How Real Estate Shocks Affect Manufacturing Value Chain Upgrading: Evidence from China
Abstract
:1. Introduction
2. Theoretical Analysis and Hypothesis
2.1. Empirical Facts in Relation to the Value-Added Rate and Housing Prices
2.2. Impact Mechanism of Urban Housing Price Increases on Value Chain Upgrading
3. Materials and Methods
3.1. Econometric Model
3.2. Variable Selection and Description
3.3. Data Source
3.4. Endogeneity and Instrumental Variable
4. Results and Discussion
4.1. Benchmark and Robustness Test
4.2. Period-Based Test on Relation between Urban Housing Prices and Enterprises’ Value-Added Rate
4.3. Analysis of Influential Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kraemer, K.L.; Linden, G.; Dedrick, J. Capturing Value in Global Networks: Apple’s Ipad and Iphone. Available online: http://economiadeservicos.com/wp-content/uploads/2017/04/value_ipad_iphone.pdf (accessed on 10 July 2021).
- Gaoju, Y.; Xianhai, H. Internal Drivers and the Specialization Status of Under-developed Countries: Evidence from China’s High-tech Industry. Soc. Sci. China 2014, 35, 106–121. [Google Scholar] [CrossRef]
- Poon, T.S. Beyond the Global Production Networks: A Case of Further Upgrading of Taiwan's Information Technology Industry. Int. J. Technol. Glob. 2004, 1, 130–144. [Google Scholar] [CrossRef]
- Qu, C.; Shao, J.; Cheng, Z. Can Embedding in Global Value Chain Drive Green Growth in China’s Manufacturing Industry? J. Clean. Prod. 2020, 268, 121962. [Google Scholar] [CrossRef]
- Neely, A. Exploring the Financial Consequences of the Servitization of Manufacturing. Oper. Manag. Res. 2008, 1, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Kastalli, I.V.; Van looy, B. Servitization: Disentangling the Impact of Service Business Model Innovation on Manufacturing Firm Performance. J. Oper. Manag. 2013, 31, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Crozet, M.; Milet, E. Should Everybody Be in Services? The Effect of Servitization on Manufacturing Firm Performance. J. Econ. Manag. Strategy 2017, 26, 820–841. [Google Scholar] [CrossRef]
- Saliola, F.; Zanfei, A. Multinational Firms, Global Value Chains and the Organization of Knowledge Transfer. Res. Policy 2009, 38, 369–381. [Google Scholar] [CrossRef]
- Cheng, L.K.; Kwan, Y.K. What Are the Determinants of the Location of Foreign Direct Investment? The Chinese Experience. J. Int. Econ. 2000, 51, 379–400. [Google Scholar] [CrossRef]
- Wang, J. The Economic Impact of Special Economic Zones: Evidence from Chinese Municipalities. J. Dev. Econ. 2013, 101, 133–147. [Google Scholar] [CrossRef]
- Kishor, N.K. Does Consumption Respond More to Housing Wealth Than to Financial Market Wealth? If So, Why? J. Real Estate Financ. Econ. 2007, 35, 427–448. [Google Scholar] [CrossRef]
- Dong, Z.; Hui, E.C.; Jia, S. How Does Housing Price Affect Consumption in China: Wealth Effect or Substitution Effect? Cities 2017, 64, 1–8. [Google Scholar] [CrossRef]
- Gang, J.; Peng, L.; Zhang, J. Are Pricier Houses Less Risky? Evidence from China. J. Real Estate Financ. Econ. 2021, 63, 662–677. [Google Scholar] [CrossRef]
- Laamanen, J. Home-ownership and the Labour Market: Evidence from Rental Housing Market Deregulation. Labour Econ. 2017, 48, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Wang, Y.; Gao, L.; Wu, H. How Housing Price Fluctuation Affects Resource Allocation: Evidence from China. Emerg. Mark. Financ. Trade 2020, 56, 3084–3094. [Google Scholar] [CrossRef]
- Collyns, C.; Senhadji, A. Lending Booms, Real Estate Bubbles, and the Asian Crisis. In Asset Price Bubbles: The Implication for Monetary, Regulatory and International Policies; Mit Press: Cambridge, UK; London, UK, 2003; pp. 25–101. [Google Scholar]
- Hui, E.C.; Yue, S. Housing Price Bubbles in Hong Kong, Beijing and Shanghai: A Comparative Study. J. Real Estate Financ. Econ. 2006, 33, 299–327. [Google Scholar] [CrossRef]
- Miller, N.; Peng, L.; Sklarz, M. House Prices and Economic Growth. J. Real Estate Financ. Econ. 2011, 42, 522–541. [Google Scholar] [CrossRef]
- Corradin, S.; Popov, A. House Prices, Home Equity Borrowing, and Entrepreneurship. Rev. Financ. Stud. 2015, 28, 2399–2428. [Google Scholar] [CrossRef] [Green Version]
- Rong, Z.; Ni, J. How Do Housing Cycles Influence Listed Firms’ R&d Investment: Evidence from the Collateral Channel. Econ. Innov. New Technol. 2020, 29, 287–312. [Google Scholar]
- Gan, J. Collateral, Debt Capacity, and Corporate Investment: Evidence from a Natural Experiment. J. Financ. Econ. 2007, 85, 709–734. [Google Scholar] [CrossRef] [Green Version]
- Helpman, E. The Size of Regions In’topics in Public Economics: Theoretical and Applied Analysis; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Foote, A. The Effects of Negative House Price Changes on Migration: Evidence Across Us Housing Downturns. Reg. Sci. Urban Econ. 2016, 60, 292–299. [Google Scholar] [CrossRef]
- Rabe, B.; Taylor, M.P. Differences in Opportunities? Wage, Employment and House-price Effects on Migration. Oxf. Bull. Econ. Stat. 2012, 74, 831–855. [Google Scholar] [CrossRef]
- Liang, W.; Lu, M.; Zhang, H. Housing Prices Raise Wages: Estimating the Unexpected Effects of Land Supply Regulation in China. J. Hous. Econ. 2016, 33, 70–81. [Google Scholar] [CrossRef]
- Shukai, C. An Analysis of the “direct Effect” and “indirect Effect” of Urban Housing Prices on the Upgrading of Industrial Structure—Based on Data of 285 Cities. In Journal of Physics: Conference Series; Iop Publishing: Bristol, UK, 2021; p. 12017. [Google Scholar]
- Rong, Z.; Wang, W.; Gong, Q. Housing Price Appreciation, Investment Opportunity, and Firm Innovation: Evidence from China. J. Hous. Econ. 2016, 33, 34–58. [Google Scholar] [CrossRef]
- Sun, C.; Tang, Y.F. Urban house price fluctuation and industrial structure adjustment:empirical evidence from the spatial spill-over horizon. J. Shanxi Univ. (Philos. Soc. Sci. Ed.) 2021, 43, 68–82. (In Chinese) [Google Scholar]
- Zhou, M.; Lu, Y.; Du, Y.; Yao, X. Special Economic Zones and Region Manufacturing Upgrading. China Ind. Econ. 2018, 3, 62–79. (In Chinese) [Google Scholar]
- Pietrobelli, C.; Rabellotti, R. Upgrading to Compete Global Value Chains, Clusters, and Smes in Latin America. Rev. Adm. Contemp. 2009, 13, 522–523. [Google Scholar]
- Gereffi, G. International Trade and Industrial Upgrading in the Apparel Commodity Chain. J. Int. Econ. 1999, 48, 37–70. [Google Scholar] [CrossRef]
- Azadegan, A.; Wagner, S.M. Industrial Upgrading, Exploitative Innovations and Explorative Innovations. Int. J. Prod. Econ. 2011, 130, 54–65. [Google Scholar] [CrossRef]
- Su, H.; Zheng, L.; Mou, Y.F. Factor Endowment and China's Manufacturing Industry Upgrading: An Analysis Based on WIOD and China Industrial Enterprise Database. Manag. World 2017, 4, 70–79. (In Chinese) [Google Scholar]
- Huang, Q.H. “The New Normal”, the Late Stage of Industrialization and the New Power of Industrial Growth. China Ind. Econ. 2014, 10, 5–19. (In Chinese) [Google Scholar]
- Xia, M.; Zhang, H.X. The Change of Value-added and Value-added Rate of Transnational Production and Trade—Theoretical Analysis of Value-added Rate Based on Input-output Framework. Manag. World 2015, 2, 32–44. (In Chinese) [Google Scholar]
- Jianmin, W.; Li, Y. Does Factor Endowment Allocation Improve Technological Innovation Performance? An Empirical Study on the Yangtze River Delta Region. Sci. Total Environ. 2020, 716, 137107. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Wang, P. Sectoral bubbles, misallocation, and endogenous growth. J. Math. Econ. 2014, 53, 153–163. [Google Scholar] [CrossRef]
- Chaney, T.; Sraer, D.; Thesmar, D. The Collateral Channel: How Real Estate Shocks Affect Corporate Investment. Am. Econ. Rev. 2012, 102, 2381–2409. [Google Scholar] [CrossRef] [Green Version]
- Campello, M.; Graham, J.R.; Harvey, C.R. The Real Effects of Financial Constraints: Evidence from a Financial Crisis. J. Financ. Econ. 2010, 97, 470–487. [Google Scholar] [CrossRef] [Green Version]
- Bleck, A.; Liu, X. Credit Expansion and Credit Misallocation. J. Monet. Econ. 2018, 94, 27–40. [Google Scholar] [CrossRef]
- Chen, T.; Liu, L.X.; Zhou, L.A. The Crowding-out Effects of Real Estate Shocks—Evidence from China; Social Science Electronic Publishing: Rochester, NY, USA, 2015; pp. 1–39. [Google Scholar]
- Hsieh, C.T.; Klenow, P.J. Misallocation and Manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef] [Green Version]
- Bai, P.W.; Xu, J. Capital Stock and the Rate of Return to Capital in the Three Industries and the Convergence Hypothesis in China: 1978–2013. China Econ. Q. 2018, 17, 1171–1206. (In Chinese) [Google Scholar]
- Zhang, L.; He, J.; Ma, R.H. How Housing Price Affects Labor Migration? Econ. Res. J. 2017, 52, 155–170. (In Chinese) [Google Scholar]
- Du, J.; Peiser, R.B. Land supply, pricing and local governments' land hoarding in China. Reg. Sci. Urban Econ. 2014, 48, 180–189. [Google Scholar] [CrossRef]
- Shen, X.; Huang, X.; Li, H.; Li, Y.; Zhao, X. Exploring the relationship between urban land supply and housing stock: Evidence from 35 cities in China. Habitat Int. 2018, 77, 80–89. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
Type of Variables | Marks | Variables | Definition | Mean | Std.Dev |
---|---|---|---|---|---|
Dependent variable | AdValRate | Value-added rate of industrial enterprises | Value added/Total output | 0.2747 | 0.1412 |
AdValRate | Added value of listed enterprises | Value added/Total output | 0.2445 | 0.1538 | |
Independent variable | HP | House price (logarithm) | Total commercial housing sales/Total area of commodity housing sold | 8.3163 | 0.4797 |
Urban characteristic variable | Agdp | Per capital GDP | Per capital GDP | 5.8516 | 5.0283 |
FDI | Foreign investment (logarithm) | Direct investment outside the city | 12.0418 | 1.2450 | |
Second Industry | Proportion of secondary industry (%) | Secondary industry output/GDP | 47.0349 | 7.0335 | |
Third Industry | Proportion of tertiary industry (%) | Tertiary industry output/GDP | 50.6620 | 7.1197 | |
Industrial enterprise | K | Capital (logarithm) | Logarithm of net fixed assets | 8.3479 | 1.7440 |
L | Labor (logarithm) | Log of the number of employees | 4.7540 | 1.0904 | |
M | Intermediate input (logarithm) | The logarithm of input in the middle of the firm | 9.8413 | 1.3403 | |
Age | Age (years) | Current year—Year of establishment of the enterprise | 9.3165 | 9.1478 | |
Scale | Scale (logarithm) | Log of total assets | 9.9015 | 1.4596 | |
Subsidy | Subsidy | Subsidized income is 1 | 0.0303 | 0.6368 | |
Foreign heold | Foreign investment holding | Foreign investment share >25% is 1 | 0.2659 | 0.4418 | |
Export | Export | Enterprise export is 1 | 0.2657 | 0.4417 | |
Marketing enterprises | Age | Age | Current year—Year of establishment of the enterprise | 12.9412 | 5.2810 |
Scale | Scale | The logarithm of total business assets | 21.6385 | 1.1482 | |
Holder | System of ownership | State-owned enterprises is 1 | 0.3446 | 0.4753 |
Model | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Method | OLS | 2SLS | ||||
HP | −0.0174 *** | −0.0421 *** | −0.0353 *** | −1.4351 *** | −1.3590 *** | −0.8983 *** |
(0.0021) | (0.0019) | (0.0019) | (0.1392) | (0.1229) | (0.0906) | |
K | 0.0003 | 0.0002 | 0.0008 *** | 0.0006 *** | ||
(0.0002) | (0.0002) | (0.0003) | (0.0002) | |||
L | 0.0266 *** | 0.0270 *** | 0.0316 *** | 0.0294 *** | ||
(0.0008) | (0.0008) | (0.0011) | (0.0009) | |||
M | −0.0935 *** | −0.0937 *** | −0.1030 *** | −0.0978 *** | ||
(0.0006) | (0.0006) | (0.0011) | (0.0008) | |||
Age | 0.0005 *** | 0.0007 *** | 0.0044 *** | 0.0027 *** | ||
(0.0001) | (0.0001) | (0.0004) | (0.0003) | |||
Age2 | −0.0000 *** | −0.0000 *** | −0.0001 *** | −0.0001 *** | ||
(0.0000) | (0.0000) | (0.0000) | (0.0000) | |||
Scale | 0.0429 *** | 0.0427 *** | 0.0576 *** | 0.0514 *** | ||
(0.0007) | (0.0007) | (0.0016) | (0.0012) | |||
Subsidy | −0.0000 | 0.0000 | 0.0001 | 0.0000 | ||
(0.0003) | (0.0003) | (0.0005) | (0.0004) | |||
Foreign hold | −0.0048 *** | −0.0047 *** | 0.0019 | 0.0000 | ||
(0.0012) | (0.0012) | (0.0019) | (0.0016) | |||
Export | −0.0000 | 0.0003 | 0.0075 *** | 0.0049 *** | ||
(0.0007) | (0.0007) | (0.0012) | (0.0010) | |||
Agdp | −0.0023 *** | 0.0051 *** | ||||
(0.0001) | (0.0008) | |||||
FDI | 0.0041 *** | 0.0071 *** | ||||
(0.0006) | (0.0008) | |||||
Second Industry | 0.0000 | 0.0216 *** | ||||
(0.0002) | (0.0023) | |||||
Third Industry | −0.0013 *** | 0.0177 *** | ||||
(0.0002) | (0.0020) | |||||
Capital of enterprise fixed | YES | YES | YES | YES | YES | YES |
Year fixed | YES | YES | YES | YES | YES | YES |
Industry fixed | YES | YES | YES | YES | YES | YES |
DWHChi2 value (p-value) | 5392.9280 | 5218.6960 | 2897.3100 | |||
0.0000 | 0.0000 | 0.0000 | ||||
F value in the first stage | 8444.4520 | 8100.9100 | 4275.2830 | |||
Observations | 497,447 | 496,321 | 496,321 | 497,447 | 496,321 | 496,321 |
R-squared | 0.556 | 0.650 | 0.651 | 0.534 | 0.603 | 0.591 |
Dependent Variable: Ln (House Pricing) | (1) | (2) | (3) | |||
---|---|---|---|---|---|---|
Coefficient | Std.Dev | Coefficient | Std.Dev | Coefficient | Std.Dev | |
Instrumental variable | −0.0496 *** | 0.0006 | −0.0496 *** | 0.0006 | −0.0397 *** | 0.0005 |
Enterprise control variable | NO | YES | YES | |||
Urban control variable | NO | NO | YES | |||
Other fixed effects | YES | YES | YES | |||
Observations | 239,941 | 239,941 | 239,941 | |||
R-squared | 0.9856 | 0.9856 | 0.9895 | |||
F value in the first phase | 8421.5330 | 8441.8400 | 8149.8940 |
Method of Estimation | OLS | OLS | OLS | 2SLS | 2SLS | 2SLS |
---|---|---|---|---|---|---|
Explained variable | AdValRate | AdValRate | AdValRate | AdValRate | AdValRate | AdValRate |
Group 1: Did not add the housing price square item | ||||||
HP | −0.016 *** | −0.033 *** | −0.003 | −0.381 *** | −0.317 *** | −0.399 *** |
(0.004) | (0.003) | (0.004) | (0.029) | (0.027) | (0.044) | |
Enterprise characteristic variable | NO | YES | YES | NO | YES | YES |
Urban characteristic variable | NO | NO | YES | NO | NO | YES |
Observations | 243,403 | 243,403 | 243,403 | 243,403 | 243,403 | 243,403 |
R-squared | 0.7140 | 0.7570 | 0.7580 | 0.6940 | 0.7450 | 0.7390 |
Group 2: Add the housing price square term | ||||||
HP | 0.212 *** | 0.650 *** | 0.780 *** | 0.214 | 0.592 *** | 1.295 *** |
(0.030) | (0.028) | (0.039) | (0.224) | (0.208) | (0.299) | |
HP2 | −0.012 *** | −0.038 *** | −0.045 *** | −0.030 ** | −0.046 *** | −0.089 *** |
(0.002) | (0.002) | (0.002) | (0.012) | (0.011) | (0.017) | |
Enterprise characteristic variable | NO | YES | YES | NO | YES | YES |
Urban characteristic variable | NO | NO | YES | NO | NO | YES |
Observations | 243,403 | 243,403 | 243,403 | 243,403 | 243,403 | 243,403 |
R-squared | 0.7140 | 0.7580 | 0.7580 | 0.6980 | 0.7510 | 0.7500 |
Method of Estimation | OLS | OLS | OLS | 2SLS | 2SLS | 2SLS |
---|---|---|---|---|---|---|
HP | −0.0464 *** | −0.0360 ** | −0.0355 ** | −0.8014 * | −0.5774 * | −0.6520 * |
(0.0170) | (0.0157) | (0.0161) | (0.4202) | (0.3135) | (0.3887) | |
Age | −0.0045 *** | −0.0045 *** | −0.0048 *** | −0.0047 ** | ||
(0.0013) | (0.0013) | (0.0013) | (0.0020) | |||
Age2 | 0.0001 | 0.0001 | 0.0001 * | 0.0001 | ||
(0.0000) | (0.0000) | (0.0000) | (0.0001) | |||
Scale | −0.0298 *** | −0.0298 *** | −0.0294 *** | −0.0294 *** | ||
(0.0019) | (0.0019) | (0.0020) | (0.0034) | |||
Holder | −0.0202 *** | −0.0202 *** | −0.0199 *** | −0.0196 * | ||
(0.0062) | (0.0062) | (0.0061) | (0.0107) | |||
Urban control variable | NO | NO | YES | NO | NO | YES |
Time fixed effect | YES | YES | YES | YES | YES | YES |
Urban fixed effect | YES | YES | YES | YES | YES | YES |
Observations | 4993 | 4993 | 4993 | 4980 | 4980 | 4980 |
R-squared | 0.186 | 0.253 | 0.253 | 0.088 | 0.201 | 0.190 |
Number of id | 1413 | 1413 | 1413 | 1413 | 1413 | 1413 |
Time | From 2001 to 2003 | |||||
Model | (1) | (2) | (3) | (4) | (5) | (6) |
Method | OLS | OLS | OLS | 2SLS | 2SLS | 2SLS |
HP | 0.0375 *** | 0.0194 *** | 0.0083 ** | −0.0152 | 0.0428 ** | −0.0295 |
(0.0042) | (0.0038) | (0.0039) | (0.0213) | (0.0190) | (0.0217) | |
Enterprise characteristic variable | NO | YES | YES | NO | YES | YES |
Urban characteristic variable | NO | NO | YES | NO | NO | YES |
Observations | 146,268 | 145,723 | 145,723 | 146,268 | 145,723 | 145,723 |
R-squared | 0.668 | 0.742 | 0.743 | 0.668 | 0.742 | 0.743 |
Time | From 2004 to 2007 | |||||
Model | (7) | (8) | (9) | (10) | (11) | (12) |
HP | −0.0541 *** | −0.0660 *** | −0.0389 *** | −0.1600 *** | −0.1490 *** | −0.1241 *** |
(0.0033) | (0.0030) | (0.0031) | (0.0096) | (0.0087) | (0.0094) | |
Enterprise characteristic variable | NO | YES | YES | NO | YES | YES |
Urban characteristic variable | NO | NO | YES | NO | NO | YES |
Observations | 335,974 | 335,588 | 335,588 | 335,974 | 335,588 | 335,588 |
R-squared | 0.616 | 0.702 | 0.703 | 0.614 | 0.701 | 0.702 |
Test of Mechanism on R&D Input | Test of Productivity Mechanism | ||||||
---|---|---|---|---|---|---|---|
Explained variable | R&D | AdValRate | AdValRate | TFP | AdValRate | AdValRate | AdValRate |
Model | Logit | OLS | OLS | OLS | OLS | OLS | OLS |
Method | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
HP | −0.2855 ** | −0.0092 ** | −0.0173 *** | 0.0005 | 0.0005 | ||
(0.1334) | (0.0040) | (0.0039) | (0.0017) | (0.0017) | |||
R&D | 0.0030 *** | 0.0030 *** | 0.0014 *** | ||||
(0.0011) | (0.0011) | (0.0005) | |||||
TFP | 0.9113 *** | 0.9113 *** | 0.9113 *** | ||||
(0.0029) | (0.0029) | (0.0029) | |||||
K | −0.1226 *** | 0.0028 *** | 0.0028 *** | −0.0257 *** | 0.0265 *** | 0.0265 *** | 0.0265 *** |
(0.0068) | (0.0006) | (0.0006) | (0.0006) | (0.0003) | (0.0003) | (0.0003) | |
L | 0.0576 *** | 0.0365 *** | 0.0364 *** | 0.0044 *** | 0.0335 *** | 0.0335 *** | 0.0334 *** |
(0.0094) | (0.0010) | (0.0010) | (0.0009) | (0.0004) | (0.0004) | (0.0004) | |
M | −0.0007 | −0.0965 *** | −0.0965 *** | 0.0738 *** | −0.1684 *** | −0.1684 *** | −0.1684 *** |
(0.0083) | (0.0010) | (0.0010) | (0.0008) | (0.0005) | (0.0005) | (0.0005) | |
Age | −0.0149 *** | 0.0021 *** | 0.0021 *** | 0.0020 *** | 0.0002 | 0.0002 | 0.0002 |
(0.0021) | (0.0003) | (0.0003) | (0.0003) | (0.0001) | (0.0001) | (0.0001) | |
Age2 | 0.0004 *** | −0.0001 *** | −0.0001 *** | −0.0001 *** | −0.0000 | −0.0000 | −0.0000 |
(0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | |
Scale | 0.7180 *** | 0.0307 *** | 0.0307 *** | 0.0230 *** | 0.0106 *** | 0.0106 *** | 0.0106 *** |
(0.0105) | (0.0010) | (0.0010) | (0.0009) | (0.0004) | (0.0004) | (0.0004) | |
Subsidy | 0.0059 | 0.0009 *** | 0.0009 *** | 0.0006 * | 0.0004 * | 0.0004 * | 0.0004 * |
(0.0068) | (0.0003) | (0.0003) | (0.0004) | (0.0002) | (0.0002) | (0.0002) | |
Foreign held | −0.5788 *** | −0.0045 ** | −0.0045 ** | −0.0018 | −0.0028 *** | −0.0028 *** | −0.0028 *** |
(0.0183) | (0.0018) | (0.0018) | (0.0016) | (0.0007) | (0.0007) | (0.0007) | |
Export | 0.3641 *** | −0.0029 ** | −0.0030 ** | −0.0018 | −0.0007 | −0.0007 | −0.0007 |
(0.0169) | (0.0012) | (0.0012) | (0.0011) | (0.0005) | (0.0005) | (0.0005) | |
Agdp | 0.1021 *** | −0.0037 *** | −0.0031 *** | −0.0004 | −0.0030 *** | −0.0030 *** | −0.0030 *** |
(0.0195) | (0.0005) | (0.0006) | (0.0006) | (0.0002) | (0.0003) | (0.0003) | |
FDI | 0.0571 | 0.0037 *** | 0.0040 *** | 0.0038 *** | 0.0004 | 0.0003 | 0.0003 |
(0.0355) | (0.0012) | (0.0012) | (0.0010) | (0.0005) | (0.0005) | (0.0005) | |
Second Industry | −0.0067 | 0.0017 *** | 0.0016 *** | 0.0021 *** | −0.0001 | −0.0001 | −0.0001 |
(0.0125) | (0.0003) | (0.0003) | (0.0003) | (0.0001) | (0.0001) | (0.0001) | |
Third Industry | 0.0036 | −0.0017 *** | −0.0017 *** | −0.0009 *** | −0.0004 *** | −0.0004 *** | −0.0004 *** |
(0.0110) | (0.0002) | (0.0002) | (0.0002) | (0.0001) | (0.0001) | (0.0001) | |
Enterprise fixed | NO | YES | YES | YES | YES | YES | YES |
Year fixed | YES | YES | YES | YES | YES | YES | YES |
Industry fixed | YES | YES | YES | YES | YES | YES | YES |
Urban fixed | YES | NO | NO | NO | NO | NO | NO |
Observations | 250,945 | 243,403 | 243,403 | 240,969 | 240,969 | 240,969 | 240,969 |
R−squared | 0.2170 | 0.758 | 0.758 | 0.846 | 0.956 | 0.956 | 0.956 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.; Zeng, X.; Zhong, S.; Liu, Y. How Real Estate Shocks Affect Manufacturing Value Chain Upgrading: Evidence from China. Buildings 2022, 12, 546. https://doi.org/10.3390/buildings12050546
Yin Y, Zeng X, Zhong S, Liu Y. How Real Estate Shocks Affect Manufacturing Value Chain Upgrading: Evidence from China. Buildings. 2022; 12(5):546. https://doi.org/10.3390/buildings12050546
Chicago/Turabian StyleYin, Yanzhao, Xiaoming Zeng, Shihu Zhong, and Youjin Liu. 2022. "How Real Estate Shocks Affect Manufacturing Value Chain Upgrading: Evidence from China" Buildings 12, no. 5: 546. https://doi.org/10.3390/buildings12050546
APA StyleYin, Y., Zeng, X., Zhong, S., & Liu, Y. (2022). How Real Estate Shocks Affect Manufacturing Value Chain Upgrading: Evidence from China. Buildings, 12(5), 546. https://doi.org/10.3390/buildings12050546