Regional Sustainable Performance of Construction Industry in China from the Perspective of Input and Output: Considering Occupational Safety
Abstract
:1. Introduction
2. Literature Review
2.1. Sustainability and Occupational Safety
2.2. Assessment Methods
3. Data Sources and Methods
3.1. Indicators and Data
3.2. The Windows-Super-SBM Model
3.3. Spatial Analysis Model
4. Results
4.1. Analysis of SPCI
4.2. Output and Input in the Eight Regions
4.3. Occupational Safety Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Province | Abbreviation | Province | Abbreviation | Province | Abbreviation |
---|---|---|---|---|---|
Anhui | AH | Heilongjiang | HL | Shandong | SD |
Beijing | BJ | Hubei | HB | Shanxi | SX |
Fujian | FJ | Hunan | HN | Shaanxi | SN |
Gansu | GS | Jilin | JL | Shanghai | SH |
Guangdong | GD | Jiangsu | JS | Sichuan | SC |
Guangxi | GX | Jiangxi | JX | Tianjin | TJ |
Guizhou | GZ | Liaoning | LN | Xinjiang | XJ |
Hainan | HI | Inner Mongolia | IM | Yunnan | YN |
Hebei | HE | Ningxia | NX | Zhejiang | ZJ |
Henan | HA | Qinghai | QH | Chongqing | CQ |
References
- Isa, R.B.; Jimoh, R.A.; Achuenu, E. An overview of the contribution of construction sector to sustainable development in Nigeria. Net J. Bus. Manag. 2013, 1, 1–6. [Google Scholar]
- Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X. Carbon emission of global construction sector. Renew. Sustain. Energy Rev. 2018, 81, 1906–1916. [Google Scholar] [CrossRef] [Green Version]
- Sev, A. How can the construction industry contribute to sustainable development? A conceptual framework. Sustain. Dev. 2009, 17, 161–173. [Google Scholar] [CrossRef]
- Lélé, S.M. Sustainable development: A critical review. World Dev. 1991, 19, 607–621. [Google Scholar] [CrossRef]
- Wang, M.M.; Li, L.L.; Hou, C.X.; Guo, X.T.; Fu, H.L. Building and health: Mapping the knowledge development of sick building syndrome. Buildings 2022, 12, 287. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Ge, X.; Yuan, X.; Wang, Q.; Kellett, J.; Li, F.; Ba, K. An integrated indicator system and evaluation model for regional sustainable development. Sustainability 2019, 11, 2183. [Google Scholar] [CrossRef] [Green Version]
- Azapagic, A.; Perdan, S. Indicators of sustainable development for industry: A general framework. Process Saf. Environ. Prot. 2000, 78, 243–261. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y.; Tao, L. Comprehensive evaluation of sustainable development of regional construction industry in China. J. Clean. Prod. 2019, 211, 1078–1087. [Google Scholar] [CrossRef]
- Sunindijo, R.Y.; Zou, P.X. Political skill for developing construction safety climate. J. Constr. Eng. Manag. 2012, 138, 605–612. [Google Scholar] [CrossRef]
- Amponsah-Tawiah, K. Occupational health and safety and sustainable development in Ghana. Int. J. Bus. Adm. 2013, 4, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Karakhan, A.A.; Gambatese, J.A. Integrating worker health and safety into sustainable design and construction: Designer and constructor perspectives. J. Constr. Eng. Manag. 2017, 143, 04017069. [Google Scholar] [CrossRef]
- Jilcha, K.; Kitaw, D. Industrial occupational safety and health innovation for sustainable development. Eng. Sci.Technol. Int. J. 2017, 20, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Su, X.; Qi, L.; Shang, P.; Xu, Y. Feasibility of peaking carbon emissions of the power sector in China’s eight regions: Decomposition, decoupling, and prediction analysis. Environ. Sci. Pollut. Res. 2019, 26, 29212–29233. [Google Scholar] [CrossRef] [PubMed]
- Miernyk, W.H. The Elements of Input-Output Analysis. In Web Book of Regional Science; Jackson, R., Ed.; Regional Research Institute, West Virginia University: Morgantown, WV, USA, 2020. [Google Scholar]
- Ortiz, O.; Castells, F.; Sonnemann, G. Sustainability in the construction industry: A review of recent developments based on LCA. Constr. Build. Mater. 2009, 23, 28–39. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, T.; Lin, T.; Li, Y. Investigating multi-regional cross-industrial linkage based on sustainability assessment and sensitivity analysis: A case of construction industry in China. J. Clean. Prod. 2017, 142, 2911–2924. [Google Scholar] [CrossRef]
- Kang, L.; Wu, C.; Liao, X.; Wang, B. Safety performance and technology heterogeneity in China’s provincial construction industry. Saf. Sci. 2020, 121, 83–92. [Google Scholar] [CrossRef]
- Kibert, C.J. Sustainable Construction: Green Building Design and Delivery; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Zuo, J.; Zhao, Z.-Y. Green building research—Current status and future agenda: A review. Renew. Sustain. Energy Rev. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Ugwu, O.O.; Haupt, T.C. Key performance indicators and assessment methods for infrastructure sustainability—A South African construction industry perspective. Build. Environ. 2007, 42, 665–680. [Google Scholar] [CrossRef]
- Molamohamadi, Z.; Ismail, N. The relationship between occupational safety, health, and environment, and sustainable development: A review and critique. Int. J. Innov. Manag. Technol. 2014, 5, 198–202. [Google Scholar] [CrossRef]
- Mapar, M.; Jafari, M.J.; Mansouri, N.; Arjmandi, R.; Azizinejad, R.; Ramos, T.B. Sustainability indicators for municipalities of megacities: Integrating health, safety and environmental performance. Ecol. Indic. 2017, 83, 271–291. [Google Scholar] [CrossRef]
- Nawaz, W.; Linke, P.; Koҫ, M. Safety and sustainability nexus: A review and appraisal. J. Clean. Prod. 2019, 216, 74–87. [Google Scholar] [CrossRef]
- Hinze, J.; Godfrey, R.; Sullivan, J. Integration of construction worker safety and health in assessment of sustainable construction. J. Constr. Eng. Manag. 2013, 139, 594–600. [Google Scholar] [CrossRef]
- Mohandes, S.R.; Zhang, X.Q. Developing a holistic occupational health and safety risk assessment model: An application to a case of sustainable construction project. J. Clean. Prod. 2021, 291, 125934. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, D.S.; Kim, J.D.; Kim, G.H. Priority of accident cause based on tower crane type for the realization of sustainable management at Korean construction sites. Sustainability 2021, 13, 242. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Yang, G.-L. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 2018, 61, 4–8. [Google Scholar] [CrossRef]
- Xue, X.; Wu, H.; Zhang, X.; Dai, J.; Su, C. Measuring energy consumption efficiency of the construction industry: The case of China. J. Clean. Prod. 2015, 107, 509–515. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Wu, J.; Lv, L.; Sun, J.; Ji, X. A comprehensive analysis of China’s regional energy saving and emission reduction efficiency: From production and treatment perspectives. Energy Policy 2015, 84, 166–176. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. Dealing with Undesirable Outputs in DEA: A Slacks-Based Measure (SBM) Approach. In Proceedings of the North American Productivity Workshop 2004, Toronto, CA, Canada, 23–25 June 2004; pp. 44–45. [Google Scholar]
- Zhou, C.; Shi, C.; Wang, S.; Zhang, G. Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models. Ecol. Indic. 2018, 86, 67–80. [Google Scholar] [CrossRef]
- Yang, T.; Chen, W.; Zhou, K.; Ren, M. Regional energy efficiency evaluation in China: A super efficiency slack-based measure model with undesirable outputs. J. Clean. Prod. 2018, 198, 859–866. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.; Lewin, A.; Seiford, L. Data Envelopment Analysis: Theory, Methodology, and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Charnes, A.; Clark, C.; Cooper, W.; Golany, B. A developmental study of data envelopment analysis in measuring the efficiency of maintenance units in the US air forces. Ann. Oper. Res. 1984, 2, 95–112. [Google Scholar] [CrossRef]
- Chung, S.; Lee, A.; Kang, H.; Lai, C. A DEA window analysis on the product family mix selection for a semiconductor fabricator. Expert Syst. Appl. 2008, 35, 379–388. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Yuan, Y.; Li, A.; Wang, D. Social sustainability of provinces in China: A data envelopment analysis (DEA) window analysis under the concepts of natural and managerial disposability. Sustainability 2017, 9, 2078. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Yu, S.; Zhang, W. China’s regional energy and environmental efficiency: A DEA window analysis based dynamic evaluation. Math. Comput. Model. 2013, 58, 1117–1127. [Google Scholar] [CrossRef]
- Al-Refaie, A.; Hammad, M.; Li, M. DEA window analysis and Malmquist index to assess energy efficiency and productivity in Jordanian industrial sector. Energy Effic. 2016, 9, 1299–1313. [Google Scholar] [CrossRef]
- Hu, X.; Liu, C. Measuring efficiency, effectiveness and overall performance in the Chinese construction industry. Eng. Constr. Archit. Manag. 2018, 25, 780–797. [Google Scholar] [CrossRef]
- Huo, T.; Ren, H.; Cai, W.; Feng, W.; Tang, M.; Zhou, N. The total-factor energy productivity growth of China’s construction industry: Evidence from the regional level. Nat. Hazards 2018, 92, 1593–1616. [Google Scholar] [CrossRef]
- Hu, X.; Li, A.; Chen, H.; Xin, D.; Zhang, G.; Zheng, B. General Principles for Calculation of the Comprehensive Energy Consumption. In National Standards of China Beijing GB/T 2589–2008; China Standards Press: Beijing, China, 2008. [Google Scholar]
- Chen, Y.; Chen, S.; Hu, C.R.; Jin, L.H.; Zheng, X.Z. Novel probabilistic cost estimation model integrating risk allocation and claim in hydropower project. J. Constr. Eng. Manag. 2020, 146, 04020092. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, L.P.; Hu, Z.G.; Chen, S.; Zheng, X.Z. Risk propagation in multilayer heterogeneous network of coupled system of large engineering project. J. Manag. Eng. 2022, 38, 04022003. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, B.; Shen, Y.; Wang, X. The energy efficiency of China’s regional construction industry based on the three-stage DEA model and the DEA-DA model. KSCE J. Civ. Eng. 2016, 20, 34–47. [Google Scholar] [CrossRef]
- Huo, T.; Tang, M.; Cai, W.; Ren, H.; Liu, B.; Hu, X. Provincial total-factor energy efficiency considering floor space under construction: An empirical analysis of China’s construction industry. J. Clean. Prod. 2020, 244, 118749. [Google Scholar] [CrossRef]
- Li, W.; Sun, W.; Li, G.; Cui, P.; Wu, W.; Jin, B. Temporal and spatial heterogeneity of carbon intensity in China’s construction industry. Resour. Conserv. Recycl. 2017, 126, 162–173. [Google Scholar] [CrossRef]
- Shao, B.; Hu, Z.; Tong, L.; Zheng, X.; Liu, D. Comprehensive assessment model on accident situations of the construction industry in China: A macro-level perspective. J. Civ. Eng. Manag. 2020, 26, 14–28. [Google Scholar] [CrossRef]
- Asmild, M.; Paradi, J.; Aggarwall, V.; Schaffnit, C. Combining DEA window analysis with the malmquist index approach in a study of the Canadian banking industry. J. Product. Anal. 2004, 21, 67–89. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software. J.-Oper. Res. Soc. 2001, 52, 1408–1409. [Google Scholar]
- Huang, J.; Yang, X.; Cheng, G.; Wang, S. A comprehensive eco-efficiency model and dynamics of regional eco-efficiency in China. J. Clean. Prod. 2014, 67, 228–238. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, K.; Yang, S. Regional heterogeneity of China’s energy efficiency in “new normal”: A meta-frontier Super-SBM analysis. Energy Policy 2019, 134, 110941. [Google Scholar] [CrossRef]
- Abdi, H. Coefficient of variation. Encycl. Res. Des. 2010, 1, 169–171. [Google Scholar]
- Fu, W.; Jiang, P.; Zhou, G.; Zhao, K. Using Moran’s I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences 2014, 11, 2401–2409. [Google Scholar] [CrossRef] [Green Version]
- Thompson, E.; Saveyn, P.; Declercq, M.; Meert, J.; Guida, V.; Eads, C.; Robles, E.; Britton, M. Characterisation of heterogeneity and spatial autocorrelation in phase separating mixtures using Moran’s I. J. Colloid Interface Sci. 2018, 513, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Luo, L.; Xu, W.; Ledwith, V. Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Sci. Total Environ. 2008, 398, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Hu, Z.; Liu, D. Using improved principal component analysis to explore construction accident situations from the multi-dimensional perspective: A Chinese study. Int. J. Environ. Res. Public Health 2019, 16, 3476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, R.-D.; Soebarto, V.; Zhao, Z.-Y.; Zillante, G. Facilitating the transition to sustainable construction: China’s policies. J. Clean. Prod. 2016, 131, 534–544. [Google Scholar] [CrossRef]
- Yang, W.; Li, L. Energy efficiency, ownership structure, and sustainable development: Evidence from China. Sustainability 2017, 9, 912. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Le, Y.; Li, H.; Jin, R.; Piroozfar, P.; Liu, M. Regional comparisons of contemporary construction industry sustainable concepts in the Chinese context. Sustainability 2018, 10, 3831. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.-M.; Wen, Z.-G. Review and challenges of policies of environmental protection and sustainable development in China. J. Environ. Manag. 2008, 88, 1249–1261. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, Y.; Liu, Y. High-level talent flow and its influence on regional unbalanced development in China. Appl. Geogr. 2018, 91, 89–98. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Y.; Wei, X.; Li, Y.; Zheng, M.; Li, Y.; Cheng, C.; Wu, Y.; Liu, Z.; Yu, Y. Measurement and decomposition of energy efficiency of Northeast China—Based on super efficiency DEA model and Malmquist index. Environ. Sci. Pollut. Res. 2017, 24, 19859–19873. [Google Scholar] [CrossRef]
- Li, G.; Kuang, Y.; Huang, N.; Chang, X. Emergy synthesis and regional sustainability assessment: Case study of pan-pearl river delta in China. Sustainability 2014, 6, 5203–5230. [Google Scholar] [CrossRef]
- Chen, S.; Xi, J.B.; Chen, Y.; Zhao, J.F. Association mining of near misses in hydropower engineering construction based on convolutional neural network text classification. Comput. Intell. Neurosci. 2022, 2022, 4851615. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.Q.; Fan, C.J.; Fu, H.L.; Huang, J.L.; Chen, H.H.; Luo, X.W. Measuring and computing cognitive statuses of construction workers based on electroencephalogram: A critical review. IEEE Trans. Comput. Soc. Syst. 2022. [Google Scholar] [CrossRef]
- Du, Q.; Zhou, J.; Pan, T.; Sun, Q.; Wu, M. Relationship of carbon emissions and economic growth in China’s construction industry. J. Clean. Prod. 2019, 220, 99–109. [Google Scholar] [CrossRef]
Category | Indicator | Abbreviation | Unit | Description | References |
---|---|---|---|---|---|
Inputs | Total Fixed Assets | TFA | 108 yuan | Annual level of total fixed assets in the construction industry that can be utilized to generate economic benefits | Hu and Liu [42] |
Number of Employees | NE | 104 person | Number of workers engaged in construction activities | Huo et al. [43] | |
Total Power of Machinery | TPM | 104 kW | Total power of the machinery and equipment owned by construction enterprises | Chen et al. [47] | |
Construction Land | CL | 108 m2 | Annual consumption of construction land | ||
Energy Consumption | EC | 104 TCE | Total amount of energy consumed by the construction industry annually | Hu et al. [44] | |
Wood Consumption | WC | 104 m3 | Total amount of construction material consumed annually | ||
Concrete Consumption | CC | 104 tons | |||
Steel Consumption | SC | 104 tons | |||
Glass Consumption | GC | 104 tons | |||
Aluminum Consumption | AC | 104 tons | |||
Desirable outputs | Floor Space of Construction | FSC | 104 m2 | Total floor area under construction annually | Huo et al. [48] |
Total Output Value | TOV | 108 yuan | Total annual value of construction industry products | ||
Total Pretax Profit | TPP | 108 yuan | Total annual profits of construction enterprises before paying taxes | Xu et al. [9] | |
Undesirable outputs | Number of Fatalities | NF | Person | The number of fatalities occurring in the construction industry annually | Kang et al. [18] |
Solid Wastes | SW | 104 tons | Total amount of solid waste generated by the construction industry | ||
Carbon Emission | CE | 104 tons | Total amount of carbon emissions generated annually by the consumption of coal, crude oil, etc., as well as of construction material | Li et al. [49] |
Windows | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|
W1 | 1.000 | 1.000 | 1.214 | |||||
W2 | 1.000 | 1.193 | 1.157 | |||||
W3 | 1.021 | 1.021 | 1.173 | |||||
W4 | 1.007 | 1.031 | 1.505 | |||||
W5 | 1.032 | 1.436 | 1.129 | |||||
W6 | 1.440 | 1.060 | 1.015 | |||||
Average | 1.000 | 1.000 | 1.143 | 1.062 | 1.079 | 1.460 | 1.094 | 1.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, L.; Chen, Y.; Jin, L.; Zheng, X. Regional Sustainable Performance of Construction Industry in China from the Perspective of Input and Output: Considering Occupational Safety. Buildings 2022, 12, 618. https://doi.org/10.3390/buildings12050618
Tong L, Chen Y, Jin L, Zheng X. Regional Sustainable Performance of Construction Industry in China from the Perspective of Input and Output: Considering Occupational Safety. Buildings. 2022; 12(5):618. https://doi.org/10.3390/buildings12050618
Chicago/Turabian StyleTong, Liyang, Yun Chen, Lianghai Jin, and Xiazhong Zheng. 2022. "Regional Sustainable Performance of Construction Industry in China from the Perspective of Input and Output: Considering Occupational Safety" Buildings 12, no. 5: 618. https://doi.org/10.3390/buildings12050618
APA StyleTong, L., Chen, Y., Jin, L., & Zheng, X. (2022). Regional Sustainable Performance of Construction Industry in China from the Perspective of Input and Output: Considering Occupational Safety. Buildings, 12(5), 618. https://doi.org/10.3390/buildings12050618