The Strength in Axial Compression of Aluminum Alloy Tube Confined Concrete Columns with a Circular Hollow Section: Experimental Results
Abstract
:1. Introduction
2. Test Program
2.1. Specimens
2.2. Test Setup
2.3. Instrumentation
3. Results and Analysis
3.1. Failure Modes
3.2. Comparison of Axial Loads
3.3. Deformation under Axial Load
3.4. Strain
4. Predicting Axial Bearing Capacity
4.1. Axial Bearing Capacity of a CFAT-CHS
4.2. Axial Bearing Capacity of an ATCC
4.3. Axial Bearing Capacity of an ATCC-CHS
4.4. Economic Analysis
5. Conclusions
- (1)
- The confinement coefficient is a major determinant of the failure modes of such columns. The specimens underwent brittle fracture for ζ ≤ 1.35, and localized buckling failure was observed for ζ > 1.35. For thin-walled specimens, fiber reinforced polymer could be used to strengthen them.
- (2)
- The load-bearing capacity of ATCC-CHS and ATCC can be increased by reducing the diameter–thickness ratio and the hollow rate or using stronger concrete. The thickness of the aluminum alloy tube was the most influential factor.
- (3)
- Confinement of the outer aluminum tube played a significant role in the compressive strength of ATCC columns. When the thickness of the outer steel pipe increased from 6 to 12 mm, the axial compression stiffness of ATCC-CHS and ATCC increased by 6.5% and 116.2%, respectively.
- (4)
- The k increased with increases in the confinement coefficient ζ, as did the SLIs of ATCC, while the SLIs of ATCC-CHS decreased with increases in ζ. In practice, the cost and mechanical performance of an ATCC-CHS must be optimized jointly.
- (5)
- The bearing capacity of an ATCC was 18.8% higher than that of a similar CFAT.
- (6)
- The bearing capacity of a ATCC-CHS was 12.0% lower than that of a similar CFAT-CHS.
- (7)
- The predictions of Teng’s formula for the ultimate bearing capacity of an ATCC agree well with experimental observations.
- (8)
- Attard’s formula gives good predictions for ATCC-CHS.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gardner, N.J.; Jacobson, E.R. Structural behavior of concrete-filled steel tubes. ACI Struct. J. 1967, 64, 404–412. [Google Scholar]
- Sakino, K.; Tomii, M.; Watanabe, K. Sustaining load capacity of plain concrete stub columns confined by circular steel tubes. In Proceedings of the International Specialty Conference on Concrete-Filled Steel Tubular Struct ASCCS, Harbin, China, August 1985; pp. 112–118. [Google Scholar]
- Tomii, M.; Sakino, K.; Xiao, Y.U. Ultimate moment of reinforced concrete short columns confined in steel tube. In Proceedings of the Pacific Conference on Earthquake Engineering, Wyla, New Zealand, 1987; pp. 11–22. Available online: https://ci.nii.ac.jp/naid/10003271417/ (accessed on 27 April 2022).
- Han, L.-H.; Yao, G.-H.; Chen, Z.-B.; Yu, Q. Experimental behaviours of steel tube confined concrete (STCC) columns. Steel Compos. Struct. 2005, 5, 459–484. [Google Scholar] [CrossRef]
- Han, L.H.; Liu, W.; Yang, Y.F. Behavior of thin walled steel tube confined concrete stub columns subjected to axial local compression. Thin-Walled Struct. 2008, 46, 155–164. [Google Scholar] [CrossRef]
- Sun, Y. Proposal and application of stress-strain model for concrete confined by steel tubes. In Proceedings of the 14th World Conference Earthquake Engineering, Beijing, China, 12–17 October 2008; pp. 12–17. [Google Scholar]
- Nematzadeh, M.; Fazli, S. The effect of active and passive confining pressure on compressive behavior of STCC and CFST. Adv. Concr. Constr. 2020, 9, 161–171. [Google Scholar]
- de Oliveira, W.L.A.; De Nardin, S.; de Crescue El Debs, A.L.H.; El Debs, M.K. Evaluation of passive confinement in CFT columns. J. Constr. Steel Res. 2010, 66, 487–495. [Google Scholar] [CrossRef]
- Liew, J.Y.R.; Xiong, D.X. Ultra-high strength concrete filled composite columns for multi-storey building construction. Adv. Struct. Eng. 1985, 15, 1487–1503. [Google Scholar] [CrossRef]
- Hoang, A.L.; Fehling, E. Numerical study of circular steel tube confined concrete (STCC) stub columns. J. Constr. Steel Res. 2017, 136, 238–255. [Google Scholar] [CrossRef]
- Yu, Q.; Tao, Z.; Liu, W.; Chen, Z.B. Analysis and calculations of steel tube confined concrete (STCC) stub columns. J. Constr. Steel Res. 2010, 66, 53–64. [Google Scholar] [CrossRef]
- Mazzolani, F.M. 3D aluminium structures. Thin-Walled Struct. 2012, 61, 258–266. [Google Scholar] [CrossRef]
- Li, X.; Xing, G.; Zhang, P.; Zhang, G. Calculation on bearing capacity of 7075 high-strength aluminum alloy tubular confined concrete column under axial compression. Ind. Constr. 2020, 7, 1–10. [Google Scholar]
- Zhou, F.; Young, B. Tests of concrete-filled aluminum stub columns. Thin-Walled Struct. 2008, 46, 573–583. [Google Scholar] [CrossRef]
- Zhou, F.; Young, B. Concrete-filled aluminum circular hollow section column tests. Thin-Walled Struct. 2009, 47, 1272–1280. [Google Scholar] [CrossRef]
- Al-mazini, M.A.; Chkhewier, A.H. Behavior of concrete filled aluminum square and rectangular hollow section columns under axial loads: Experimental and Analytical Study. Eng. Sci. 2017, 2, 712–726. [Google Scholar]
- Australian Standard AS/NZS 1664.1; Australia/New Zealand Standards for Aluminium Structures Part 1: Limit State Design. Joint Technical Committee: Sydney, Australia, 1997.
- Aluminum Design Manual Part I: Specifification for Aluminum Structures; Aluminum Association: Arlington, VA, USA, 2005.
- Zhou, F.; Young, B. Numerical analysis and design of concrete-filled aluminum circular hollow section columns. Thin-Walled Struct. 2012, 50, 45–55. [Google Scholar] [CrossRef]
- Wang, F.C.; Zhao, H.Y.; Han, L.H. Analytical behavior of concrete-filled aluminum tubular stub columns under axial compression. Thin-Walled Struct. 2019, 140, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Chinese Standard GB 50936-2014; Technical Code for Concrete Filled Steel Tubular Structures (English Version). MOHURD: Beijing, China, 2014.
- Zhong, S.T. The Concrete-Filled Steel Tubular Structures; Tsinghua University: Beijing, China, 2003. [Google Scholar]
- Gong, Y. Experimental and Theoretical Research on Mechanical Property of Common Concrete Filled Metal Tubes Columns. Harbin Institute of Technology: Harbin, China, 2011. [Google Scholar]
- Zha, X.; Gong, Y. Behavior study of new-type concrete filled metal tubular (CFMT) columns Ⅰ: Strength capacity of axially compressed short columns. Prog. Steel Build. Struct. 2012, 14, 12–20. [Google Scholar]
- Patel, V.I.; Liang, Q.Q.; Hadi, M.N.S. Numerical simulations of circular high strength concrete-filled aluminum tubular short columns incorporating new concrete confinement model. Thin-Walled Struct. 2020, 147, 106492. [Google Scholar] [CrossRef]
- Zeng, X.; Wu, W.; Huo, J.; Hu, T. The axial strength of concrete-filled aluminum alloy circular tubular stub columns. Eng. Mech. 2021, 38, 52–60. [Google Scholar]
- Ding, F.; Liao, C.; Wang, E.; Lyu, F.; Xu, Y.; Liu, Y.; Feng, Y.; Shang, Z. Numerical Investigation of the Composite Action of Axially Compressed Concrete-Filled Circular Aluminum Alloy Tubular Stub Columns. Materials 2021, 14, 2435. [Google Scholar] [CrossRef]
- Zhou, F.; Young, B. Concrete-filled double-skin aluminum circular hollow section stub columns. Thin-Walled Struct. 2018, 133, 141–152. [Google Scholar] [CrossRef]
- Patel, V.I.; Liang, Q.Q.; Hadi, M.N.S. Numerical study of circular double-skin concrete-filled aluminum tubular stub columns. Eng. Struct. 2019, 197, 109418. [Google Scholar] [CrossRef]
- Han, L.H.; Ren, Q.X.; Li, W. Tests on stub stainless steel-concrete-carbon steel double-skin tubular (DST) columns. J. Constr. Steel Res. 2011, 67, 437–452. [Google Scholar] [CrossRef]
- Wang, F.C.; Han, L.H. Analytical behavior of CFDST stub columns with external stainless steel tubes under axial compression. Thin-Walled Struct. 2018, 127, 756–768. [Google Scholar] [CrossRef]
- Ye, Y.; Han, L.H.; Guo, Z.X. Concrete-filled bimetallic tubes (CFBT) under axial compression: Analytical behaviour and experimental investigation. Thin-Walled Struct. 2017, 119, 839–850. [Google Scholar] [CrossRef]
- Wang, F.; Young, B.; Gardner, L. Compressive testing and numerical modelling of concrete-filled double skin CHS with austenitic stainless steel outer tubes. Thin-Walled Struct. 2019, 141, 345–359. [Google Scholar] [CrossRef]
- Wang, F.; Young, B.; Gardner, L. Compressive behaviour and design of CFDST cross-sections with stainless steel outer tubes. J. Constr. Steel Res. 2020, 170, 105942. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, L. Compressive behavior of concrete-filled aluminum alloy tube (CFAAT) stub column with inner carbon steel tube. Structures 2021, 32, 701–712. [Google Scholar] [CrossRef]
- Gao, W. Axial Compressive Performance of Stainless Steel Tube Confined Concrete Column; Harbin Institute of Technology: Harbin, China, 2016. [Google Scholar]
- Standard Test Method for the Mechanical Properties of Ordinary Concrete; The Ministry of Housing and Urban-Rural Development of China: Beijing, China, 2003.
- Ye, Y.; Han, L.-H.; Sheehan, T.; Guo, Z.-X. Concrete-filled bimetallic tubes under axial compression: Experimental investigation. Thin-Walled Struct. 2016, 108, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Q.Y.; Yang, Z.Y.; Cao, W.L. Axial compressive behavior of stainless steel tube confined concrete column piers. Mar. Struct. 2021, 2016, 103021. [Google Scholar]
- Han, L.H.; Ren, Q.X.; Li, W. Tests on inclined, tapered and STS concrete-filled steel tubular (CFST) stub columns. J. Constr. Steel Res. 2010, 66, 1186–1195. [Google Scholar] [CrossRef]
- Hu, T. Axial Compressive Performance of Circular Aluminum Alloy Confined Concrete; Hainan University: Haikow, China, 2019. [Google Scholar]
- Huang, H. Mechanism of Concrete-Filled Double-Skin Steel Tubular Column; Fuzhou University: Fuzhou, China, 2006. [Google Scholar]
- Mander, J.B.; Priestly, M.J.N.; Park, R. Theoretical stress-strain model for confined concrete. J. Struct. Eng. 1988, 114, 1804–1826. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.G.; Teng, J.G.; Yu, T. Behavior and modeling of confined high-strength concrete. J. Compos. Constr. 2010, 14, 249–259. [Google Scholar] [CrossRef]
- Teng, J.G.; Huang, Y.; Lam, L.; Ye, L.P. Theoretical Model for Fiber-Reinforced Polymer-Confined Concrete. J. Compos. Constr. 2007, 11, 201–210. [Google Scholar] [CrossRef]
- Attard, M.M.; Setunge, S. Stress-strain relationship of confined and unconfined concrete. ACI Mater. J. 1996, 93, 432–442. [Google Scholar]
- Gan, D.; Zhou, Z.; Yan, F.; Zhou, X. Shear Transfer Capacity of Composite Sections in Steel Tubed-Reinforced-Concrete Frames. Structures 2017, 12, 54–63. [Google Scholar] [CrossRef]
Design | Specimen No. | Do×to | Di×ti | Do/to | Di/ti | K × 105 | ζ | Type of N-Δ Curve | k% | SI | SLI | Nu | Material of the Outer Tube | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | C6-50-80 | 168 × 6 | 80 × 4 | 28 | - | 2.08 | - | 56.6 | 0.97 | A | - | - | - | 2198 | T6061 |
C8-50-80 | 168 × 8 | 80 × 4 | 21 | - | 2.17 | - | 56.6 | 1.36 | A | - | - | - | 2432 | T6061 | |
C10-50-80 | 168×10 | 80 × 4 | 17 | - | 2.38 | - | 56.6 | 1.76 | B | 240 | - | - | 2779 | T6061 | |
C12-50-80 | 168 × 12 | 80 × 4 | 14 | - | 2.80 | - | 56.6 | 2.21 | C | - | - | - | 3205 | T6061 | |
b | A6-50-48 | 168 × 6 | 48 × 4 | - | 12 | 2.14 | 0.31 | 56.6 | - | A | - | - | - | 2363 | T6061 |
A6-50-63 | 168 × 6 | 63 × 4 | - | 15.8 | 2.09 | 0.40 | 56.6 | - | A | - | - | - | 2257 | T6061 | |
A6-50-80 | 168 × 6 | 80 × 4 | 28 | 20 | 1.68 | 0.51 | 56.6 | 0.97 | A | - | - | −3 | 2122 | T6061 | |
A6-50-95 | 168 × 6 | 95 × 4 | - | 23.8 | 1.47 | 0.61 | 56.6 | - | A | - | - | - | 1982 | T6061 | |
A6-50-108 | 168 × 6 | 108 × 4 | - | 27 | 1.28 | 0.69 | 56.6 | - | A | - | - | - | 1676 | T6061 | |
A6-30-80 | 168 × 6 | 80 × 4 | - | - | 1.12 | - | 38.0 | 1.40 | B | - | - | - | 1807 | T6061 | |
A6-40-80 | 168 × 6 | 80 × 4 | - | - | 1.51 | - | 48.3 | 1.12 | B | - | - | - | 1996 | T6061 | |
A6-60-80 | 168 × 6 | 80 × 4 | - | - | 1.82 | - | 62.7 | 0.86 | A | - | - | - | 2277 | T6061 | |
A8-50-80 | 168 × 8 | 80 × 4 | 21 | - | 1.73 | - | 56.6 | 1.36 | B | 262 | −12 | 2138 | T6061 | ||
A10-50-80 | 168 × 10 | 80 × 4 | 17 | - | 1.79 | - | 56.6 | 1.76 | B | 339 | −14 | 2396 | T6061 | ||
A12-50-80 | 168 × 12 | 80 × 4 | 14 | - | 1.79 | - | 56.6 | 2.21 | C | 437 | −19 | 2603 | T6061 | ||
STCC-CHS-1 | 168 × 6 | 80 × 4 | 28 | - | 1.71 | - | 56.6 | 1.00 | - | - | - | - | 2242 | Q235 | |
c | A6-50 | 168 × 6 | - | 28 | - | 1.36 | - | 56.6 | 0.97 | A | 282 | 1.43 | 14 | 2319 | T6061 |
A8-50 | 168 × 8 | - | 21 | - | 1.50 | - | 56.6 | 1.36 | A | 343 | 1.46 | 18 | 2681 | T6061 | |
A10-50 | 168 × 10 | - | 17 | - | 2.11 | - | 56.6 | 1.76 | C | 396 | 1.43 | 18 | 2927 | T6061 | |
A12-50 | 168 × 12 | - | 14 | - | 2.94 | - | 56.6 | 2.21 | C | 482 | 1.50 | 25 | 3376 | T6061 | |
STCC-1 | 168 × 6 | - | 28 | - | 2.36 | - | 56.6 | 0.97 | - | - | 1.24 | - | 2427 | Q235 | |
STCC-2 | 168 × 8 | - | 21 | - | - | - | 56.6 | 1.36 | - | - | 1.22 | - | 2653 | Q235 | |
STCC-3 | 168 × 10 | - | 17 | - | - | - | 56.6 | 1.76 | - | - | 1.20 | - | 3040 | Q235 | |
STCC-4 | 168 × 12 | - | 14 | - | - | - | 56.6 | 2.21 | - | - | 1.21 | - | 3247 | Q235 |
Steel Type | Yield Strength fy (f0.2)/MPa | Tensile Strength fu/MPa | Elastic Modulus Es/GPa | Elongation δ/% |
---|---|---|---|---|
Q235 | 357 | 394 | 182 | 46.88 |
T6061 | 263 | 288 | 71 | 22.8 |
Concrete Grade | Cube Compressive Strength fcu/MPa | Axial Compressive Strength fck/MPa |
---|---|---|
C30 | 41 | 29.8 |
C40 | 52.3 | 37.6 |
C50 | 61.3 | 43 |
C60 | 67.0 | 48.9 |
Specimen No. | Nu | Nc-Mander | Nu/Nc-Mander | Nc-xiao | Nu/Nc-xiao | Nc-Teng | Nu/Nc-Teng | Nc-Attard | Nu/Nc-Attard |
---|---|---|---|---|---|---|---|---|---|
A6-50-48 | 2363 | 2212 | 1.07 | 2259 | 1.05 | 2165 | 1.09 | 2421 | 0.98 |
A6-50-63 | 2257 | 2127 | 1.06 | 2170 | 1.04 | 2084 | 1.08 | 2321 | 0.97 |
A6-50-80 | 2122 | 1981 | 1.07 | 2019 | 1.05 | 1943 | 1.09 | 2152 | 0.99 |
A6-50-95 | 1982 | 1809 | 1.10 | 1841 | 1.08 | 1775 | 1.12 | 1954 | 1.01 |
A6-50-108 | 1676 | 1625 | 1.03 | 1652 | 1.01 | 1598 | 1.05 | 1746 | 0.96 |
A6-30-80 | 1807 | 1635 | 1.11 | 1758 | 1.03 | 1757 | 1.03 | 1878 | 0.96 |
A6-40-80 | 1996 | 1847 | 1.08 | 1914 | 1.04 | 1867 | 1.07 | 2039 | 0.98 |
A6-60-80 | 2277 | 2120 | 1.07 | 2130 | 1.07 | 2026 | 1.12 | 2273 | 1.00 |
A8-50-80 | 2139 | 2049 | 1.04 | 2189 | 0.98 | 2175 | 0.98 | 2343 | 0.91 |
A10-50-80 | 2396 | 2063 | 1.16 | 2320 | 1.03 | 2378 | 1.01 | 2494 | 0.96 |
A12-50-80 | 2600 | 2036 | 1.28 | 2416 | 1.08 | 2551 | 1.02 | 2612 | 1.00 |
Mean | - | - | 1.10 | - | 1.04 | - | 1.06 | - | 0.97 |
SD | - | - | 0.07 | - | 0.03 | - | 0.05 | - | 0.03 |
Coefficient of variation | - | - | 0.06 | - | 0.03 | - | 0.04 | - | 0.03 |
A6-50 | 2319 | 2226 | 1.04 | 2277 | 1.02 | 2174 | 1.07 | 2457 | 0.94 |
A8-50 | 2681 | 2364 | 1.13 | 2556 | 1.05 | 2537 | 1.06 | 2769 | 0.97 |
A10-50 | 2927 | 2434 | 1.22 | 2796 | 1.06 | 2878 | 1.03 | 3042 | 0.98 |
A12-50 | 3376 | 2453 | 1.38 | 3003 | 1.13 | 3197 | 1.06 | 3286 | 1.03 |
Mean | - | - | 1.20 | - | 1.06 | 1.05 | - | 0.98 | |
SD | - | - | 0.14 | - | 0.05 | 0.01 | - | 0.04 | |
Coefficient of variation | - | - | 0.12 | - | 0.04 | 0.01 | - | 0.04 |
Specimen | ATCC-CHS | ATCC | CFAT-CHS | STCC-CHS | STCC |
---|---|---|---|---|---|
Cost of materials (yuan) | 600 | 550 | 620 | 420 | 370 |
Cost of labor (yuan) | 400 | 260 | 300 | 400 | 260 |
Cost of machinery (yuan) | 50 | 50 | 50 | 50 | 50 |
total (yuan) | 1050 | 860 | 970 | 870 | 680 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Zhang, J.; Lu, L.; Liang, H.; Ma, Z. The Strength in Axial Compression of Aluminum Alloy Tube Confined Concrete Columns with a Circular Hollow Section: Experimental Results. Buildings 2022, 12, 699. https://doi.org/10.3390/buildings12050699
Zhao D, Zhang J, Lu L, Liang H, Ma Z. The Strength in Axial Compression of Aluminum Alloy Tube Confined Concrete Columns with a Circular Hollow Section: Experimental Results. Buildings. 2022; 12(5):699. https://doi.org/10.3390/buildings12050699
Chicago/Turabian StyleZhao, Di, Jigang Zhang, Ling Lu, Haizhi Liang, and Zhehao Ma. 2022. "The Strength in Axial Compression of Aluminum Alloy Tube Confined Concrete Columns with a Circular Hollow Section: Experimental Results" Buildings 12, no. 5: 699. https://doi.org/10.3390/buildings12050699
APA StyleZhao, D., Zhang, J., Lu, L., Liang, H., & Ma, Z. (2022). The Strength in Axial Compression of Aluminum Alloy Tube Confined Concrete Columns with a Circular Hollow Section: Experimental Results. Buildings, 12(5), 699. https://doi.org/10.3390/buildings12050699