, J.M.; Wright, L.; Mangat, P.S. Effect of fly ash–gypsum blend on porosity and pore size distribution of cement pastes. Adv. Appl. Ceram. 2013, 112, 197–201. [Google Scholar] [CrossRef]
- Khatib, J.M.; Mangat, P.S.; Wright, L. Mechanical and physical properties of concrete containing FGD waste. Mag. Concr. Res. 2015, 68, 550–560. [Google Scholar] [CrossRef] [Green Version]
- Khatib, J.M.; Machaka, M.M.; Elkordi, A.M. Natural fibers 5. In Handbook of Sustainable Concrete and Industrial Waste Management: Recycled and Artificial Aggregate, Innovative Eco-Friendly Binders, and Life Cycle Assessment; Elsevier: Amsterdam, The Netherlands, 2021; pp. 85–107. [Google Scholar]
- Mangat, P.S.; Khatib, J.M.; Wright, L. Optimum utilisation of FGD waste in blended binders. Proc. Inst. Civ. Eng.-Constr. Mater. 2006, 159, 119–127. [Google Scholar] [CrossRef]
- Sonebi, M.; Ammar, Y.; Diederich, P. Sustainability of cement, concrete and cement replacement materials in construction. In Sustainability of Construction Materials; Woodhead Publishing: Sawston, UK, 2016; pp. 371–396. [Google Scholar]
- Wang, W.; Wei, W.; Gao, S.; Chen, G.; Yuan, J.; Li, Y. Agricultural and aquaculture wastes as concrete components: A Review. Front. Mater. 2021, 8, 762568. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites reinforced with natural fibres: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Çomak, B.; Bideci, A.; Bideci, Ö.S. Effects of hemp fibres on characteristics of cement based mortar. Constr. Build. Mater. 2018, 169, 794–799. [Google Scholar] [CrossRef]
- Dawood, E.T.; Ramli, M. Durability of high strength flowing concrete with hybrid fibres. Constr. Build. Mater. 2012, 35, 521–530. [Google Scholar] [CrossRef]
- Machaka, M.M.; Basha, H.S.; ElKordi, A.M. The effect of using fan palm natural fibres on the mechanical properties and durability of concrete. Int. J. Mater. Sci. Eng. 2014, 2, 76–80. [Google Scholar]
- Machaka, M.; Elkordi, A.; Ghanem, H.; Khatib, J.; Baalbaki, O. Selected properties of concrete containing palm fibres. In Proceedings of the 3rd International Conference on Bio-Based Building Materials, Belfast, UK, 26–28 June 2019; pp. 279–286. [Google Scholar]
- Pacheco-Torgal, F.; Jalali, S. Cementitious building materials reinforced with vegetable fibres: A review. Constr. Build. Mater. 2011, 25, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Banthia, N. Current innovations in fibre reinforced concrete. In Proceedings of the 3rd ACF International Conference-ACF/VCA, HoChiMinh, Vietnam, 11–13 November 2008. [Google Scholar]
- Mello, E.; Ribellato, C.; Mohamedelhassan, E. Improving concrete properties with fibers addition. Int. J. Civ. Environ. Eng. 2014, 8, 249–254. [Google Scholar]
- Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Ghanem, H.; Zollinger, D.; Lytton, R. Predicting ASR aggregate reactivity in terms of its activation energy. Constr. Build. Mater. 2010, 24, 1101–1108. [Google Scholar] [CrossRef]
- Ghanem, H.; Zollinger, D.; Lytton, R.; Ghanem, N. Determining ASR characteristics using dilatometer method. Constr. Build. Mater. 2012, 36, 1008–1015. [Google Scholar] [CrossRef]
- Machaka, M.; ElKordi, A. Experimental study of the effect of adding fan palm fibres on concrete durability exposed to severe environments. In Proceedings of the 2nd International Conference on Bio-Based Building Materials, Clermont-Ferrand, France, 21–23 June 2017. [Google Scholar]
- Amriou, A.; Bencheikh, M. New experimental method for evaluating the water permeability of concrete by a lateral flow procedure on a hollow cylindrical test piece. Constr. Build. Mater. 2017, 151, 642–649. [Google Scholar] [CrossRef]
- Hall, C. Water sorptivity of mortars and concretes: A review. Mag. Concr. Res. 1989, 41, 51–61. [Google Scholar] [CrossRef]
- Wright, L.; Khatib, J.M. Sustainability of desulphurised waste materials in construction. In Sustainability of Construction Materials, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 685–720. [Google Scholar]
- Wang, H.; Sun, X.; Wang, J.; Monteiro, P. Permeability of concrete with recycled concrete aggregate and pozzolanic materials under stress. Materials 2016, 9, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sathishkumar, T.; Navaneethakrishnan, P.; Shankar, S.; Rajasekar, R.; Rajini, N. Characterization of natural fiber and composites—A review. J. Reinf. Plast. Compos. 2013, 32, 1457–1476. [Google Scholar] [CrossRef]
- Hashim, M.Y.; Roslan, M.N.; Amin, A.M.; Ahmad Zaidi, A.M.; Ariffin, S. Mercerization treatment parameter effect on natural fiber reinforced polymer matrix composite: A brief review. J. Mater. Metall. Eng. 2012, 6, 1382–1388. [Google Scholar]
- Kalia, S.; Kaith, B.S.; Kaur, I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polym. Eng. Sci. 2009, 49, 1253–1272. [Google Scholar] [CrossRef]
- Geremew, A.; De Winne, P.; Demissie, T.A.; De Backer, H. Treatment of natural fiber for application in concrete pavement. Adv. Civ. Eng. 2021, 2021, 6667965. [Google Scholar] [CrossRef]
- Machaka, M.; Basha, H.; Chakra, H.A.; Elkordi, A. Alkali treatment of fan palm natural fibres for use in fibre reinforced concrete. Eur. Sci. J. 2014, 10, 186–195. [Google Scholar]
- Machaka, M.; ElKordi, A. The effect of using fan palm natural fibres on the impact resistance of concrete. In Proceedings of the 1st International Turkish World Engineering and Science Congress, Antalya, Turkey, 7–10 December 2017; pp. 472–479. [Google Scholar]
- Amacha, N.; Karam, F.; Jerdi, M.; Frank, P.; Viala, E.; Hussein, D.; Kheireddin, S.; Baydoun, S. Assessment of the efficiency of a pilot constructed wetland on the remediation of water quality—Case study of Litani River, Lebanon. Environ. Pollut. Clim. Chang. 2017, 1, 119. [Google Scholar] [CrossRef] [Green Version]
- Milke, J.; Gałczyńska, M.; Wróbel, J. The Importance of Biological and Ecological Properties of Phragmites australis (Cav.) Trin. Ex Steud., in Phytoremendiation of Aquatic Ecosystems—The Review. Water 2020, 12, 1770. [Google Scholar] [CrossRef]
- Rezania, S.; Park, J.; Rupani, P.F.; Darajeh, N.; Xu, X.; Shahrokhishahraki, R. Phytoremediation potential and control of Phragmites australis as a green phytomass: An overview. Environ. Sci. Pollut. Res. 2019, 26, 7428–7441. [Google Scholar] [CrossRef]
- Shon, C.-S.; Mukashev, T.; Lee, D.; Zhang, D.; Kim, J.R. Can Common Reed Fiber Become an Effective Construction Material? Physical, Mechanical, and Thermal Properties of Mortar Mixture Containing Common Reed Fiber. Sustainability 2019, 11, 903. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Espada, M.; Herrero-Adán, D.; González-Escobar, R. Characterization of Mechanical and Hygroscopic Properties of Individual Canes of Reed. Materials 2021, 14, 2193. [Google Scholar] [CrossRef] [PubMed]
- Honoré, M.; Lecompte, T.; Pimbert, S. Properties of Phragmites australis for insulating concrete application. Constr. Technol. Archit. 2022, 1, 332–338. [Google Scholar]
- Dosdall, R.; Jülich, W.; Schauer, F. Impact of heat treatment of the water reed Phragmites communis Trin. used for thatching on its stability, elasticity and resistance to fungal decomposition. Int. Biodeterior. Biodegrad. 2015, 103, 85–90. [Google Scholar] [CrossRef]
- Harle, S.; Dhawale, V. Comparison of Different Natural Fiber Reinforced Concrete. Int. J. Eng. Sci. Res. Technol. 2014, 3, 605–607. [Google Scholar]
- Pude, R.; Banaszuk, P.; Trettin, R.; Noga, G. Suitability of Phragmites for lightweight concrete. J. Appl. Bot. Food Qual. 2005, 79, 141–146. [Google Scholar]
- ASTM C642-12; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete; Annual Book of American Society of Testing and Materials. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM C597-16; Standard Test Method for Pulse Velocity through Concrete; Annual Book of American Society of Testing and Materials. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM C1585-13; Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM International: West Conshohocken, PA, USA, 2013.
- Patel, V.N. Sorptivity Testing to Assess Durability of Concrete against Freeze-Thaw Cycling. Master’s Thesis, McGill University, Montreal, PQ, Canada, August 2009. [Google Scholar]
- Lai, P.; Zhi, X.; Shen, S.; Wang, Z.; Yu, P. Strength and Damping Properties of Cementitious Composites Incorporating Original and Alkali Treated Flax Fibers. Appl. Sci. 2019, 9, 2002. [Google Scholar] [CrossRef] [Green Version]
- Bisen, H.B.; Hirwani, C.K.; Satankar, R.K.; Panda, S.K.; Mehar, K.; Patel, B. Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation. J. Nat. Fibers 2018, 17, 505–519. [Google Scholar] [CrossRef]
- Aluco, O.G.; Yatim, J.M.; Kadir, M.A.A.; Yahya, K. A review of properties of bio-fibrous concrete exposed to elevated temperatures. Constr. Build. Mater. 2020, 260, 119671. [Google Scholar] [CrossRef]
- Momoh, E.O.; Osofero, A.I. Use of oil palm broom fibres for eco-friendly concrete. In Proceedings of the 5th Conference on Sustainable Construction Materials and Technologies, London, UK, 15–17 July 2019. [Google Scholar]
- Ajouguim, S.; Stefanidou, M.; Abdelouahdi, K.; Waqif, M.; Saâdi, L. Influence of treated bio-fibers on the mechanical and physical properties of cement mortars. Eur. J. Environ. Civ. Eng. 2020, 1–15. [Google Scholar] [CrossRef]
- Sanal, I.; Verma, D. Construction materials reinforced with natural products. In Handbook of Ecomaterials; Springer: Berlin/Heidelberg, Germany, 2019; Volume 3, pp. 2119–2142. [Google Scholar]
- De Klerk, M.D.; Kayondo, M.; Moelich, G.M.; de Villiers, W.I.; Combrinck, R.; Boshoff, W.P. Durability of chemically modified sisal fibre in cement-based composites. Constr. Build. Mater. 2020, 241, 117835. [Google Scholar] [CrossRef]
- Oriola, F.O.P.; Afolayan, J.O.; Sani, J.E.; Adamu, Y. Estimating the shear strength of sisal fiber reinforced concrete. Niger. J. Technol. (NIJOTECH) 2019, 38, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.K.U.; Ibrahim, Z.; Memon, S.A.; Jameel, M. Nondestructive test methods for concrete bridges: A review. Constr. Build. Mater. 2016, 107, 58–86. [Google Scholar] [CrossRef] [Green Version]
- Ghanem, H.; Machaka, M.; Khatib, J.; Elkordi, A.; Baalbaki, O. Effect of palm fibres addition on absorption characteristics and mechanical properties of concrete. In Proceedings of the Fifth International Conference on Sustainable Construction Materials and Technologies (SCMT5), London, UK, 14–17 July 2019; Volume 2. [Google Scholar]
- Li, Y.; Mai, Y.-W.; Ye, L. Sisal fibre and its Composites: A review of recent developments. Compos. Sci. Technol. 2000, 60, 2037–2055. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R.K.; Raza, A.; Hussain, U.; Rahman, M.L.; Nazari, S.; Chandan, V.; Muller, M.; Choteborsky, R. Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance. Materials 2022, 15, 874. [Google Scholar] [CrossRef]
- Kaplan, G.; Bayraktar, O.Y. The effect of hemp fiber usage on the mechanical and physical properties of cement based mortars. Res. Eng. Struct. Mater. 2021, 7, 245–258. [Google Scholar] [CrossRef]
- Rostami, V.; Shao, Y.; Boyd, A.J. Durability of concrete pipes subjected to combined steam and carbonation curing. Constr. Build. Mater. 2011, 25, 3345–3355. [Google Scholar] [CrossRef]
Aggregate (Type) | Bulk Density | Absorption % | Fineness Modulus (FM) |
---|---|---|---|
Fine aggregate (Natural sand) | 2.63 | 1.07% | 2.85 |
Coarse aggregate (Crushed stone) | 2.57 | 2.00% | NA |
Mix Code | Fiber (% by Volume) | W/C | Quantities (Kg/m3) | ||||
---|---|---|---|---|---|---|---|
Cement | Water | Fine Aggregate | Coarse Aggregate | Fiber | |||
PA-0.0 (Control) | 0 | 0.5 | 370 | 185 | 790 | 965 | 0.00 |
PA-0.5 | 0.5 | 0.5 | 370 | 185 | 790 | 965 | 3.33 |
PA-1.0 | 1.0 | 0.5 | 370 | 185 | 790 | 965 | 6.65 |
PA-1.5 | 1.5 | 0.5 | 370 | 185 | 790 | 965 | 9.98 |
Pulse Velocity | Concrete Quality |
---|---|
>4.0 km/s | Very good to excellent |
3.5–4.0 km/s | Good to very good, slight porosity may exist |
3.0–3.5 km/s | Satisfactory but loss of integrity is suspected |
<3.0 km/s | Poor, and loss of integrity exists. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machaka, M.; Khatib, J.; Baydoun, S.; Elkordi, A.; Assaad, J.J. The Effect of Adding Phragmites australis Fibers on the Properties of Concrete. Buildings 2022, 12, 278. https://doi.org/10.3390/buildings12030278
Machaka M, Khatib J, Baydoun S, Elkordi A, Assaad JJ. The Effect of Adding Phragmites australis Fibers on the Properties of Concrete. Buildings. 2022; 12(3):278. https://doi.org/10.3390/buildings12030278
Chicago/Turabian StyleMachaka, Meheddene, Jamal Khatib, Safaa Baydoun, Adel Elkordi, and Joseph J. Assaad. 2022. "The Effect of Adding Phragmites australis Fibers on the Properties of Concrete" Buildings 12, no. 3: 278. https://doi.org/10.3390/buildings12030278
APA StyleMachaka, M., Khatib, J., Baydoun, S., Elkordi, A., & Assaad, J. J. (2022). The Effect of Adding Phragmites australis Fibers on the Properties of Concrete. Buildings, 12(3), 278. https://doi.org/10.3390/buildings12030278