Textile-Reinforced Concrete as a Structural Member: A Review
Abstract
:1. Introduction
2. Bibliometric Literature Search
2.1. Literature Retrieval
2.2. Scientometric Analysis on Keywords and Publication Sources
2.2.1. Keyword Network Analysis
2.2.2. Periodical Publications
2.2.3. Research Streams of Textile-Reinforced Concrete
2.2.4. Countries Focusing on Textile-Reinforced Concrete
3. Discussions on TRC Research Areas
3.1. Material Properties of TRC
3.1.1. Textile Fiber
3.1.2. Coatings
3.1.3. Cement Matrix
3.1.4. Cost Analysis
3.2. Composite Behavior of TRC
3.2.1. Tensile Behavior
3.2.2. Flexural Behavior
3.3. Bond-Slip Relations
3.3.1. Experimental Method
3.3.2. Analytical Models
3.4. Applications of TRC as Structural Members
4. Conclusions and Recommendations for Future Work
4.1. Material Properties of TRC
4.2. Composite Behavior of TRC
4.3. Bond-Slip Relations
4.4. Applications of TRC as Structural Elements
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. High-Performance Fiber-Reinforced Concrete: A Review. J. Mater. Sci. 2016, 51, 6517–6551. [Google Scholar] [CrossRef] [Green Version]
- Pakravan, H.R.; Latifi, M.; Jamshidi, M. Hybrid short fiber reinforcement system in concrete: A review. Constr. Build. Mater. 2017, 142, 280–294. [Google Scholar] [CrossRef]
- Michler, I.H. Segmentbrücke aus textilbewehrtem Beton—Rottachsteg Kempten im Allgäu. Beton Stahlbetonbau 2013, 108, 325–334. [Google Scholar] [CrossRef]
- Rempel, S.; Kulas, C.; Hegger, J. Bearing Behavior of Impregnated Textile. In Proceedings of the FERRO-11—11th International Symposium on Ferrocement and 3rd ICTRC—International Conference on Textile Reinforced Concrete, Aachen, Germany, 7–10 June 2015; pp. 71–78. [Google Scholar]
- Triantafillou, T.; Papanicolaou, C.G. Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets. Mater. Struct. 2006, 39, 93–103. [Google Scholar] [CrossRef]
- Triantafillou, T.C.; Papanicolaou, C.G.; Zissimopoulos, P.; Laourdekis, T. Concrete Confinement with Textile-Reinforced Mortar Jackets. ACI Struct. J. 2006, 103, 28–37. [Google Scholar] [CrossRef]
- Hegger, J.; Voss, S. Investigations on the bearing behaviour and application potential of textile reinforced concrete. Eng. Struct. 2008, 30, 2050–2056. [Google Scholar] [CrossRef]
- Yin, S.; Xu, S.; Li, H. Improved mechanical properties of textile reinforced concrete thin plate. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2013, 28, 92–98. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, X.; Zhou, F.; Zhu, D.; Zhang, M.; Pan, W. Flexural behavior of basalt textile-reinforced concrete. Constr. Build. Mater. 2018, 183, 7–21. [Google Scholar] [CrossRef]
- Ombres, L. Prediction of intermediate crack debonding failure in FRP-strengthened reinforced concrete beams. Compos. Struct. 2010, 92, 322–329. [Google Scholar] [CrossRef]
- Sui, L.; Luo, M.; Yu, K.; Xing, F.; Li, P.; Zhou, Y.; Chen, C. Effect of engineered cementitious composite on the bond behavior between fiber-reinforced polymer and concrete. Compos. Struct. 2018, 184, 775–788. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Aibinu, A.A.; Arashpour, M.; Chileshe, N. Critical evaluation of off-site construction research: A Scientometric analysis. Autom. Constr. 2018, 87, 235–247. [Google Scholar] [CrossRef]
- Chen, K.; Wang, J.; Yu, B.; Wu, H.; Zhang, J. Critical evaluation of construction and demolition waste and associated environmental impacts: A scientometric analysis. J. Clean. Prod. 2020, 287, 125071. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Measuring Scholarly Impact; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Oraee, M.; Hosseini, M.R.; Papadonikolaki, E.; Palliyaguru, R.; Arashpour, M. Collaboration in BIM-based construction networks: A bibliometric-qualitative literature review. Int. J. Proj. Manag. 2017, 35, 1288–1301. [Google Scholar] [CrossRef]
- Kong, K.; Mesticou, Z.; Michel, M.; Larbi, A.S.; Junes, A. Comparative characterization of the durability behaviour of textile-reinforced concrete (TRC) under tension and bending. Compos. Struct. 2017, 179, 107–123. [Google Scholar] [CrossRef]
- Butler, M.; Hempel, S.; Mechtcherine, V. Modelling of ageing effects on crack-bridging behaviour of AR-glass multifilament yarns embedded in cement-based matrix. Cem. Concr. Res. 2011, 41, 403–411. [Google Scholar] [CrossRef]
- Portal, N.W.; Perez, I.F.; Thrane, L.N.; Lundgren, K. Pull-out of textile reinforcement in concrete. Constr. Build. Mater. 2014, 71, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Valeri, P.; Ruiz, M.F.; Muttoni, A. Modelling of Textile Reinforced Concrete in bending and shear with Elastic-Cracked Stress Fields. Eng. Struct. 2020, 215, 110664. [Google Scholar] [CrossRef]
- Saidi, M.; Gabor, A. Experimental analysis of the tensile behaviour of textile reinforced cementitious matrix composites using distributed fibre optic sensing (DFOS) technology. Constr. Build. Mater. 2020, 230, 117027. [Google Scholar] [CrossRef]
- Liu, S.; Rawat, P.; Wang, X.; Zhu, D. Low velocity impact behavior of AR-glass textile reinforced mortar under varying range of loading and temperatures. Constr. Build. Mater. 2019, 228, 116773. [Google Scholar] [CrossRef]
- Tlaiji, T.; Vu, X.H.; Ferrier, E.; Larbi, A.S. Thermomechanical behaviour and residual properties of textile reinforced concrete (TRC) subjected to elevated and high temperature loading: Experimental and comparative study. Compos. Part B Eng. 2018, 144, 99–110. [Google Scholar] [CrossRef]
- Tran, M.T.; Vu, X.H.; Ferrier, E. Experimental and analytical analysis of the effect of fibre treatment on the thermomechanical behaviour of continuous carbon textile subjected to simultaneous elevated temperature and uniaxial tensile loadings. Constr. Build. Mater. 2018, 183, 32–45. [Google Scholar] [CrossRef]
- Yin, S.; Jing, L.; Yin, M.; Wang, B. Mechanical properties of textile reinforced concrete under chloride wet-dry and freeze-thaw cycle environments. Cem. Concr. Compos. 2018, 96, 118–127. [Google Scholar] [CrossRef]
- Machovec, J.; Reiterman, P. Influence of Aggressive Environment on the Tensile Properties of Textile Reinforced Concrete. Acta Polytech. 2018, 58, 245–252. [Google Scholar] [CrossRef]
- Yun-Tao, H.; Shi-Ping, Y.; Yu-Lin, Y.; Shan, L. Research on chloride diffusion and flexural behavior of beams strengthened with TRC subjected to dry-wet cycles. Constr. Build. Mater. 2019, 229, 116906. [Google Scholar] [CrossRef]
- Yosef, L.; Goldfeld, Y. Smart self-sensory carbon-based textile reinforced concrete structures for structural health monitoring. Struct. Health Monit. 2020, 1, 15. [Google Scholar] [CrossRef]
- Goldfeld, Y.; Perry, G. AR-glass/carbon-based textile-reinforced concrete elements for detecting water infiltration within cracked zones. Struct. Health Monit. 2018, 18, 1383–1400. [Google Scholar] [CrossRef]
- Goldfeld, Y.; Rabinovitch, O.; Fishbain, B.; Quadflieg, T.; Gries, T. Sensory carbon fiber based textile-reinforced concrete for smart structures. J. Intell. Mater. Syst. Struct. 2015, 27, 469–489. [Google Scholar] [CrossRef]
- Nahum, L.; Peled, A.; Gal, E. The flexural performance of structural concrete beams reinforced with carbon textile fabrics. Compos. Struct. 2020, 239, 111917. [Google Scholar] [CrossRef]
- Portal, N.W.; Flansbjer, M.; Zandi, K.; Wlasak, L.; Malaga, K. Bending behaviour of novel Textile Reinforced Concrete-foamed concrete (TRC-FC) sandwich elements. Compos. Struct. 2017, 177, 104–118. [Google Scholar] [CrossRef]
- Cuypers, H.; Wastiels, J. Analysis and verification of the performance of sandwich panels with textile reinforced concrete faces. J. Sandw. Struct. Mater. 2011, 13, 589–603. [Google Scholar] [CrossRef]
- Hegger, J.; Kulas, C.; Horstmann, M. Spatial Textile Reinforcement Structures for Ventilated and Sandwich Facade Elements. Adv. Struct. Eng. 2012, 15, 665–675. [Google Scholar] [CrossRef]
- Schütze, E.; Lorenz, E.; Curbach, M. Static and Dynamic Fatigue Strength of Textile Reinforced Concrete. In Proceedings of the IABSE Conference, Nara, Japan, 13–15 May 2015; Volume 8, pp. 332–333. [Google Scholar]
- Mesticou, Z.; Bui, L.; Junes, A.; Larbi, A.S. Experimental investigation of tensile fatigue behaviour of Textile-Reinforced Concrete (TRC): Effect of fatigue load and strain rate. Compos. Struct. 2017, 160, 1136–1146. [Google Scholar] [CrossRef]
- Gopinath, S.; Gettu, R.; Iyer, N.R. Influence of prestressing the textile on the tensile behaviour of textile reinforced concrete. Mater. Struct. 2018, 51, 64. [Google Scholar] [CrossRef]
- Jiang, J.; Jiang, C.; Li, B.; Feng, P. Bond behavior of basalt textile meshes in ultra-high ductility cementitious composites. Compos. Part B Eng. 2019, 174, 107022. [Google Scholar] [CrossRef]
- Yin, S.; Wang, B.; Wang, F.; Xu, S. Bond investigation of hybrid textile with self-compacting fine-grain concrete. J. Ind. Text. 2016, 46, 1616–1632. [Google Scholar] [CrossRef]
- Liu, S.; Rawat, P.; Chen, Z.; Guo, S.; Shi, C.; Zhu, D. Pullout behaviors of single yarn and textile in cement matrix at elevated temperatures with varying loading speeds. Compos. Part B Eng. 2020, 199, 108251. [Google Scholar] [CrossRef]
- Lorenz, E.; Schütze, E.; Schladitz, E.; Curbach, M. Textilbeton—Grundlegende Untersuchungen im Überblick. Beton- Stahlbetonbau 2013, 108, 711–722. [Google Scholar] [CrossRef]
- Carozzi, F.G.; Colombi, P.; Fava, G.; Poggi, C. A cohesive interface crack model for the matrix–textile debonding in FRCM composites. Compos. Struct. 2016, 143, 230–241. [Google Scholar] [CrossRef]
- Li, Y.; Bielak, J.; Hegger, J.; Chudoba, R. An incremental inverse analysis procedure for identification of bond-slip laws in composites applied to textile reinforced concrete. Compos. Part B Eng. 2018, 137, 111–122. [Google Scholar] [CrossRef]
- Scholzen, A.; Chudoba, R.; Hegger, J. Thin-walled shell structures made of textile-reinforced concrete. Struct. Concr. 2014, 16, 115–124. [Google Scholar] [CrossRef]
- Scheerer, S.; Chudoba, R.; Garibaldi, M.; Curbach, M. Shells Made of Textile Reinforced Concrete—Applications in Germany. J. Int. Assoc. Shell Spat. Struct. 2017, 58, 79–93. [Google Scholar] [CrossRef]
- Hawkins, W.; Orr, J.; Ibell, T.; Shepherd, P. An Analytical Failure Envelope for the Design of Textile Reinforced Concrete Shells. Structures 2018, 15, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Butler, M.; Lieboldt, M.; Mechtcherine, V. Application of Textile-Reinforced Concrete (TRC) for structural strengthening and in prefabrication. In Advances in Cement-Based Materials—Proceedings of the International Conference on Advanced Concrete Materials; Taylor & Francis Group: Stellenbosch, South Africa, 2009; pp. 113–120. [Google Scholar] [CrossRef]
- Chira, A.; Kumar, A.; Vlach, T.; Laiblová, L.; Hajek, P. Textile-reinforced concrete facade panels with rigid foam core prisms. J. Sandw. Struct. Mater. 2015, 18, 200–214. [Google Scholar] [CrossRef]
- Kulas, C. Actual applications and potential of textile-reinforced concrete. In Proceedings of the 17th International Congress of the GRCA, Dubai, United Arab Emirates, 19–21 April 2015; pp. 1–11. [Google Scholar]
- Naaman, A.E. Thin TRC products. In Textile Fibre Composites in Civil Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 413–439. [Google Scholar]
- Misnon, M.I.; Islam, M.M.; Epaarachchi, J.; Lau, K.T. Textile material forms for reinforcement materials: A review. In Proceedings of the 3rd Malaysian Postgraduate Conference, Sydney, Australia, 4–5 July 2013; pp. 105–123. Available online: https://eprints.usq.edu.au/23994 (accessed on 10 February 2022).
- Daria, M.; Krzysztof, L.; Jakub, M. Characteristics of biodegradable textiles used in environmental engineering: A comprehensive review. J. Clean. Prod. 2020, 268, 122129. [Google Scholar] [CrossRef]
- Benin, S.; Kannan, S.; Bright, R.J.; Moses, A.J. A review on mechanical characterization of polymer matrix composites & its effects reinforced with various natural fibres. Mater. Today Proc. 2020, 33, 798–805. [Google Scholar] [CrossRef]
- Clauss, B.; Schawaller, D. Modern Aspects of Ceramic Fiber Development. In Advances in Cement-Based Materials; Trans tech publications: Bach, Switzerland, 2006; Volume 50, pp. 1–8. [Google Scholar] [CrossRef]
- Lee, M.; Mata-Falcón, J.; Kaufmann, W. Load-deformation behaviour of weft-knitted textile reinforced concrete in uniaxial tension. Mater. Struct. 2021, 54, 210. [Google Scholar] [CrossRef]
- Tyagi, G. Yarn structure and properties from different spinning techniques. In Advances in Yarn Spinning Technology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 119–154. [Google Scholar] [CrossRef]
- Schladitz, F.; Frenzel, M.; Ehlig, D.; Curbach, M. Bending load capacity of reinforced concrete slabs strengthened with textile reinforced concrete. Eng. Struct. 2012, 40, 317–326. [Google Scholar] [CrossRef]
- Tetta, Z.C.; Koutas, L.; Bournas, D.A. Shear strengthening of full-scale RC T-beams using textile-reinforced mortar and textile-based anchors. Compos. Part B Eng. 2016, 95, 225–239. [Google Scholar] [CrossRef]
- Valeri, P.; Ruiz, M.F.; Muttoni, A. Tensile response of textile reinforced concrete. Constr. Build. Mater. 2020, 258, 119517. [Google Scholar] [CrossRef]
- Gopinath, S.; Iyer, N.R.; Gettu, R.; Palani, G.; Murthy, A.R. Confinement Effect of Glass Fabrics Bonded with Cementitious and Organic Binders. Procedia Eng. 2011, 14, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Banholzer, B.; Brockmann, T.; Brameshuber, W. Material and bonding characteristics for dimensioning and modelling of textile reinforced concrete (TRC) elements. Mater. Struct. 2006, 39, 749–763. [Google Scholar] [CrossRef]
- Portal, N.W.; Thrane, L.N.; Lundgren, K. Flexural behaviour of textile reinforced concrete composites: Experimental and numerical evaluation. Mater. Struct. 2016, 50, 4. [Google Scholar] [CrossRef] [Green Version]
- Shams, A.; Horstmann, M.; Hegger, J. Experimental investigations on Textile-Reinforced Concrete (TRC) sandwich sections. Compos. Struct. 2014, 118, 643–653. [Google Scholar] [CrossRef]
- Deng, M.; Dong, Z.; Zhang, C. Experimental investigation on tensile behavior of carbon textile reinforced mortar (TRM) added with short polyvinyl alcohol (PVA) fibers. Constr. Build. Mater. 2020, 235, 117801. [Google Scholar] [CrossRef]
- Funke, H.; Gelbrich, S.; Ehrlich, A. Development of a New Hybrid Material of Textile Reinforced Concrete and Glass Fibre Reinforced Plastic. Procedia Mater. Sci. 2013, 2, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Portal, N. Usability of Textile Reinforced Concrete: Structural Performance, Durability and Sustainability. Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2015. [Google Scholar]
- Aidarov, S.; Nadaždi, A.; Pugach, E.; Tošić, N.; de la Fuente, A. Cost-oriented analysis of fibre reinforced concrete column-supported flat slabs construction. J. Build. Eng. 2022, 51, 104205. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, M.; Zhou, F.; Zhu, D. Experimental study on basalt textile reinforced concrete under uniaxial tensile loading. Constr. Build. Mater. 2017, 138, 88–100. [Google Scholar] [CrossRef]
- Brameshuber, W.; Hinzen, M.; Dubey, A.; Peled, A.; Mobasher, B.; Bentur, A.; Aldea, C.; Silva, F.; Hegger, J.; Gries, T.; et al. Recommendation of RILEM TC 232-TDT: Test methods and design of textile reinforced concrete. Mater. Struct. 2016, 49, 4923–4927. [Google Scholar] [CrossRef] [Green Version]
- Tsesarsky, M.; Peled, A.; Katz, A.; Anteby, I. Strengthening concrete elements by confinement within textile reinforced concrete (TRC) shells—Static and impact properties. Constr. Build. Mater. 2013, 44, 514–523. [Google Scholar] [CrossRef]
- Lorenz, E.; Curbach, M. Test methods for textile reinforced concrete. In Proceedings of the 11th International Symposium on Ferrocement and Textile Reinforced Concrete 3rd ICTRC, Aachen, Germany, 7–10 June 2015; pp. 307–318. [Google Scholar]
- Raoof, S.M. Bond between Textile Reinforced Mortar (TRM) and Concrete Substrate. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2017. [Google Scholar]
- Lorenz, E.; Ortlepp, R. Basic Research on the Anchorage of Textile Rein-Forcement in Cementitious Matrix. In Proceedings of the International Symposium on Fiber-Reinforced Polymer Reinforcement for Concrete Structures, Sydney, Australia, 13–15 July 2009; p. 4. [Google Scholar]
- Vořechovský, M.; Li, Y.; Rypl, R.; Chudoba, R. Tensile behavior of carbon textile concrete composite captured using a probabilistic multiscale multiple cracking model. Compos. Struct. 2021, 277, 114624. [Google Scholar] [CrossRef]
- De Munck, M.; Tysmans, T.; El Kadi, M.; Wastiels, J.; Vervloet, J.; Kapsalis, P.; Remy, O. Durability of sandwich beams with textile reinforced cementitious composite faces. Constr. Build. Mater. 2019, 229, 116832. [Google Scholar] [CrossRef]
- Junes, A.; Larbi, A.S. An indirect non-linear approach for the analysis of sandwich panels with TRC facings. Constr. Build. Mater. 2016, 112, 406–415. [Google Scholar] [CrossRef]
- Junes, A.; Larbi, A.S. An experimental and theoretical study of sandwich panels with TRC facings: Use of metallic connectors and TRC stiffeners. Eng. Struct. 2016, 113, 174–185. [Google Scholar] [CrossRef]
- Colombo, I.G.; Colombo, M.; di Prisco, M. Bending behaviour of Textile Reinforced Concrete sandwich beams. Constr. Build. Mater. 2015, 95, 675–685. [Google Scholar] [CrossRef]
- Ngo, D.Q.; Nguyen, H.C. Experimental and Numerical Investigations on Flexural Behaviour of Prestressed Textile Reinforced Concrete Slabs. Civ. Eng. J. 2021, 7, 1084–1097. [Google Scholar] [CrossRef]
- Ortlepp, R. Anchorage Length for Textile Reinforced Concrete. Int. J. Environ. Prot. 2011, 1, 43–48. [Google Scholar] [CrossRef]
- Askouni, P.D.; Papanicolaou, C.G. Textile Reinforced Mortar-to-masonry bond: Experimental investigation of bond-critical parameters. Constr. Build. Mater. 2019, 207, 535–547. [Google Scholar] [CrossRef]
- Goldfeld, Y. Structural modelling of textile-reinforced concrete elements under uniaxial tensile loading. Compos. Struct. 2020, 235, 111805. [Google Scholar] [CrossRef]
- Djamai, Z.I.; Bahrar, M.; Salvatore, F.; Larbi, A.S.; El Mankibi, M. Textile reinforced concrete multiscale mechanical modelling: Application to TRC sandwich panels. Finite Elem. Anal. Des. 2017, 135, 22–35. [Google Scholar] [CrossRef]
- Xu, S.; Li, H. Bond properties and experimental methods of textile reinforced concrete. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2007, 22, 529–532. [Google Scholar] [CrossRef]
- Lorenz, E.; Ortlepp, R. Bond Behavior of Textile Reinforcements—Development of a Pull-Out Test and Modeling of the Respective Bond versus Slip Relation. In High Performance Fiber Reinforced Cement Composites 6; RILEM Bookseries; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Banholzer, B. Bond of a strand in a cementitious matrix. Mater. Struct. 2006, 39, 1015–1028. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kim, H.-G.; Lee, Y.-J.; Kim, D.-H.; Jo, M.-S.; Kim, K.-H. Evaluation of Bond Properties of a Fabric-Reinforced Cementitious Matrix for Strengthening of Concrete Structures. Appl. Sci. 2020, 10, 3767. [Google Scholar] [CrossRef]
- Li, Q.; Xu, S. Experimental Research on Mechanical Performance of Hybrid Fiber Reinforced Cementitious Composites with Polyvinyl Alcohol Short Fiber and Carbon Textile. J. Compos. Mater. 2010, 45, 5–28. [Google Scholar] [CrossRef]
- Tekle, B.H.; Messerer, D.; Holschemacher, K. Bond induced concrete splitting failure in textile-reinforced fine-grained concrete. Constr. Build. Mater. 2021, 303, 124503. [Google Scholar] [CrossRef]
- Gopinath, S.; Kumar, V.R.; Sheth, H.; Murthy, A.R.; Iyer, N.R. Pre-fabricated sandwich panels using cold-formed steel and textile reinforced concrete. Constr. Build. Mater. 2014, 64, 54–59. [Google Scholar] [CrossRef]
- Chang, Z.-T.; Bradford, M.A.; Gilbert, R.I. Short-term behaviour of shallow thin-walled concrete dome under uniform external pressure. Thin Walled Struct. 2011, 49, 112–120. [Google Scholar] [CrossRef]
- Verwimp, E.; Tysmans, T.; Mollaert, M.; Berg, S. Experimental and numerical buckling analysis of a thin TRC dome. Thin Walled Struct. 2015, 94, 89–97. [Google Scholar] [CrossRef]
- Verwimp, E.; Tysmans, T.; Mollaert, M.; Wozniak, M. Prediction of the buckling behaviour of thin cement composite shells: Parameter study. Thin Walled Struct. 2016, 108, 20–29. [Google Scholar] [CrossRef]
- Sharei, E.; Scholzen, A.; Hegger, J.; Chudoba, R. Structural behavior of a lightweight, textile-reinforced concrete barrel vault shell. Compos. Struct. 2017, 171, 505–514. [Google Scholar] [CrossRef]
- Tysmans, T.; Adriaenssens, S.; Wastiels, J. Form finding methodology for force-modelled anticlastic shells in glass fibre textile reinforced cement composites. Eng. Struct. 2011, 33, 2603–2611. [Google Scholar] [CrossRef]
- Vervloet, J.; Tysmans, T.; El Kadi, M.; De Munck, M.; Kapsalis, P.; Van Itterbeeck, P.; Wastiels, J.; Van Hemelrijck, D. Validation of a Numerical Bending Model for Sandwich Beams with Textile-Reinforced Cement Faces by Means of Digital Image Correlation. Appl. Sci. 2019, 9, 1253. [Google Scholar] [CrossRef] [Green Version]
- Shams, A.; Hegger, J.; Horstmann, M. An analytical model for sandwich panels made of textile-reinforced concrete. Constr. Build. Mater. 2014, 64, 451–459. [Google Scholar] [CrossRef]
- Hegger, J.; Horstmann, M.; Feldmann, M.; Pyschny, D.; Raupach, M.; Feger, C. Sandwich panels made of TRC and discrete and continuous connectors. In International RILEM Conference on Material Science; RILEM Publications SARL: Aachen, Germany, 2010; pp. 381–392. [Google Scholar]
- Hong, J.; Zhang, S.; Fang, H.; Xu, X.; Xie, H.; Wang, Y. Structural performance of textile reinforced concrete sandwich panels under axial and transverse load. Rev. Adv. Mater. Sci. 2021, 60, 64–79. [Google Scholar] [CrossRef]
- Dey, V.; Zani, G.; Colombo, M.; di Prisco, M.; Mobasher, B. Flexural impact response of textile-reinforced aerated concrete sandwich panels. Mater. Des. 2015, 86, 187–197. [Google Scholar] [CrossRef]
Fiber Type | Material | Density (g/cm3) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Strain Capacity (%) | Reference |
---|---|---|---|---|---|---|
Natural fibers | Jute | 1.23 | 187–773 | 13–31 | 2.5 | [51] |
Flax | 1.38 | 343–1035 | 27–6 | 1.2–3.3 | ||
Bamboo | 0.6–1.1 | 140–230 | 11–17 | 3.8–5.8 | [52] | |
Cotton | 1.6 | 220–840 | 4.5–12.6 | 2–10 | ||
Sisal | 1.5 | 80–855 | 9–38 | 9–38 | ||
Coir | 1.2 | 160–250 | 3–6 | 30 | ||
Manmade fibers | Carbon | 1.4 | 1100–4000 | 150–235 | 1.4–1.8 | [34] |
Glass | 2.6 | 120–790 | 30–40 | 2.5 | [17] | |
Boron | 2.48–2.82 | 500–2100 | 450 | 3.7 | ||
Ceramic | 2.7–3.88 | 1967–2930 | 150–373 | - | [53] | |
Aramid | 1.44 | 1412–2097 | 98–102.2 | - | [54] |
Reference | Plate Dimensions (mm) | Minimum Cover (mm) | Testing Length (mm) | Anchorage Length (mm) | Type of Testing |
---|---|---|---|---|---|
[85] | 30 × 50 × 50 | 25 | 30 | 50 | I |
[86] | 20 × 50 × 50 | 25 | 20 | 200 | I |
[87] | 140 × 60 × 10 | 5 | 20 | 120 | II |
[38] | 160 × 70 × 10 | 5 | 20–35 (interval-5) | 125–140 (interval-5) | II |
[84] | 278 × 60 × 8 | 4 | 18 | 240 | III |
[18] | 400 × 100 × 15 | 7.5 | 25, 50, 75-carbon 35, 75, 88-basalt | 295, 270, 245-carbon 285, 245, 232-basalt | III |
[37] | 300 × 60 × 10 | 5 | 15–25 (interval 5) | 235–225(interval 5) | III |
[88] | 480 × 114 × 30 | 15 | 240 | 240 | III |
Reference | Insulation Panel Type | Average Specimen Size (mm) | Connecter | Textile Used | TRC Thickness (mm) | Concrete Strength (MPa) | Bending Capacity | |||
---|---|---|---|---|---|---|---|---|---|---|
Type | Thickness (mm) | Top | Bottom | Peak Load (kN) | Displ. (mm) | |||||
[98] | Polystyrene foam | 100 | 1200 × 600 × 200 | Concrete | Glass fiber | 10 | 10 | 14.5 | 21.3 | 2.20 |
[74] | Expanded polystyrene-heat rain cycles | 200 | 2500 × 500 × 210 | Glued | AR-Glass Styrene-butadiene Coated | 5 | 5 | 23.5 | 3.01 | 21.92 |
Expanded polystyrene-heat cold cycles | 4.88 | 45.6 | ||||||||
Expanded polystyrene- freeze-thaw cycles | 4.41 | 41.86 | ||||||||
[31] | Foam concrete | 150 | 2500 × 800 × 230 | Glass fiber-reinforced polymer (GFRP) | Carbon epoxy coated | 30 | 50 | 72 | 26.6 | 110 |
[76] | Extruded polyurethane foam (C-1) | 50 | 1200 × 200 × 58 | Glued | Ettringite matrix reinforced with 2 layers of AR glass fiber | 3 | 3 | N/A | 1.44 | 37.8 |
Extruded polyurethane foam (C-2) | Transverse stiffener | 3 | 3 | 1.29 | 29.2 | |||||
Extruded polyurethane foam (C-3) | Circular cross-section ‘‘nail type” metallic connectors | 3 | 3 | 1.32 | 34.4 | |||||
[75] | Polyurethane (Panel-1) | 50 | 1100 × 198 × 57.5 | Glued | AR-Glass | 3.8 | 3.7 | N/A | 14.75 | 39.2 |
Polyurethane (Panel-2) | 50 | 1100 × 197.6 × 57.5 | AR-Glass | 3.7 | 3.8 | N/A | 15 | 36 | ||
[77] | Expanded polystyrene (EPS) | 100 | 1200 × 300 × 120 | Glue | AR-Glass Epoxy Coated | 10 | 10 | 73 | 16.31 | 41.91 |
[99] | Fiber-reinforced aerated concrete-A | 50 | 250 × 50 × 50 | Concrete | AR-Glass | 6–8 layers | N/A | 1.73 | 6.25 | |
Fiber-reinforced aerated concrete-B | 100 | 250 × 50 × 100 | 2.47 | 6.33 | ||||||
Autoclaved aerated concrete-A | 50 | 250 × 50 × 50 | 1.19 | 6.37 | ||||||
Autoclaved aerated concrete-B | 100 | 250 × 50 × 100 | 2.76 | 5.87 | ||||||
[89] | Profiled steel sheet | 50 | 1500 × 650 × 70 | Screws | AR-Glass | 10 | 10 | 34 | 21.39 | 42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venigalla, S.G.; Nabilah, A.B.; Mohd Nasir, N.A.; Safiee, N.A.; Abd Aziz, F.N.A. Textile-Reinforced Concrete as a Structural Member: A Review. Buildings 2022, 12, 474. https://doi.org/10.3390/buildings12040474
Venigalla SG, Nabilah AB, Mohd Nasir NA, Safiee NA, Abd Aziz FNA. Textile-Reinforced Concrete as a Structural Member: A Review. Buildings. 2022; 12(4):474. https://doi.org/10.3390/buildings12040474
Chicago/Turabian StyleVenigalla, Sanjay Gokul, Abu Bakar Nabilah, Noor Azline Mohd Nasir, Nor Azizi Safiee, and Farah Nora Aznieta Abd Aziz. 2022. "Textile-Reinforced Concrete as a Structural Member: A Review" Buildings 12, no. 4: 474. https://doi.org/10.3390/buildings12040474
APA StyleVenigalla, S. G., Nabilah, A. B., Mohd Nasir, N. A., Safiee, N. A., & Abd Aziz, F. N. A. (2022). Textile-Reinforced Concrete as a Structural Member: A Review. Buildings, 12(4), 474. https://doi.org/10.3390/buildings12040474