Timber Semirigid Frame Connection with Improved Deformation Capacity and Ductility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Construction, Materials, and Geometry
2.2. Description of Test Equipment
2.3. Description of the Static Test Load
- Estimation of the maximum load Ftest for the tested connection type based on experience, calculation, or preliminary tests;
- Loading of the test specimen at a level of 40% of the Ftest value, held for 30 s;
- Loading of the test specimen to a level of 10% of the Ftest value, held for 30 s;
- Continuous loading until specimen failure.
2.4. Experimental Testing
3. Results
3.1. Results of Experiments
3.2. Ductility Calculation of Frame Connection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nowak, T.; Patalas, F.; Karolak, A. Estimating Mechanical Properties of Wood in Existing Structures—Selected Aspects. Materials 2021, 14, 1941. [Google Scholar] [CrossRef] [PubMed]
- Malo, K.A.; Abrahamsen, R.B.; Bjertnæs, M.A. Some structural design issues of the 14-storey timber framed building “Treet” in Norway. Eur. J. Wood Prod. 2016, 74, 407–424. [Google Scholar] [CrossRef] [Green Version]
- Crocetti, R. Large-span timber structures. In Proceedings of the World Congress on Civil, Structural and Environmental Engineering (CSEE’16), Prague, Czech Republic, 30–31 March 2016; pp. 1–23. [Google Scholar] [CrossRef]
- Frühwald, E. Analysis of structural failures in timber structures: Typical causes for failure and failure modes. Eng. Struct. 2011, 33, 2978–2982. [Google Scholar] [CrossRef]
- Steiger, R.; Serrano, E.; Stepinac, M.; Rajčić, V.; O’Neill, C.; McPolin, D.; Widmann, R. Strengthening of timber structures with glued-in rods. Constr. Build. Mater. 2015, 97, 90–105. [Google Scholar] [CrossRef] [Green Version]
- Vavrusova, K.; Mikolasek, D.; Lokaj, A.; Klajmonova, K.; Sucharda, O. Determination of carrying capacity of steel-timber joints with steel rods glued-in parallel to grain. Wood Res. 2016, 61, 733–740. [Google Scholar]
- Zhou, S.-R.; Li, Z.-Y.; Feng, S.-Y.; Zhu, H.; Kang, S.-B. Effects of bolted connections on behaviour of timber frames under combined vertical and lateral loads. Constr. Build. Mater. 2021, 293, 123542. [Google Scholar] [CrossRef]
- Bouchaïr, A.; Racher, P.; Bocquet, J.F. Analysis of dowelled timber to timber moment-resisting joints. Mater. Struct. 2007, 40, 1127–1141. [Google Scholar] [CrossRef]
- Johanides, M.; Kubíncová, L.; Mikolášek, D.; Lokaj, A.; Sucharda, O.; Mynarčík, P. Analysis of Rotational Stiffness of the Timber Frame Connection. Sustainability 2021, 13, 156. [Google Scholar] [CrossRef]
- Lokaj, A.; Dobes, P.; Sucharda, O. Effects of Loaded End Distance and Moisture Content on the Behavior of Bolted Connections in Squared and Round Timber Subjected to Tension Parallel to the Grain. Materials 2020, 13, 5525. [Google Scholar] [CrossRef]
- ČSN EN 1995-1-1; Eurocode 5: Design of Timber Structures—Part 1-1: General—Common Rules and Rules for Buildings. Czech Standards Institute: Praha, Czech Republic, 2006.
- Dobes, P.; Lokaj, A.; Mikolasek, D. Load-Carrying Capacity of Double-Shear Bolted Connections with Slotted-In Steel Plates in Squared and Round Timber Based on the Experimental Testing, European Yield Model, and Linear Elastic Fracture Mechanics. Materials 2022, 15, 2720. [Google Scholar] [CrossRef]
- EN 12512:2001/A1:2005; Timber Structures—Test methods—Cyclic Testing of Joints Made with Mechanical Fasteners. Czech Standards Institute: Praha, Czech Republic, 2005.
- Yasumura, M.; Kawai, N. Estimating seismic performance of wood-framed structures. In Proceedings of the 5th World Conference on Timber Engineering, WCTE, Montreux, Switzerland, 17–20 August 1998; Volume 2, pp. 564–571. [Google Scholar]
- Karacabeyli, E.; Ceccotti, A. Nailed wood-frame shear walls for seismic loads: Test results and design considerations. In Structural Engineering World Wide, Proceedings of the Structural Engineering Congress, San Fransisco, CA, USA, 19–23 July 1998; Paper ref. T207-6; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Stehn, L.; Johansson, H. Ductility Aspects in Nailed Glue Laminated Timber Connection Design. J. Struct. Eng. 2002, 128, 382–389, ISSN 0733-9445. [Google Scholar] [CrossRef]
- Smith, I.; Asiz, A.; Snow, M.; Chui, I.H. Possible Canadian/ISO approach to deriving design values from test data. In Proceedings of the Meeting No. 39 of Working Commission W18—Timber Structures, CIB, Florence, Italy, 28–31 August 2006. Paper No 39-17-1. [Google Scholar]
- Muñoz, W.; Mohammad, M.; Salenikovich, A.; Quenneville, P. Need for a harmonized approach for calculations of ductility of timber assemblies. In Proceedings of the CIB-W18 Meeting 41/41-15-1, St. Andrews, NB, Canada, 24–28 August 2008. [Google Scholar]
- Jorissen, A.; Fragiacomo, M. General notes on ductility in timber structures. Eng. Struct. 2011, 33, 2987–2997. [Google Scholar] [CrossRef]
- Malo, K.A.; Siem, J.; Ellingsbø, P. Quantifying ductility in timber structures. Eng. Struct. 2011, 33, 2998–3006. [Google Scholar] [CrossRef]
- Blaß, H.J.; Schädle, P. Ductility aspects of reinforced and non-reinforced timber joints. Eng. Struct. 2011, 33, 3018–3026. [Google Scholar] [CrossRef]
- Brühl, F.; Kuhlmann, U.; Jorissen, A. Consideration of plasticity within the design of timber structures due to connection ductility. Eng. Struct. 2011, 33, 3007–3017, ISSN 01410296. [Google Scholar] [CrossRef]
- Brühl, F.; Schänzlin, J.; Kuhlmann, U. Ductility in Timber Structures: Investigations on Over-Strength Factors. In Materials and Joints in Timber Structures; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Damien Lathuillière, Laurent Bléron, Thierry Descamps, Jean-François Bocquet, Reinforcement of dowel type connections. Constr. Build. Mater. 2015, 97, 48–54. [CrossRef]
- Dietsch, P.; Brandner, R. Self-tapping screws and threaded rods as reinforcement for structural timber elements—A state-of-the-art report. Constr. Build. Mater. 2015, 97, 78–89. [Google Scholar] [CrossRef]
- Schweigler, M.; Bader, T.K.; Hochreiner, G. Engineering modeling of semi-rigid joints with dowel-type fasteners for nonlinear analysis of timber structures. Eng. Struct. 2018, 171, 123–139. [Google Scholar] [CrossRef]
- Jockwer, R.; Fink, G.; Köhler, J. Assessment of the failure behaviour and reliability of timber connections with multiple dowel-type fasteners. Eng. Struct. 2018, 172, 76–84. [Google Scholar] [CrossRef]
- Otero-Chans, D.; Estévez-Cimadevila, J.; Martín-Gutiérrez, E. Joints with bars glued-in softwood laminated timber subjected to climatic cycles. Int. J. Adhes. Adhes. 2018, 82, 27–35. [Google Scholar] [CrossRef]
- Cai, Y.; Young, B. Effects of end distance on thin sheet steel bolted connections. Eng. Struct. 2019, 196, 109331. [Google Scholar] [CrossRef]
- Požgaj, A.; Kürjatko, S. Wood properties of spruce from forests affected by pollution in Czechoslovakia. IAWA J. 1986, 7, 405–410. [Google Scholar] [CrossRef]
- Wang, X.T.; Zhu, E.C.; Niu, S.; Wang, H.J. Analysis and test of stiffness of bolted connections in timber structures. Constr. Build. Mater. 2021, 303, 124495. [Google Scholar] [CrossRef]
- Johanides, M.; Mikolasek, D.; Lokaj, A.; Mynarcik, P.; Marcalikova, Z.; Sucharda, O. Rotational Stiffness and Carrying Capacity of Timber Frame Corners with Dowel Type Connections. Materials 2021, 14, 7429. [Google Scholar] [CrossRef] [PubMed]
- ČSN EN 384; Structural Timber—Determination of Characteristic Values of Mechanical Properties and Densityprague. Czech Standards Institute: Prague, Czech Republic, 2017.
- ČSN EN 383; Wooden Structures. Test Methods. Determination of Hole Wall Strength and Compressibility Characteristics for Dowel Fasteners. Czech Standards Institute: Prague, Czech Repubic, 2007.
- Kozelouh, B. Timber Structures According to Eurocode 5; STEP 1: Design and Construction Materials, (authorized translation: Timber Engineering STEP 2, Centrum Hout, The Netherlands); KODR: Zlin, Czech Republic, 1998. (In Czech) [Google Scholar]
- LaborTech. Available online: https://www.labortech.cz (accessed on 25 November 2021).
- Scia Engineer. Available online: https://www.scia.net/ (accessed on 1 April 2022).
- EN 26891:1991; Timber Structures—Joints Made with Mechanical Fasteners—General Principles for the Determination of Strength and Deformation Characteristics (ISO 6891-1983). International Organization for Standardization (ISO): Geneva, Switzerland, 1999.
Parameter | Value | Unit |
---|---|---|
fm (average) | 54.81 | MPa |
f05 | 40.35 | MPa |
kn | 0.70 | - |
kv | 1.12 | - |
kh | 1.30 | - |
fk | 24.34 | MPa |
ρm | 426.00 | kg/m3 |
max | 79.74 | MPa |
min | 34.97 | MPa |
Standard deviation | 9.29 | MPa |
Coefficient of variation | 0.17 | - |
Number of specimens | 18 | pcs |
Standard EC5 | Average | Max. Value | Min. Value | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|---|
29.58 MPa | 38.95 MPa | 44.25 MPa | 33.73 MPa | 2.71 MPa | 0.07 |
Type | Strength | Value | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|
Threaded rod | fu | 953.76 MPa | 23.52 MPa | 0.025 |
Full-threaded screws | fu | 1085.99 MPa | 38.81 MPa | 0.036 |
Loading Step | Bolts and Dowels From–To (kN)–(kN) | Full-Threaded Screws From–To (kN)–(kN) | ||
---|---|---|---|---|
Step 1 | 0 | 6.08 | 0 | 4.90 |
Step 2 | Hold | Hold | ||
Step 3 | 6.08 | 1.52 | 4.90 | 1.23 |
Step 4 | Hold | Hold | ||
Step 5 | 1.52 | 10.63 | 1.23 | 8.58 |
Step 6 | 10.63 | 15.19 | 8.58 | 12.26 |
Test | Fmax,test (kN) | Fmax,d (kN) | Fmax,k (kN) | d (-) | k (-) | u (mm) | ε (-) |
---|---|---|---|---|---|---|---|
A1 | 22.29 | 8.51 | 12.26 | 2.62 | 1.82 | 290.60 | - |
A2 | 25.27 | 2.97 | 2.06 | 398.85 | 1.37 | ||
A3 | 25.22 | 2.96 | 2.06 | 457.05 | 1.57 |
Test | Fmax,test (kN) | Fmax,d (kN) | Fmax,k (kN) | d (-) | k (-) | u (mm) | ε (-) |
---|---|---|---|---|---|---|---|
B1 | 24.72 | 10.52 | 15.19 | 2.35 | 1.63 | 290.50 | - |
B2 | 24.79 | 2.36 | 1.63 | 34.95 | 1.26 | ||
B3 | 24.33 | 2.31 | 1.60 | 408.18 | 1.41 |
Classification | Ductility Ratio (EN 12 512 [13]) | Class (Smith (2006) [17]) |
---|---|---|
Brittle | Di ≤ 2 | 1 |
Low ductility | 2 < Di ≤ 4 | 2 |
Moderate ductility | 4 < Di ≤ 6 | 3 |
High ductility | Di > 6 | 4 |
Method | Type of Fastener | Test | uy (mm) | uf (mm) | Di (-) | Classification |
---|---|---|---|---|---|---|
EN 12 512 [13] | Bolts and dowels | A1 | 40 | 284 | 7.05 | 4 |
A2 | 50 | 393 | 7.86 | 4 | ||
A3 | 58 | 458 | 8.64 | 4 | ||
Full-threaded screws | B1 | 78 | 289 | 3.71 | 2 | |
B2 | 95 | 366 | 3.85 | 2 | ||
B3 | 96 | 407 | 4.24 | 3 | ||
Yasamura and Kawai 1998 [14] | Bolts and dowels | A1 | 150 | 284 | 1.89 | 1 |
A2 | 173 | 393 | 2.27 | 2 | ||
A3 | 189 | 458 | 2.42 | 2 | ||
Full-threaded screws | B1 | 178 | 289 | 1.62 | 1 | |
B2 | 179 | 366 | 2.05 | 2 | ||
B3 | 194 | 407 | 2.10 | 2 | ||
Karacabeily and Ceccotti 1998 [15] | Bolts and dowels | A1 | 75 | 289 | 3.79 | 2 |
A2 | 91 | 366 | 4.32 | 3 | ||
A3 | 97 | 407 | 4.72 | 3 | ||
Full-threaded screws | B1 | 102 | 289 | 2.83 | 2 | |
B2 | 98 | 366 | 3.73 | 2 | ||
B3 | 118 | 407 | 3.45 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johanides, M.; Lokaj, A.; Mikolasek, D.; Mynarcik, P.; Dobes, P.; Sucharda, O. Timber Semirigid Frame Connection with Improved Deformation Capacity and Ductility. Buildings 2022, 12, 583. https://doi.org/10.3390/buildings12050583
Johanides M, Lokaj A, Mikolasek D, Mynarcik P, Dobes P, Sucharda O. Timber Semirigid Frame Connection with Improved Deformation Capacity and Ductility. Buildings. 2022; 12(5):583. https://doi.org/10.3390/buildings12050583
Chicago/Turabian StyleJohanides, Marek, Antonin Lokaj, David Mikolasek, Petr Mynarcik, Pavel Dobes, and Oldrich Sucharda. 2022. "Timber Semirigid Frame Connection with Improved Deformation Capacity and Ductility" Buildings 12, no. 5: 583. https://doi.org/10.3390/buildings12050583
APA StyleJohanides, M., Lokaj, A., Mikolasek, D., Mynarcik, P., Dobes, P., & Sucharda, O. (2022). Timber Semirigid Frame Connection with Improved Deformation Capacity and Ductility. Buildings, 12(5), 583. https://doi.org/10.3390/buildings12050583