Review of the Application of Wearable Devices in Construction Safety: A Bibliometric Analysis from 2005 to 2021
Abstract
:1. Introduction
2. Research Method
2.1. Data Collection
2.2. Bibliometric Analysis
3. Results
3.1. Overview of Research
3.2. Co-Authorship Analysis
3.3. Keyword Co-Occurrence Network
3.4. Cluster Identification
4. Discussion
4.1. Cluster #0 (Attentional Failure)
4.2. Cluster #1 (Brain-Computer Interface)
4.3. Cluster #2 (Activity Tracking) and Cluster #6 (Accelerometer-Based Activity Recognition)
4.4. Cluster #5 (Construction Site)
4.5. Relationships between Clusters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ringen, K.; Seegal, J.; England, A. Safety and health in the construction industry. Annu. Rev. Public Health 1995, 16, 165–188. [Google Scholar] [CrossRef] [PubMed]
- Im, H.-J.; Kwon, Y.-J.; Kim, S.-G.; Kim, Y.-K.; Ju, Y.-S.; Lee, H.-P. The characteristics of fatal occupational injuries in Korea’s construction industry, 1997–2004. Saf. Sci. 2009, 47, 1159–1162. [Google Scholar] [CrossRef]
- Sunindijo, R.; Zou, P. How project manager’s skills may influence the development of safety climate in construction projects. Int. J. Proj. Organ. Manag. 2012, 4, 286–301. [Google Scholar] [CrossRef]
- Suraji, A.; Duff, A.R.; Peckitt, S.J. Development of Causal Model of Construction Accident Causation. J. Constr. Eng. Manag. 2001, 127, 337–344. [Google Scholar] [CrossRef]
- Demirkesen, S.; Arditi, D. Construction safety personnel’s perceptions of safety training practices. Int. J. Proj. Manag. 2015, 33, 1160–1169. [Google Scholar] [CrossRef]
- Ahn, C.R.; Lee, S.; Sun, C.; Jebelli, H.; Yang, K.; Choi, B. Wearable Sensing Technology Applications in Construction Safety and Health. J. Constr. Eng. Manag. 2019, 145, 03119007. [Google Scholar] [CrossRef]
- Hammad, A.; Khabeer, B.; Mozaffari, E.; Devarakonda, P.; Bauchkar, P. Augmented reality interaction model for mobile infrastructure management systems. In Proceedings of the 33rd Annual Conference of the Canadian Society for Civil Engineering 2005, Toronto, ON, Canada, 2–4 June 2005. [Google Scholar]
- Korman, D.B.; Zulps, A. Enhancing construction safety using wearable technology. In Proceedings of the ASSE Professional Development Conference and Exposition, Denver, CO, USA, 19–22 June 2017; p. ASSE-17-552. [Google Scholar]
- Navon, R. Automated project performance control of construction projects. Autom. Constr. 2005, 14, 467–476. [Google Scholar] [CrossRef]
- Lee, W.; Lin, K.-Y.; Seto, E.; Migliaccio, G. Wearable sensors for monitoring on-duty and off-duty worker physiological status and activities in construction. Autom. Constr. 2017, 83, 341–353. [Google Scholar] [CrossRef]
- Ryu, J.; Seo, J.; Jebelli, H.; Lee, S. Automated Action Recognition Using an Accelerometer-Embedded Wristband-Type Activity Tracker. J. Constr. Eng. Manag. 2019, 145, 04018114. [Google Scholar] [CrossRef]
- Yang, K.; Ahn, C.R.; Vuran, M.C.; Kim, H. Collective sensing of workers’ gait patterns to identify fall hazards in construction. Autom. Constr. 2017, 82, 166–178. [Google Scholar] [CrossRef]
- Kosuda, T.; Nakajo, Y.; Sasagawa, K.; Nishikai, Y.; Shimizu, S.; Kumita, Y.; Kondo, T.; Hashimoto, N. Development of a helmet-type wearable device capable of measuring perspiration during various activities. In Proceedings of the 2019 International Conference on Electronics Packaging (ICEP), Niigata, Japan, 17–20 April 2019. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.; Cho, Y.K. Framework of Automated Construction-Safety Monitoring Using Cloud-Enabled BIM and BLE Mobile Tracking Sensors. J. Constr. Eng. Manag. 2017, 143, 05016019. [Google Scholar] [CrossRef]
- Cheng, T.; Teizer, J. Real-time resource location data collection and visualization technology for construction safety and activity monitoring applications. Autom. Constr. 2013, 34, 3–15. [Google Scholar] [CrossRef]
- Nath, N.D.; Chaspari, T.; Behzadan, A.H. Automated ergonomic risk monitoring using body-mounted sensors and machine learning. Adv. Eng. Inform. 2018, 38, 514–526. [Google Scholar] [CrossRef]
- Jebelli, H.; Choi, B.; Lee, S. Application of Wearable Biosensors to Construction Sites. II: Assessing Workers’ Physical Demand. J. Constr. Eng. Manag. 2019, 145, 04019080. [Google Scholar] [CrossRef]
- Jebelli, H.; Hwang, S.; Lee, S. EEG-based workers’ stress recognition at construction sites. Autom. Constr. 2018, 93, 315–324. [Google Scholar] [CrossRef]
- Nath, N.D.; Akhavian, R.; Behzadan, A.H. Ergonomic analysis of construction worker’s body postures using wearable mobile sensors. Appl. Ergon. 2017, 62, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Jeelani, I.; Han, K.; Albert, A. Automating and scaling personalized safety training using eye-tracking data. Autom. Constr. 2018, 93, 63–77. [Google Scholar] [CrossRef]
- Antwi-Afari, M.F.; Li, H. Fall risk assessment of construction workers based on biomechanical gait stability parameters using wearable insole pressure system. Adv. Eng. Inform. 2018, 38, 683–694. [Google Scholar] [CrossRef]
- Teizer, J. Wearable, wireless identification sensing platform: Self-Monitoring Alert and Reporting Technology for Hazard Avoidance and Training (SmartHat). J. Inf. Technol. Construct. 2015, 20, 295–312. [Google Scholar]
- Wang, D.; Dai, F.; Ning, X. Risk Assessment of Work-Related Musculoskeletal Disorders in Construction: State-of-the-Art Review. J. Constr. Eng. Manag. 2015, 141, 04015008. [Google Scholar] [CrossRef]
- Awolusi, I.; Marks, E.; Hallowell, M. Wearable technology for personalized construction safety monitoring and trending: Review of applicable devices. Autom. Constr. 2018, 85, 96–106. [Google Scholar] [CrossRef]
- Pritchard, A. Statistical bibliography or bibliometrics. J. Doc. 1969, 25, 348–349. [Google Scholar]
- Mayr, P.; Scharnhorst, A. Scientometrics and information retrieval: Weak-links revitalized. Scientometrics 2014, 102, 2193–2199. [Google Scholar] [CrossRef] [Green Version]
- Saheb, T.; Izadi, L. Paradigm of IoT big data analytics in the healthcare industry: A review of scientific literature and mapping of research trends. Telemat. Inform. 2019, 41, 70–85. [Google Scholar] [CrossRef]
- Li, X.; Wu, W.; Shen, Q.; Wang, X.; Teng, Y. Mapping the knowledge domains of Building Information Modeling (BIM): A bibliometric approach. Autom. Constr. 2017, 84, 195–206. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Luo, Z.; Webber, M.; Chen, J. Bibliometric and visualized analysis of emergy research. Ecol. Eng. 2016, 90, 285–293. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Bayer, A.E.; Smart, J.C.; McLaughlin, G.W. Mapping intellectual structure of a scientific subfield through author cocitations: Introduction. J. Am. Soc. Inf. Sci. (1986–1998) 1990, 41, 444. [Google Scholar] [CrossRef]
- Su, H.-N.; Lee, P.-C. Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics 2010, 85, 65–79. [Google Scholar] [CrossRef]
- Chen, C.; Morris, S. Visualizing evolving networks: Minimum spanning trees versus pathfinder networks. In Proceedings of the IEEE Symposium on Information Visualization 2003, Seattle, WA, USA, 19–21 October 2003. [Google Scholar]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef]
- Kam, M.K.; Leung, S.-F.; Zee, B.C.-Y.; Chau, R.M.; Suen, J.J.; Mo, F.; Lai, M.; Ho, R.; Cheung, K.-Y.; Yu, B.K.; et al. Prospective Randomized Study of Intensity-Modulated Radiotherapy on Salivary Gland Function in Early-Stage Nasopharyngeal Carcinoma Patients. J. Clin. Oncol. 2007, 25, 4873–4879. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Li, H.; Li, A.R.; Zhang, H. Wearable IMU-based real-time motion warning system for construction workers’ musculoskeletal disorders prevention. Autom. Constr. 2017, 74, 2–11. [Google Scholar] [CrossRef]
- Valero, E.; Sivanathan, A.; Bosché, F.; Abdel-Wahab, M. Musculoskeletal disorders in construction: A review and a novel system for activity tracking with body area network. Appl. Ergon. 2016, 54, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Ahn, C.R.; Vuran, M.C.; Aria, S.S. Semi-supervised near-miss fall detection for ironworkers with a wearable inertial measurement unit. Autom. Constr. 2016, 68, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Joshua, L.; Varghese, K. Accelerometer-Based Activity Recognition in Construction. J. Comput. Civ. Eng. 2011, 25, 370–379. [Google Scholar] [CrossRef]
- Aryal, A.; Ghahramani, A.; Becerik-Gerber, B. Monitoring fatigue in construction workers using physiological measurements. Autom. Constr. 2017, 82, 154–165. [Google Scholar] [CrossRef]
- Choi, B.; Hwang, S.; Lee, S.H. What drives construction workers’ acceptance of wearable technologies in the workplace?: Indoor localization and wearable health devices for occupational safety and health. Autom. Constr. 2017, 84, 31–41. [Google Scholar] [CrossRef]
- Chen, C. The citespace manual. Coll. Comput. Inf. 2014, 1, 1–84. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. The CiteSpace Manual. Available online: httphttp://cluster.ischool.drexel.edu/~cchen/citespace/manual/CiteSpaceChinese.pdf (accessed on 8 March 2022).
- Hashiguchi, N.; Yeongjoo, L.; Sya, C.; Kuroishi, S.; Miyazaki, Y.; Kitahara, S.; Kobayashi, T.; Tateyama, K.; Kodama, K. Real-time Judgment of Workload using Heart Rate and Physical Activity. In From Demonstration to Practical Use—To New Stage of Construction Robot: Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC 2020), Kitakyushu, Japan, 27–28 October 2020; International Association on Automation and Robotics in Construction (IAARC): Waterloo, ON, Canada, 2020; pp. 849–856. [Google Scholar] [CrossRef]
- Antwi-Afari, M.F.; Li, H.; Anwer, S.; Yevu, S.K.; Wu, Z.; Antwi-Afari, P.; Kim, I. Quantifying workers’ gait patterns to identify safety hazards in construction using a wearable insole pressure system. Saf. Sci. 2020, 129, 104855. [Google Scholar] [CrossRef]
- Jeelani, I.; Han, K.; Albert, A. Scaling Personalized Safety Training Using Automated Feedback Generation. In Construction Research Congress 2018: Safety and Disaster Management; American Society of Civil Engineers: Atlanta, GA, USA, 2018; pp. 196–206. [Google Scholar]
- Huanga, Y.; Le, T. Factors affecting the implementation of ai-based hearing protection technology at construction workplace. In From Demonstration to Practical Use—To New Stage of Construction Robot: Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC 2020), Kitakyushu, Japan, 27–28 October 2020; International Association on Automation and Robotics in Construction (IAARC): Waterloo, ON, Canada, 2020; Volume 37, pp. 1014–1020. [Google Scholar]
- Hasanzadeh, S.; Dao, B.; Esmaeili, B.; Dodd, M.D. Role of Personality in Construction Safety: Investigating the Relationships between Personality, Attentional Failure, and Hazard Identification under Fall-Hazard Conditions. J. Constr. Eng. Manag. 2019, 145, 04019052. [Google Scholar] [CrossRef] [Green Version]
- Jebelli, H.; Khalili, M.M.; Hwang, S.; Lee, S. A Supervised Learning-Based Construction Workers’ Stress Recognition Using a Wearable Electroencephalography (EEG) Device. In Construction Research Congress 2018: Safety and Disaster Management; American Society of Civil Engineers: Atlanta, GA, USA, 2018; pp. 43–53. [Google Scholar]
- Anwer, S.; Li, H.; Antwi-Afari, M.F.; Umer, W.; Mehmood, I.; Wong, A.Y.L. Effects of load carrying techniques on gait parameters, dynamic balance, and physiological parameters during a manual material handling task. Eng. Constr. Arch. Manag. 2021. [Google Scholar] [CrossRef]
- Umer, W.; Li, H.; Yantao, Y.; Antwi-Afari, M.F.; Anwer, S.; Luo, X. Physical exertion modeling for construction tasks using combined cardiorespiratory and thermoregulatory measures. Autom. Constr. 2020, 112, 103079. [Google Scholar] [CrossRef]
- Zuluaga, C.M.; Albert, A.; Winkel, M.A. Improving Safety, Efficiency, and Productivity: Evaluation of Fall Protection Systems for Bridge Work Using Wearable Technology and Utility Analysis. J. Constr. Eng. Manag. 2020, 146, 04019107. [Google Scholar] [CrossRef]
- Liu, Y.; Habibnezhad, M.; Jebelli, H. Brain-computer interface for hands-free teleoperation of construction robots. Autom. Constr. 2021, 123, 103523. [Google Scholar] [CrossRef]
- Hashiguchi, N.; Kodama, K.; Lim, Y.; Che, C.; Kuroishi, S.; Miyazaki, Y.; Kobayashi, T.; Kitahara, S.; Tateyama, K. Practical Judgment of Workload Based on Physical Activity, Work Conditions, and Worker’s Age in Construction Site. Sensors 2020, 20, 3786. [Google Scholar] [CrossRef]
- Huang, C.; Kim, W.; Zhang, Y.; Xiong, S. Development and Validation of a Wearable Inertial Sensors-Based Automated System for Assessing Work-Related Musculoskeletal Disorders in the Workspace. Int. J. Environ. Res. Public Health 2020, 17, 6050. [Google Scholar] [CrossRef]
- Svertoka, E.; Saafi, S.; Rusu-Casandra, A.; Burget, R.; Marghescu, I.; Hosek, J.; Ometov, A. Wearables for Industrial Work Safety: A Survey. Sensors 2021, 21, 3844. [Google Scholar] [CrossRef]
- Shakerian, S.; Habibnezhad, M.; Ojha, A.; Lee, G.; Liu, Y.; Jebelli, H.; Lee, S. Assessing occupational risk of heat stress at construction: A worker-centric wearable sensor-based approach. Saf. Sci. 2021, 142, 105395. [Google Scholar] [CrossRef]
- Pillsbury, W.; Clevenger, C.M.; Abdallah, M.; Young, R. Capabilities of an Assessment System for Construction Worker Physiology. J. Perform. Constr. Facil. 2020, 34, 04019120. [Google Scholar] [CrossRef]
- Nnaji, C.; Awolusi, I. Critical success factors influencing wearable sensing device implementation in AEC industry. Technol. Soc. 2021, 66, 101636. [Google Scholar] [CrossRef]
- Holme, I. Personal protection, corporate clothing and workwear debated. Tech. Text. Int. 2007, 16, 39–45. [Google Scholar]
- Sivanathan, A.; Abdel-Wahab, M.; Bosche, F.; Lim, T. Towards a Cyber-Physical Gaming System for Training in the Construction and Engineering Industry. In Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Buffalo, NY, USA, 17–20 August 2014. [Google Scholar] [CrossRef]
- Lee, W.; Migliaccio, G.C.; Lin, K.-Y.; Seto, E.Y. Workforce development: Understanding task-level job demands-resources, burnout, and performance in unskilled construction workers. Saf. Sci. 2020, 123, 104577. [Google Scholar] [CrossRef]
- Conforti, I.; Mileti, I.; Del Prete, Z.; Palermo, E. Measuring Biomechanical Risk in Lifting Load Tasks Through Wearable System and Machine-Learning Approach. Sensors 2020, 20, 1557. [Google Scholar] [CrossRef] [Green Version]
- Jebelli, H.; Choi, B.; Lee, S. Application of Wearable Biosensors to Construction Sites. I: Assessing Workers’ Stress. J. Constr. Eng. Manag. 2019, 145, 04019079. [Google Scholar] [CrossRef]
- Sugimoto, M.; Hamasaki, S.; Yajima, R.; Yamakawa, H.; Takakusaki, K.; Nagatani, K.; Yamashita, A.; Asama, H. Incident Detection at Construction Sites via Heart-Rate and EMG Signal of Facial Muscle. In From Demonstration to Practical Use—To New Stage of Construction Robot: Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC 2020), Kitakyushu, Japan, 27–28 October 2020; International Association on Automation and Robotics in Construction (IAARC): Waterloo, ON, Canada, 2020; pp. 886–891. [Google Scholar]
- Sakhakarmi, S.; Park, J. Wearable Tactile System for Improved Hazard Perception in Construction Sites. In Construction Research Congress 2020: Safety, Workforce, and Education; American Society of Civil Engineers: Atlanta, GA, USA, 2020; pp. 120–128. [Google Scholar]
- Antwi-Afari, M.F.; Li, H.; Umer, W.; Yu, Y.; Xing, X. Construction Activity Recognition and Ergonomic Risk Assessment Using a Wearable Insole Pressure System. J. Constr. Eng. Manag. 2020, 146, 04020077. [Google Scholar] [CrossRef]
- Sanhudo, L.; Calvetti, D.; Martins, J.P.; Ramos, N.M.; Mêda, P.; Gonçalves, M.C.; Sousa, H. Activity classification using accelerometers and machine learning for complex construction worker activities. J. Build. Eng. 2020, 35, 102001. [Google Scholar] [CrossRef]
- Barro-Torres, S.; Fernández-Caramés, T.M.; Pérez-Iglesias, H.J.; Escudero, C.J. Real-time personal protective equipment monitoring system. Comput. Commun. 2012, 36, 42–50. [Google Scholar] [CrossRef]
- Forsyth, J.B.; Martin, T.L.; Young-Corbett, D.; Dorsa, E. Feasibility of Intelligent Monitoring of Construction Workers for Carbon Monoxide Poisoning. IEEE Trans. Autom. Sci. Eng. 2012, 9, 505–515. [Google Scholar] [CrossRef]
- Anwer, S.; Li, H.; Antwi-Afari, M.; Umer, W.; Wong, A. Cardiorespiratory and Thermoregulatory Parameters Are Good Surrogates for Measuring Physical Fatigue during a Simulated Construction Task. Int. J. Environ. Res. Public Health 2020, 17, 5418. [Google Scholar] [CrossRef] [PubMed]
- Sassi, A.; Gioanola, L.; Civera, P. Proposal of a workers and scaffolds monitoring and risk mitigation system for building sites. In Bridge Maintenance, Safety, Management and Life-Cycle Optimization: Proceedings of the Fifth International IABMAS Conference, Philadelphia, USA, 11–15 July 2010; CRC Press: Boca Raton, FL, USA, 2010; Volume 20100869, p. 329. [Google Scholar]
- Guo, H.; Yu, Y.; Xiang, T.; Li, H.; Zhang, D. The availability of wearable-device-based physical data for the measurement of construction workers’ psychological status on site: From the perspective of safety management. Autom. Constr. 2017, 82, 207–217. [Google Scholar] [CrossRef]
- Bangaru, S.S.; Wang, C.; Aghazadeh, F. Data Quality and Reliability Assessment of Wearable EMG and IMU Sensor for Construction Activity Recognition. Sensors 2020, 20, 5264. [Google Scholar] [CrossRef]
- Chen, J.; Song, X.; Lin, Z. Revealing the “Invisible Gorilla” in construction: Estimating construction safety through mental workload assessment. Autom. Constr. 2016, 63, 173–183. [Google Scholar] [CrossRef]
- Yu, Y.; Li, H.; Yang, X.; Kong, L.; Luo, X.; Wong, A.Y.L. An automatic and non-invasive physical fatigue assessment method for construction workers. Autom. Constr. 2019, 103, 1–12. [Google Scholar] [CrossRef]
- Mori, A.; Asaine, W. Preventing accidents on building construction sites: In case of going up and down the scaffolding steps. J. Struct. Constr. Eng. 2011, 76, 1213–1219. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.T.; Tang, Z. Labour-intensive construction sub-contractors: Their critical success factors. Int. J. Proj. Manag. 2010, 28, 732–740. [Google Scholar] [CrossRef]
- Sluiter, J.K. High-demand jobs: Age-related diversity in work ability? Appl. Ergon. 2006, 37, 429–440. [Google Scholar] [CrossRef]
- Hasanzadeh, S.; Esmaeili, B.; Dodd, M.D. Impact of Construction Workers’ Hazard Identification Skills on Their Visual Attention. J. Constr. Eng. Manag. 2017, 143, 04017070. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, H.; Wang, H.; Umer, W.; Fu, H.; Xing, X. Evaluating the impact of mental fatigue on construction equipment operators’ ability to detect hazards using wearable eye-tracking technology. Autom. Constr. 2019, 105, 102835. [Google Scholar] [CrossRef]
- Jeelani, I.; Albert, A.; Han, K.; Azevedo, R. Are Visual Search Patterns Predictive of Hazard Recognition Performance? Empirical Investigation Using Eye-Tracking Technology. J. Constr. Eng. Manag. 2019, 145, 04018115. [Google Scholar] [CrossRef]
- Sharafi, Z.; Shaffer, T.; Sharif, B.; Gueheneuc, Y.-G. Eye-Tracking Metrics in Software Engineering. In Proceedings of the 2015 Asia-Pacific Software Engineering Conference (APSEC), New Delhi, India, 1–4 December 2015; pp. 96–103. [Google Scholar]
- Jeelani, I.; Albert, A.; Han, K. Improving Safety Performance in Construction Using Eye-Tracking, Visual Data Analytics, and Virtual Reality. In Construction Research Congress 2020: Safety, Workforce, and Education; American Society of Civil Engineers: Atlanta, GA, USA, 2020; pp. 395–404. [Google Scholar]
- Frone, M.R.; Tidwell, M.-C.O. The meaning and measurement of work fatigue: Development and evaluation of the Three-Dimensional Work Fatigue Inventory (3D-WFI). J. Occup. Health Psychol. 2015, 20, 273–288. [Google Scholar] [CrossRef]
- Li, S.; Gerber, B.B. Evaluating Physiological Load of Workers with Wearable Sensors. In Proceedings of the 2012 ASCE International Conference on Computing in Civil Engineering, Clearwater Beach, FL, USA, 17–20 June 2012; pp. 405–412. [Google Scholar]
- Gatti, U.C.; Migliaccio, G.C.; Bogus, S.M.; Schneider, S. Using Wearable Physiological Status Monitors for Analyzing the Physical Strain-Productivity Relationship for Construction Tasks. In Proceedings of the 2012 ASCE International Conference on Computing in Civil Engineering, Clearwater Beach, FL, USA, 17–20 June 2012; pp. 577–585. [Google Scholar]
- Jovanov, E.; Lords, A.O.; Raskovic, D.; Cox, P.; Adhami, R.; Andrasik, F. Stress monitoring using a distributed wireless intelligent sensor system. IEEE Comput. Graph. Appl. 2003, 22, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Li, H.; Wang, C.; Seo, J.; Zhang, H.; Wang, H. Development of ergonomic posture recognition technique based on 2D ordinary camera for construction hazard prevention through view-invariant features in 2D skeleton motion. Adv. Eng. Inform. 2017, 34, 152–163. [Google Scholar] [CrossRef]
- Liao, P.-C.; Sun, X.; Zhang, D. A multimodal study to measure the cognitive demands of hazard recognition in construction workplaces. Saf. Sci. 2021, 133, 105010. [Google Scholar] [CrossRef]
- Jeon, J.; Cai, H. Classification of construction hazard-related perceptions using: Wearable electroencephalogram and virtual reality. Autom. Constr. 2021, 132, 103975. [Google Scholar] [CrossRef]
- Hwang, S.; Seo, J.; Jebelli, H.; Lee, S. Feasibility analysis of heart rate monitoring of construction workers using a photoplethysmography (PPG) sensor embedded in a wristband-type activity tracker. Autom. Constr. 2016, 71, 372–381. [Google Scholar] [CrossRef]
- Liu, Y.; Habibnezhad, M.; Jebelli, H. Brainwave-driven human-robot collaboration in construction. Autom. Constr. 2021, 124, 103556. [Google Scholar] [CrossRef]
- Nenonen, N. Analysing factors related to slipping, stumbling, and falling accidents at work: Application of data mining methods to Finnish occupational accidents and diseases statistics database. Appl. Ergon. 2013, 44, 215–224. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, C.; Yang, K. Identifying Safety Hazards Using Collective Bodily Responses of Workers. J. Constr. Eng. Manag. 2017, 143, 04016090. [Google Scholar] [CrossRef]
- Umer, W.; Li, H.; Lu, W.; Szeto, G.P.Y.; Wong, A.Y. Development of a tool to monitor static balance of construction workers for proactive fall safety management. Autom. Constr. 2018, 94, 438–448. [Google Scholar] [CrossRef]
- Lee, W.; Seto, E.; Lin, K.Y.; Migliaccio, G.C. An evaluation of wearable sensors and their placements for analyzing construction worker’s trunk posture in laboratory conditions. Appl. Ergon. 2017, 65, 424–436. [Google Scholar] [CrossRef]
- Wang, C.; Kim, Y.; Lee, S.H.; Sung, N.J.; Min, S.D.; Choi, M.H. Activity and safety recognition using smart work shoes for construction worksite. KSII Trans. Int. Inf. Syst. (TIIS) 2020, 14, 654–670. [Google Scholar]
- Akhavian, R.; Behzadan, A.H. Smartphone-based construction workers’ activity recognition and classification. Autom. Constr. 2016, 71, 198–209. [Google Scholar] [CrossRef]
- Valero, E.; Sivanathan, A.; Bosché, F.; Abdel-Wahab, M. Analysis of construction trade worker body motions using a wearable and wireless motion sensor network. Autom. Constr. 2017, 83, 48–55. [Google Scholar] [CrossRef]
- Yang, K.; Aria, S.; Ahn, C.R.; Stentz, T.L. Automated Detection of Near-miss Fall Incidents in Iron Workers Using Inertial Measurement Units. In Construction Research Congress 2014: Construction in a Global Network; American Society of Civil Engineers: Atlanta, GA, USA, 2014; pp. 935–944. [Google Scholar]
- Shen, X.; Awolusi, I.; Marks, E. Construction Equipment Operator Physiological Data Assessment and Tracking. Pr. Period. Struct. Des. Constr. 2017, 22, 04017006. [Google Scholar] [CrossRef]
Country | Institute/ University | Researchers Involved | Number of Papers | Percentage Contribution |
---|---|---|---|---|
United States | 73 | 135 | 88 | 42.1% |
Hong Kong | 28 | 54 | 31 | 14.8% |
China | 36 | 72 | 23 | 11.0% |
South Korea | 25 | 48 | 22 | 10.5% |
United Kingdom | 16 | 28 | 10 | 4.8% |
Australia | 22 | 36 | 9 | 4.3% |
Japan | 22 | 40 | 8 | 3.8% |
Italy | 6 | 26 | 5 | 2.4% |
Saudi Arabia | 3 | 10 | 5 | 2.4% |
Germany | 7 | 15 | 4 | 1.9% |
Canada | 10 | 16 | 4 | 1.9% |
Source | Publication Year | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2005–2010 | 2011 | 2012 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Total | |
Automation in Construction | 3 | 10 | 7 | 6 | 3 | 7 | 36 | |||||
Journal of Construction Engineering and Management | 1 | 2 | 6 | 5 | 4 | 18 | ||||||
Sensors (Switzerland) | 1 | 5 | 2 | 8 | ||||||||
Advanced Engineering Informatics | 1 | 2 | 1 | 1 | 5 | |||||||
Congress on Computing in Civil Engineering, Proceedings | 1 | 2 | 1 | 4 | ||||||||
Engineering, Construction and Architectural Management | 2 | 2 | 4 | |||||||||
Safety Science | 1 | 2 | 1 | 4 | ||||||||
Construction Research Congress 2020: Safety, Workforce, and Education—Selected Papers from the Construction Research Congress 2020 | 4 | 4 | ||||||||||
Others | 6 | 2 | 4 | 3 | 3 | 6 | 6 | 11 | 10 | 20 | 15 | 86 |
Total | 6 | 3 | 6 | 3 | 4 | 9 | 18 | 22 | 25 | 42 | 31 | 169 |
Rank | Authors | Title | Cited Frequency | Journal | Refs. |
---|---|---|---|---|---|
1 | Awolusi et al. (2018) | Wearable technology for personalized construction safety monitoring and trending: Review of applicable devices | 143 | Automation in Construction | [24] |
2 | Yan et al. (2017) | Wearable IMU-based real-time motion warning system for construction workers’ musculoskeletal disorders prevention | 135 | Automation in Construction | [38] |
3 | Aryal et al. (2017) | Monitoring fatigue in construction workers using physiological measurements | 111 | Automation in Construction | [42] |
4 | Valero et al. (2016) | Musculoskeletal disorders in construction: A review and a novel system for activity tracking with body area network | 111 | Applied Ergonomics | [39] |
5 | Wang et al. (2015) | Risk assessment of work-related musculoskeletal disorders in construction: State-of-the-art review | 109 | Journal of Construction Engineering and Management | [23] |
6 | Jebelli et al. (2018) | EEG-based workers’ stress recognition at construction sites | 101 | Automation in Construction | [18] |
7 | Nath et al. (2017) | Ergonomic analysis of construction worker’s body postures using wearable mobile sensors | 94 | Applied Ergonomics | [19] |
8 | Yang et al. (2016) | Semi-supervised near-miss fall detection for ironworkers with a wearable inertial measurement unit | 92 | Automation in Construction | [40] |
9 | Joshua et al. (2011) | Accelerometer-based activity recognition in construction | 86 | Journal of Computing in Civil Engineering | [41] |
10 | Choi et al. (2017) | What drives construction workers’ acceptance of wearable technologies in the workplace?: Indoor localization and wearable health devices for occupational safety and health | 85 | Automation in Construction | [43] |
Keywords | Frequency | Keywords | Frequency |
---|---|---|---|
Occupational risk | 77 | Health risk | 18 |
Wearable technology | 73 | Accident | 17 |
Construction worker | 66 | Physiology | 17 |
Construction industry | 54 | Electroencephalography | 16 |
Wearable sensor | 47 | Machine learning | 15 |
Construction safety | 40 | Safety engineering | 13 |
Accident prevention | 36 | Inertial measurement unit | 13 |
Risk assessment | 30 | Monitoring | 12 |
Human resource management | 29 | Heart | 12 |
Construction site | 27 | Survey | 12 |
Hazard | 26 | Wearable device | 12 |
Health | 19 | Safety | 11 |
Human | 19 | Physiological model | 11 |
Ergonomics | 19 | Productivity | 11 |
Cluster ID | Size | Silhouette | Mean Year | Cluster Label (LLR) | Alternative Label | Representative Articles |
---|---|---|---|---|---|---|
0 | 47 | 0.731 | 2017 | Attentional failure | Fall-hazard condition; hazard identification | [47,48,49,50,51] |
1 | 38 | 0.672 | 2017 | Brain-computer interface | Quantitative framework; construction safety management | [18,52,53,54,55,56] |
2 | 34 | 0.857 | 2017 | Activity tracking | Body area network; novel system | [19,21,39,57,58] |
3 | 33 | 0.770 | 2019 | Industrial work safety | Health risk mitigation; ann-based automated scaffold builder activity recognition | [57,59,60,61,62] |
4 | 33 | 0.963 | 2011 | Corporate clothing | Engineering industry; cyber-physical gaming system; | [58,63,64,65,66] |
5 | 32 | 0.891 | 2014 | Construction site | Wearable biosensor; physical demand | [17,18,67,68,69] |
6 | 31 | 0.779 | 2015 | Accelerometer-based activity recognition | Using body-mounted sensor; automated ergonomic risk monitoring | [11,16,41,70,71] |
7 | 30 | 0.929 | 2012 | Intelligent monitoring | Carbon monoxide poisoning; gait pattern | [48,58,72,73,74] |
8 | 24 | 0.855 | 2012 | Building site | Risk mitigation system; scaffolds monitoring | [57,71,75,76,77] |
9 | 21 | 0.979 | 2014 | Wearable wireless identification | Sensing platform; self-monitoring alert | [22,61,78,79,80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R.; Mu, B.; Lyu, S.; Wang, H.; Yi, C. Review of the Application of Wearable Devices in Construction Safety: A Bibliometric Analysis from 2005 to 2021. Buildings 2022, 12, 344. https://doi.org/10.3390/buildings12030344
Gao R, Mu B, Lyu S, Wang H, Yi C. Review of the Application of Wearable Devices in Construction Safety: A Bibliometric Analysis from 2005 to 2021. Buildings. 2022; 12(3):344. https://doi.org/10.3390/buildings12030344
Chicago/Turabian StyleGao, Ran, Bowen Mu, Sainan Lyu, Hao Wang, and Chengdong Yi. 2022. "Review of the Application of Wearable Devices in Construction Safety: A Bibliometric Analysis from 2005 to 2021" Buildings 12, no. 3: 344. https://doi.org/10.3390/buildings12030344
APA StyleGao, R., Mu, B., Lyu, S., Wang, H., & Yi, C. (2022). Review of the Application of Wearable Devices in Construction Safety: A Bibliometric Analysis from 2005 to 2021. Buildings, 12(3), 344. https://doi.org/10.3390/buildings12030344