Importance of Autonomous Motivation in Construction Labor Productivity Improvement in Vietnam: A Self-Determination Theory Perspective
Abstract
:1. Introduction
- Exploring the relationships between engaging leadership and three pathways to BPN satisfaction among workers: autonomy satisfaction (AS), competence satisfaction (CS), and relatedness satisfaction (RS);
- Exploring the relationships between these satisfaction pathways and worker motivation, as well as the effects of these relationships on productivity;
- Exploring the associations between motivational factors and work engagement and the latter’s links to productivity;
- Formulating recommendations for improving CLP.
2. Theoretical Foundation and Hypotheses Development
2.1. Engaging Leadership
2.2. Basic Psychological Needs
2.3. Work Motivation Based on Self-Determination Theory
2.4. Work Engagement
2.5. Measurement of Worker Productivity
3. Materials and Methods
3.1. Questionnaire Development and Procedure
3.2. Participants
3.3. Variables Measured
3.3.1. Engaging Leadership
- “My supervisors encourage me to develop knowledge and skills as much as possible on my tasks” (strengthening);
- “My supervisors encourage collaboration among team members on sites” (connection);
- “My supervisors listen to how I would like to do things to improve my work efficiency” (empowerment).
3.3.2. Satisfaction with BPNs
3.3.3. Work Motivation
3.3.4. Work Engagement
3.3.5. Worker Productivity (i.e., CLP)
- For steel workers: “How many average kilograms of steel can you process (i.e., cutting, bending, and shaping according to drawn specifications) per shift (eight hours)?”. The evaluation scales were (1) <150 kg, (2) 150–170 kg, (3) 171–190 kg, (4) 191–210 kg, and (5) >210 kg.
- For masonry workers: “How many average cubic meters of straight walls can you build using baked clay bricks per shift (eight hours)?” The evaluation scales were (1) <0.6 m3, (2) 0.6–0.7 m3, (3) 0.71–0.8 m3, (4) 0.81–0.9 m3 and (5) >0.9 m3.
3.3.6. Control Variables
3.4. Structural Equation Modeling
4. Results
4.1. Preliminary Analysis
4.2. Measurement Model
4.3. Measurement Model
5. Discussions
5.1. First Feature: The Roles of Controlled Motivation and Amotivation in CLP Improvement (Conventional View)
5.2. The Second Feature: The Role of Autonomous Motivation in CLP Improvement
5.3. Third Feature: The “Negative Legacy” of the Construction Industry
5.4. Fourth Feature: Work Engagement and Worker Productivity
5.5. Labor Management Implications
6. Conclusions, Implications, and Limitations
6.1. Theoretical Implications
6.2. Practical Implications
6.3. Limitations and Suggestions for Further Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chitkara, K. Construction Project Management; Tata McGraw-Hill Education: New York, NY, USA, 1998. [Google Scholar]
- Arditi, D.; Mochtar, K. Trends in productivity improvement in the US construction industry. Constr. Manag. Econ. 2000, 18, 15–27. [Google Scholar] [CrossRef]
- Chen, Y.; McCabe, B.; Hyatt, D. Impact of individual resilience and safety climate on safety performance and psychological stress of construction workers: A case study of the Ontario construction industry. J. Saf. Res. 2017, 61, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, N.; Cao, J.; Lim, Y.; Kubota, Y.; Kitahara, S.; Ishida, S.; Kodama, K. The effects of psychological factors on perceptions of productivity in construction sites in Japan by worker age. Int. J. Environ. Res. Public Health 2020, 17, 3517. [Google Scholar] [CrossRef] [PubMed]
- Kisi, K.P.; Mani, N.; Rojas, E.M.; Foster, E.T. Optimal productivity in labor-intensive construction operations: Pilot study. J. Constr. Eng. Manag. 2017, 143, 04016107. [Google Scholar] [CrossRef]
- Goodarzizad, P.; Mohammadi Golafshani, E.; Arashpour, M. Predicting the construction labour productivity using artificial neural network and grasshopper optimisation algorithm. Int. J. Constr. Manag. 2021, 1–17. [Google Scholar] [CrossRef]
- Małachowski, B.; Korytkowski, P. Competence-based performance model of multi-skilled workers. Comput. Ind. Eng. 2016, 91, 165–177. [Google Scholar] [CrossRef]
- Mahamid, I. Principal factors impacting labor productivity of public construction projects in Palestine: Contractors’ perspective. Int. J. Archit. Eng. Constr. 2013, 2, 194–202. [Google Scholar]
- El-Gohary, K.M.; Aziz, R.F. Factors influencing construction labor productivity in Egypt. J. Manag. Eng. 2014, 30, 1–9. [Google Scholar]
- Nasir, M.K.; Hadikusumo, B.H. System dynamics model of contractual relationships between owner and contractor in construction projects. J. Manag. Eng. 2019, 35, 04018052. [Google Scholar] [CrossRef]
- McTague, B.; Jergeas, G. Productivity Improvements on Alberta Major Construction Projects: Phase I-Back to Basics; Alberta Economic Development: Edmonton, AB, Canada, 2002. [Google Scholar]
- Hanna, A.S.; Peterson, P.; Lee, M.-J. Benchmarking productivity indicators for electrical/mechanical projects. J. Constr. Eng. Manag. 2002, 128, 331–337. [Google Scholar] [CrossRef]
- Ayele, S.; Fayek, A.R. A framework for total productivity measurement of industrial construction projects. Can. J. Civ. Eng. 2019, 46, 195–206. [Google Scholar] [CrossRef]
- Jarkas, A.M.; Bitar, C.G. Factors affecting construction labor productivity in Kuwait. J. Constr. Eng. Manag. 2012, 138, 811–820. [Google Scholar] [CrossRef]
- Shoar, S.; Banaitis, A. Application of fuzzy fault tree analysis to identify factors influencing construction labor productivity: A high-rise building case study. J. Civ. Eng. Manag. 2018, 25, 41–52. [Google Scholar] [CrossRef]
- Drucker, P. Managing in the Next Society; Routledge: London, UK, 2012. [Google Scholar]
- Dixit, S.; Mandal, S.N.; Thanikal, J.V.; Saurabh, K. Evolution of studies in construction productivity: A systematic literature review (2006–2017). Ain Shams Eng. J. 2019, 10, 555–564. [Google Scholar] [CrossRef]
- Abdul Kadir, M.R.; Lee, W.P.; Jaafar, M.S.; Sapuan, S.M.; Ali, A.A.A. Factors affecting construction labour productivity for Malaysian residential projects. Struct. Surv. 2005, 23, 42–54. [Google Scholar] [CrossRef]
- Bin Seddeeq, A.; Assaf, S.; Abdallah, A.; Hassanain, M.A. Time and cost overrun in the Saudi Arabian oil and gas construction industry. Buildings 2019, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Palikhe, S.; Kim, S.; Kim, J.J. Critical success factors and dynamic modeling of construction labour productivity. Int. J. Civ. Eng. 2019, 17, 427–442. [Google Scholar] [CrossRef]
- Yap, J.B.H.; Chow, I.N.; Shavarebi, K. Criticality of construction industry problems in developing countries: Analyzing Malaysian projects. J. Manag. Eng. 2019, 35, 04019020. [Google Scholar] [CrossRef]
- Jarkas, A.M.; Radosavljevic, M. Motivational factors impacting the productivity of construction master craftsmen in Kuwait. J. Manag. Eng. 2013, 29, 446–454. [Google Scholar] [CrossRef]
- Hamza, M.; Shahid, S.; Bin Hainin, M.R.; Nashwan, M.S. Construction labour productivity: Review of factors identified. Int. J. Constr. Manag. 2019, 22, 413–425. [Google Scholar] [CrossRef]
- Kazaz, A.; Acikara, T. Comparison of Labor Productivity Perspectives of Project Managers and Craft Workers in Turkish Construction Industry. Procedia Comput. Sci. 2015, 64, 491–496. [Google Scholar] [CrossRef] [Green Version]
- Sandbhor, S.; Botre, R. Applying total interpretive structural modeling to study factors affecting construction labour productivity. Australas. J. Constr. Econ. Build. 2014, 14, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.S.; Kim, J.D.; Kim, T.Y.; Kim, G.H. Construction productivity factors affected by the motivation of foreign laborers in construction fields. Appl. Mech. Mater. 2013, 357, 2599–2602. [Google Scholar]
- Kazaz, A.; Manisali, E.; Ulubeyli, S. Effect of basic motivational factors on construction workforce productivity in Turkey. J. Civ. Eng. Manag. 2008, 14, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Ugulu, R.; Makhotso, M.; Mahlatse, R.; Morongoa, S.; Allen, S. The influence of motivation on labour productivity on building construction projects in South Africa. Int. J. Sci. Eng. Res. 2016, 7, 1066–1073. [Google Scholar]
- Momade, M.H.; Hainin, M.R. Identifying motivational and demotivational productivity factors in Qatar construction projects. Eng. Technol. Appl. Sci. Res. 2019, 9, 3945–3948. [Google Scholar] [CrossRef]
- Johari, S.; Jha, K.N. Impact of Work Motivation on Construction Labor Productivity. J. Manag. Eng. 2020, 36, 04020052. [Google Scholar] [CrossRef]
- ODClick. Promoting Work Motivation and Commitment of Construction Workforce (In Vietnamese). 2020. Available online: https://odclick.com/chuyen-san/ta%CC%A3o-do%CC%A3ng-lu%CC%A3c-va-cam-ket-nhan-su%CC%A3-nganh-xay-du%CC%A3ng/ (accessed on 14 March 2022).
- Ha, T.H. Proposing Solutions to Improve the Labour Quality in Manufacturing Building Materials Companies (In Vietnamese). In Construction and Urban Managers Institute Magazine; Vietnam Construction Publishing House: Hanoi, Vietnam, 2021; pp. 6–10. [Google Scholar]
- Lee, M.Y.; Edmondson, A.C. Self-managing organizations: Exploring the limits of less-hierarchical organizing. Res. Organ. Behav. 2017, 37, 35–58. [Google Scholar] [CrossRef]
- Van Tuin, L.; Schaufeli, W.B.; Van Rhenen, W. The Satisfaction and Frustration of Basic Psychological Needs in Engaging Leadership. J. Leadersh. Stud. 2020, 14, 6–23. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychol. Inq. 2000, 11, 227–268. [Google Scholar] [CrossRef]
- Ryan, R.M. Psychological needs and the facilitation of integrative processes. J. Personal. 1995, 63, 397–427. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 2000, 55, 68. [Google Scholar] [CrossRef] [PubMed]
- Vansteenkiste, M.; Niemiec, C.P.; Soenens, B. The development of the five mini-theories of self-determination theory: An historical overview, emerging trends, and future directions. In The Decade Ahead: Theoretical Perspectives on Motivation and Achievement; Emerald Group Publishing Limited: Bingley, UK, 2010. [Google Scholar]
- Robles, G.; Stifi, A.; Ponz-Tienda, J.L.; Gentes, S. Labor productivity in the construction industry-factors influencing the Spanish construction labor productivity. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2014, 8, 1021–1030. [Google Scholar]
- Ailabouni, N.; Gidado, K.; Painting, N. Factors affecting employee productivity in the UAE construction industry. In Proceedings of the 25th Annual ARCOM Conference, Nottingham, UK, 7–9 September 2009; pp. 7–9. [Google Scholar]
- Schaufeli, W. Work engagement: What do we know and where do we go? Rom. J. Appl. Psychol. 2012, 14, 3–10. [Google Scholar]
- Schaufeli, W.B. Engaging leadership in the job demands-resources model. Career Dev. Int. 2015, 20, 446–463. [Google Scholar] [CrossRef] [Green Version]
- DeCharms, R. Personal Causation: The International Affective Determinations of Behavior; Acadamic Press: Cambridge, MA, USA, 1968. [Google Scholar]
- White, R.W. Motivation reconsidered: The concept of competence. Psychol. Rev. 1959, 66, 297. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, R.F.; Leary, M.R. The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull. 1995, 117, 497. [Google Scholar] [CrossRef]
- Gagné, M.; Deci, E.L. Self-determination theory and work motivation. J. Organ. Behav. 2005, 26, 331–362. [Google Scholar] [CrossRef] [Green Version]
- Ryan, R.M.; Deci, E.L. Self-Determination Theory: Basic Psychological Needs in Motivation, Development, and Wellness; Guilford Publications: New York, NY, USA, 2017. [Google Scholar]
- Deci, E.L.; Olafsen, A.H.; Ryan, R.M. Self-determination theory in work organizations: The state of a science. Annu. Rev. Organ. Psychol. Organ. Behav. 2017, 4, 19–43. [Google Scholar] [CrossRef]
- Baard, P.P.; Deci, E.L.; Ryan, R.M. Intrinsic need satisfaction: A motivational basis of performance and weil-being in two work settings 1. J. Appl. Soc. Psychol. 2004, 34, 2045–2068. [Google Scholar] [CrossRef]
- Van Tuin, L.; Schaufeli, W.B.; van Rhenen, W.; Kuiper, R.M. Business results and well-being: An engaging leadership intervention study. Int. J. Environ. Res. Public Health 2020, 17, 4515. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. “Facilitating optimal motivation and psychological well-being across life’s domains”: Correction to Deci and Ryan (2008). Can. Psychol./Psychol. Can. 2008, 49, 262. [Google Scholar] [CrossRef]
- Humphrey, S.E.; Nahrgang, J.D.; Morgeson, F.P. Integrating motivational, social, and contextual work design features: A meta-analytic summary and theoretical extension of the work design literature. J. Appl. Psychol. 2007, 92, 1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeve, J. Understanding Motivation and Emotion; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Deci, E.L.; Ryan, R.M.; Williams, G.C. Need satisfaction and the self-regulation of learning. Learn. Individ. Differ. 1996, 8, 165–183. [Google Scholar] [CrossRef]
- Chiniara, M.; Bentein, K. Linking servant leadership to individual performance: Differentiating the mediating role of autonomy, competence and relatedness need satisfaction. Leadersh. Q. 2016, 27, 124–141. [Google Scholar] [CrossRef]
- Karau, S.J.; Williams, K.D. Social loafing: A meta-analytic review and theoretical integration. J. Personal. Soc. Psychol. 1993, 65, 681. [Google Scholar] [CrossRef]
- Brien, M.; Hass, C.; Savoie, A. Psychological health as a mediator between need satisfaction at work and teachers’ self-perceptions of performance. Can. J. Behav. Sci. Rev. Can. Des Sci. Du Comport. 2012, 44, 288. [Google Scholar] [CrossRef]
- Greguras, G.J.; Diefendorff, J.M. Different fits satisfy different needs: Linking person-environment fit to employee commitment and performance using self-determination theory. J. Appl. Psychol. 2009, 94, 465. [Google Scholar] [CrossRef]
- Hewage, K.N. Construction Productivity Improvement by Worker Motivation and IT Based Communication. Ph.D. Thesis, The University of Calgary, Calgary, AB, Canada, 2007. [Google Scholar]
- Doloi, H. Twinning motivation, productivity and management strategy in construction projects. Eng. Manag. J. 2007, 19, 30–40. [Google Scholar] [CrossRef]
- Al-Abbadi, G.M.d.; Agyekum-Mensah, G. The effects of motivational factors on construction professionals productivity in Jordan. Int. J. Constr. Manag. 2019, 22, 820–831. [Google Scholar] [CrossRef]
- Olomolaiye, P.O. An evaluation of the relationships between bricklayers’ motivation and productivity. Constr. Manag. Econ. 1990, 8, 301–313. [Google Scholar] [CrossRef]
- Ghoddousi, P.; Poorafshar, O.; Chileshe, N.; Hosseini, M.R. Labour productivity in Iranian construction projects. Int. J. Product. Perform. Manag. 2015, 64, 811–830. [Google Scholar] [CrossRef]
- Nasirzadeh, F.; Nojedehi, P. Dynamic modeling of labor productivity in construction projects. Int. J. Proj. Manag. 2013, 31, 903–911. [Google Scholar] [CrossRef]
- Aghayeva, K.; Ślusarczyk, B. Analytic hierarchy of motivating and demotivating factors affecting labor productivity in the construction industry: The case of Azerbaijan. Sustainability 2019, 11, 5975. [Google Scholar] [CrossRef] [Green Version]
- Lingard, H.; Francis, V. Does a supportive work environment moderate the relationship between work-family conflict and burnout among construction professionals? Constr. Manag. Econ. 2006, 24, 185–196. [Google Scholar] [CrossRef]
- McLachlan, S.; Hagger, M.S. The influence of chronically accessible autonomous and controlling motives on physical activity within an extended theory of planned behavior. J. Appl. Soc. Psychol. 2011, 41, 445–470. [Google Scholar] [CrossRef] [Green Version]
- Karimi, S.; Sotoodeh, B. The mediating role of intrinsic motivation in the relationship between basic psychological needs satisfaction and academic engagement in agriculture students. Teach. High. Educ. 2019, 25, 959–975. [Google Scholar] [CrossRef]
- Kirkland, R.A.; Karlin, N.J.; Stellino, M.B.; Pulos, S. Basic psychological needs satisfaction, motivation, and exercise in older adults. Act. Adapt. Aging 2011, 35, 181–196. [Google Scholar] [CrossRef]
- Olafsen, A.H.; Deci, E.L.; Halvari, H. Basic psychological needs and work motivation: A longitudinal test of directionality. Motiv. Emot. 2018, 42, 178–189. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. The empirical exploration of intrinsic motivational processes. In Advances in Experimental Social Psychology; Elsevier: Amsterdam, The Netherlands, 1980; Volume 13, pp. 39–80. [Google Scholar]
- Wang, C.J.; Liu, W.C.; Kee, Y.H.; Chian, L.K. Competence, autonomy, and relatedness in the classroom: Understanding students’ motivational processes using the self-determination theory. Heliyon 2019, 5, e01983. [Google Scholar] [CrossRef] [Green Version]
- Carreira, J.M. Motivational orienations and psychological needs in EFL learning among elementary school students in Japan. System 2012, 40, 191–202. [Google Scholar] [CrossRef]
- Karatepe, O.M. High-performance work practices and hotel employee performance: The mediation of work engagement. Int. J. Hosp. Manag. 2013, 32, 132–140. [Google Scholar] [CrossRef]
- Kahn, W.A. Psychological conditions of personal engagement and disengagement at work. Acad. Manag. J. 1990, 33, 692–724. [Google Scholar]
- Haivas, S.; Hofmans, J.; Pepermans, R. Volunteer engagement and intention to quit from a self-determination theory perspective. J. Appl. Soc. Psychol. 2013, 43, 1869–1880. [Google Scholar] [CrossRef]
- Jowett, G.E.; Hill, A.P.; Hall, H.K.; Curran, T. Perfectionism and junior athlete burnout: The mediating role of autonomous and controlled motivation. Sport Exerc. Perform. Psychol. 2013, 2, 48. [Google Scholar] [CrossRef] [Green Version]
- Stoeber, J.; Davis, C.R.; Townley, J. Perfectionism and workaholism in employees: The role of work motivation. Personal. Individ. Differ. 2013, 55, 733–738. [Google Scholar] [CrossRef] [Green Version]
- Van Beek, I.; Hu, Q.; Schaufeli, W.B.; Taris, T.W.; Schreurs, B.H. For fun, love, or money: What drives workaholic, engaged, and burned-out employees at work? Appl. Psychol. 2012, 61, 30–55. [Google Scholar] [CrossRef] [Green Version]
- Demerouti, E.; Bakker, A.B.; Demerouti, E.; Bakker, A. Employee well-being and job performance: Where we stand and where we should go. Occup. Health Psychol. Eur. Perspect. Res. Educ. Pract. 2006, 1, 83–111. [Google Scholar]
- Bakker, A.B.; Demerouti, E. Towards a model of work engagement. Career Dev. Int. 2008, 13, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Salanova, M.; Agut, S.; Peiró, J.M. Linking organizational resources and work engagement to employee performance and customer loyalty: The mediation of service climate. J. Appl. Psychol. 2005, 90, 1217. [Google Scholar] [CrossRef]
- Hough, L.M.; Dunnette, M.D. Handbook of Industrial and Organizational Psychology; Consulting Psychologists Press: New York, NY, USA, 1990. [Google Scholar]
- Rich, B.L.; Lepine, J.A.; Crawford, E.R. Job engagement: Antecedents and effects on job performance. Acad. Manag. J. 2010, 53, 617–635. [Google Scholar] [CrossRef]
- Kahn, W.A. To be fully there: Psychological presence at work. Hum. Relat. 1992, 45, 321–349. [Google Scholar] [CrossRef]
- Ashforth, B.E.; Humphrey, R.H. Emotion in the workplace: A reappraisal. Hum. Relat. 1995, 48, 97–125. [Google Scholar] [CrossRef]
- Johari, S.; Jha, K.N. Interrelationship among Belief, Intention, Attitude, Behavior, and Performance of Construction Workers. J. Manag. Eng. 2020, 36, 04020081. [Google Scholar] [CrossRef]
- Taris, T.W.; van Beek, I.; Schaufeli, W.B. The motivational make-up of workaholism and work engagement: A longitudinal study on need satisfaction, motivation, and heavy work investment. Front. Psychol. 2020, 11, 1419. [Google Scholar] [CrossRef]
- Li, M.; Wang, Z.; You, X.; Gao, J. Value congruence and teachers’ work engagement: The mediating role of autonomous and controlled motivation. Personal. Individ. Differ. 2015, 80, 113–118. [Google Scholar] [CrossRef]
- Brown, S.P.; Leigh, T.W. A new look at psychological climate and its relationship to job involvement, effort, and performance. J. Appl. Psychol. 1996, 81, 358. [Google Scholar] [CrossRef] [PubMed]
- Ghoddousi, P.; Hosseini, M.R. A survey of the factors affecting the productivity of construction projects in Iran. Technol. Econ. Dev. Econ. 2012, 18, 99–116. [Google Scholar] [CrossRef] [Green Version]
- Enshassi, A.; Mohamed, S.; Mustafa, Z.A.; Mayer, P.E. Factors affecting labour productivity in building projects in the Gaza Strip. J. Civ. Eng. Manag. 2007, 13, 245–254. [Google Scholar] [CrossRef]
- Ministry, V.C. Circular No.10/2019/TT-BXD: Promulgating Construction Norms, Dated 26 December 2019. Available online: https://thuvienphapluat.vn/van-ban/Xay-dung-Do-thi/Thong-tu-10-2019-TT-BXD-dinh-muc-xay-dung-432769.aspx (accessed on 9 May 2022).
- Vehovar, V.; Toepoel, V.; Steinmetz, S. Non-probability sampling. Sage Handb. Surv. Methods 2016, 1, 329–345. [Google Scholar]
- Van den Broeck, A.; Vansteenkiste, M.; De Witte, H.; Soenens, B.; Lens, W. Capturing autonomy, competence, and relatedness at work: Construction and initial validation of the Work-related Basic Need Satisfaction scale. J. Occup. Organ. Psychol. 2010, 83, 981–1002. [Google Scholar] [CrossRef] [Green Version]
- Van den Broeck, A.; Vansteenkiste, M.; De Witte, H.; Lens, W. Explaining the relationships between job characteristics, burnout, and engagement: The role of basic psychological need satisfaction. Work Stress 2008, 22, 277–294. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, R.; Gutberg, J.; Schattke, K.; Paulin, M.; Jost, N. Self-determination theory, social media and charitable causes: An in-depth analysis of autonomous motivation. Eur. J. Soc. Psychol. 2015, 45, 298–307. [Google Scholar] [CrossRef]
- Williams, G.G.; Gagné, M.; Ryan, R.M.; Deci, E.L. Facilitating autonomous motivation for smoking cessation. Health Psychol. 2002, 21, 40–50. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hair Jr, J.F.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Van Tam, N.; Toan, N.Q.; Van Phong, V.; Durdyev, S. Impact of BIM-related factors affecting construction project performance. Int. J. Build. Pathol. Adapt. 2021. [Google Scholar] [CrossRef]
- Durdyev, S.; Ismail, S.; Kandymov, N. Structural equation model of the factors affecting construction labor productivity. J. Constr. Eng. Manag. 2018, 144, 04018007. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS; Sage: London, UK, 2009. [Google Scholar]
- Cho, K.; Hong, T.; Hyun, C. Effect of project characteristics on project performance in construction projects based on structural equation model. Expert Syst. Appl. 2009, 36, 10461–10470. [Google Scholar] [CrossRef]
- Bryman, A.; Cramer, D. Quantitative Data Analysis with IBM SPSS 17, 18 and 19; Routledge: London, UK, 2011. [Google Scholar]
- Jackson, J.E. Principal components and factor analysis: Part I—principal components. J. Qual. Technol. 1980, 12, 201–213. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1998; Volume 5. [Google Scholar]
- Thorndike, R.M. Book review: Psychometric theory by Jum Nunnally and Ira Bernstein New York: McGraw-hill, 1994, xxiv+ 752 pp. Appl. Psychol. Meas. 1995, 19, 303–305. [Google Scholar] [CrossRef]
- Hair Jr, J.F.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Byrne, B.M. Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming; Routledge: London, UK, 2013. [Google Scholar]
- Hu, L.t.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Modeling A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Byrne, B.M. Structural equation modeling with AMOS: Basic concepts, applications, and programming (multivariate applications series). N. Y. Taylor Fr. Group 2010, 396, 7384. [Google Scholar]
- Aho, K.; Derryberry, D.; Peterson, T. Model selection for ecologists: The worldviews of AIC and BIC. Ecology 2014, 95, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2007; Volume 5. [Google Scholar]
- Bollen, K.A.; Long, J.S. Testing Structural Equation Models; Sage: Thousand Oaks, CA, USA, 1993; Volume 154. [Google Scholar]
- Markland, D.; Ingledew, D.K. The relationships between body mass and body image and relative autonomy for exercise among adolescent males and females. Psychol. Sport Exerc. 2007, 8, 836–853. [Google Scholar] [CrossRef]
- Chen, B.; Vansteenkiste, M.; Beyers, W.; Boone, L.; Deci, E.L.; Van der Kaap-Deeder, J.; Duriez, B.; Lens, W.; Matos, L.; Mouratidis, A. Basic psychological need satisfaction, need frustration, and need strength across four cultures. Motiv. Emot. 2015, 39, 216–236. [Google Scholar] [CrossRef]
- Lai, F.-Y.; Tang, H.-C.; Lu, S.-C.; Lee, Y.-C.; Lin, C.-C. Transformational leadership and job performance: The mediating role of work engagement. SAGE Open 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rahmadani, V.G.; Schaufeli, W.B.; Ivanova, T.Y.; Osin, E.N. Basic psychological need satisfaction mediates the relationship between engaging leadership and work engagement: A cross-national study. Hum. Resour. Dev. Q. 2019, 30, 453–471. [Google Scholar] [CrossRef]
- Molenaar, K.; Washington, S.; Diekmann, J. Structural equation model of construction contract dispute potential. J. Constr. Eng. Manag. 2000, 126, 268–277. [Google Scholar] [CrossRef]
- Zakeri, M.; Olomolaiye, P.; Holt, G.; Harris, F. Factors affecting the motivation of Iranian construction operatives. Build. Environ. 1997, 32, 161–166. [Google Scholar] [CrossRef]
- Khan, A.; Umer, M.; Khan, S.M. Effect of basic motivational factors on construction workforce productivity in Pakistan. In Proceedings of the International Conference on Structural Engineering Construction and Management, Central, Sri Lanka, 16–18 December 2011; Volume 16, pp. 1–11. [Google Scholar]
- Ohueri, C.C.; Enegbuma, W.I.; Wong, N.H.; Kuok, K.K.; Kenley, R. Labour productivity motivation framework for Iskandar Malaysia. Built Environ. Proj. Asset Manag. 2018, 8, 293–304. [Google Scholar] [CrossRef]
- The World Bank. The World Bank in Vietnam. Available online: https://www.worldbank.org/en/country/vietnam/overview#1 (accessed on 8 October 2021).
- Maslow, A.H. A theory of human motivation. Psychol. Rev. 1943, 50, 370. [Google Scholar] [CrossRef] [Green Version]
- Maslow, A.H. Motivation and Personality, 3rd ed.; Pearson Education: Delhi, India, 1987. [Google Scholar]
- Bakker, A.B. Building engagement in the workplace. Peak Perform. Organ. 2009, 50, 96–118. [Google Scholar]
H | Path | References |
---|---|---|
H1a | Engaging Leadership (EL) → Autonomy Satisfaction (AS) | [34,50] |
H1b | Engaging Leadership (EL) → Competence Satisfaction (CS) | [34] |
H1c | Engaging Leadership (EL) → Relatedness Satisfaction (RS) | [34] |
H2a | Autonomy Satisfaction (AS) → CLP | [49,55,57] |
H2b | Competence Satisfaction (CS) → CLP | [49,55,57] |
H2c | Relatedness Satisfaction (RS) → CLP | [49,55,57] |
H3a | Autonomy Satisfaction (AS) → Autonomous Motivation (AM) | [34,68,72,73] |
H3b | Autonomy Satisfaction (AS) → Controlled Motivation (CM) | [34,72,73] |
H3c | Autonomy Satisfaction (AS) → Amotivation (Amot) | [34] |
H4a | Competence Satisfaction (CS) → Autonomous Motivation (AM) | [34,68,72,73] |
H4b | Competence Satisfaction (CS) → Controlled Motivation (CM) | [34,72,73] |
H4c | Competence Satisfaction (CS) → Amotivation (Amot) | [34] |
H5a | Relatedness Satisfaction (RS) → Autonomous Motivation (AM) | [34,68,72,73] |
H5b | Relatedness Satisfaction (RS) → Controlled Motivation (CM) | [34,72,73] |
H5c | Relatedness Satisfaction (RS) → Amotivation (Amot) | [34] |
H6 | Autonomous Motivation (AM) → CLP | [30] |
H7 | Controlled Motivation (CM) → CLP | [28,30,74] |
H8 | Amotivation (Amot) → CLP | [30] |
H9 | Autonomous Motivation (AM) → Work Engagement (WE) | [68,76,77,78,88,89] |
H10 | Controlled Motivation (CM) → Work Engagement (WE) | [76,78] |
H11 | Amotivation (Amot) → Work Engagement (WE) | [34,78] |
H12 | Work Engagement (WE) → CLP | [74,78,87,90] |
Indicator | Recommended Level |
---|---|
Cronbach’s Alpha | >0.6 [108] |
KMO Measure of Sampling Adequacy | 0.5 ≤ KMO ≤ 1 [108] |
Bartlett’s Test of Sphericity | Sig. < 0.05 [106,108] |
Average Variance Extracted (AVE) | >0.5 [113] |
Composite Reliability (CR) | >0.7 [109,113] |
Chi-Square/df (χ2/df) | from 1 to 2 [114] |
GFI | 0 (no fit) to 1 (perfect fit) [103,112] |
CFI | 0 (no fit) to 1 (perfect fit) [103,112] |
TFI | 0 (no fit) to 1 (perfect fit) [103,112] |
NFI | 0 (no fit) to 1 (perfect fit) [103,112] |
AIC | Smaller value [115] |
RMSEA | <0.05, very good fit; 0.05–0.08, fairly good fit; 0.08–0.10, acceptable fit; >0.1, unacceptable fit [116] |
Mean | SD | Gender | Age | Edu | Experience | Marital | BMI | Income | EL | AS | CS | RS | Amot | AM | CM | WE | CLP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gender 1 | 1.130 | 0.337 | 1.000 | |||||||||||||||
Age | 30.605 | 6.995 | 0.123 | 1.000 | ||||||||||||||
Edu 2 | 2.893 | 0.872 | –0.217 ** | 0.018 | 1.000 | |||||||||||||
Experience | 5.616 | 3.593 | –0.156 * | 0.620 ** | 0.186 ** | 1.000 | ||||||||||||
Marital 3 | 1.767 | 0.423 | 0.115 | 0.634 ** | 0.015 | 0.474 ** | 1.000 | |||||||||||
BMI 4 | 22.260 | 2.013 | –0.307 ** | 0.148 * | 0.101 | 0.052 | 0.074 | 1.000 | ||||||||||
Income 5 | 3.811 | 0.520 | –0.088 | 0.434 ** | 0.353 ** | 0.468 ** | 0.249 ** | 0.145 * | 1.000 | |||||||||
EL | 3.389 | 0.663 | –0.041 | 0.035 | 0.025 | –0.007 | –0.007 | 0.053 | 0.066 | 1.000 | ||||||||
AS | 3.467 | 0.855 | –0.030 | 0.168 * | 0.087 | 0.154 * | 0.157 * | 0.210 ** | 0.068 | 0.334 ** | 1.000 | |||||||
CS | 3.487 | 0.809 | –0.027 | 0.044 | 0.020 | –0.020 | –0.066 | 0.015 | 0.002 | 0.011 | –0.054 | 1.000 | ||||||
RS | 3.349 | 0.997 | –0.042 | –0.009 | 0.026 | –0.119 | 0.017 | 0.074 | 0.016 | 0.042 | 0.022 | 0.363 ** | 1.000 | |||||
Amot | 1.825 | 0.367 | 0.118 | 0.022 | –0.186 ** | –0.107 | 0.104 | 0.038 | –0.089 | –0.048 | –0.074 | 0.033 | –0.012 | 1.000 | ||||
AM | 3.384 | 1.034 | –0.131 | –0.022 | 0.004 | –0.092 | –0.031 | 0.108 | 0.008 | 0.052 | –0.091 | 0.382 ** | 0.322 ** | –0.005 | 1.000 | |||
CM | 3.624 | 0.870 | 0.085 | 0.014 | 0.005 | –0.114 | 0.029 | 0.029 | –0.075 | –0.057 | –0.061 | 0.447 ** | 0.269 ** | 0.053 | 0.408 ** | 1.000 | ||
WE | 3.526 | 1.094 | –0.093 | –0.072 | –0.015 | –0.098 | –0.011 | –0.006 | –0.160 * | 0.037 | 0.071 | 0.371 ** | 0.315 ** | –0.027 | 0.321 ** | 0.240 ** | 1.000 | |
CLP | 3.428 | 0.970 | –0.082 | 0.000 | 0.028 | –0.127 | 0.112 | 0.077 | –0.051 | –0.016 | –0.058 | 0.480 ** | 0.422 ** | 0.026 | 0.502 ** | 0.441 ** | 0.394 ** | 1.000 |
Code | Component | ||||||||
---|---|---|---|---|---|---|---|---|---|
EL | AS | WE | AM | CM | RS | CS | Amot | CLP | |
EL3 | 0.914 | ||||||||
EL12 | 0.893 | ||||||||
EL1 | 0.889 | ||||||||
EL9 | 0.883 | ||||||||
EL11 | 0.846 | ||||||||
EL8 | 0.846 | ||||||||
EL10 | 0.836 | ||||||||
EL6 | 0.833 | ||||||||
AS4 | 0.934 | ||||||||
AS2 | 0.932 | ||||||||
AS3 | 0.912 | ||||||||
AS1 | 0.907 | ||||||||
AS5 | 0.882 | ||||||||
WE3 | 0.905 | ||||||||
WE7 | 0.840 | ||||||||
WE9 | 0.619 | ||||||||
WE8 | 0.609 | ||||||||
Intri1 | 0.782 | ||||||||
Intri6 | 0.781 | ||||||||
Intri4 | 0.714 | ||||||||
Intri5 | 0.672 | ||||||||
Exter7 | 0.801 | ||||||||
Exter2 | 0.699 | ||||||||
Exter8 | 0.644 | ||||||||
Exter9 | 0.636 | ||||||||
RS1 | 0.752 | ||||||||
RS5 | 0.746 | ||||||||
RS3 | 0.695 | ||||||||
RS6 | 0.664 | ||||||||
CS5 | 0.805 | ||||||||
CS6 | 0.724 | ||||||||
CS4 | 0.671 | ||||||||
CS2 | 0.571 | ||||||||
Amot3 | 0.894 | ||||||||
Amot4 | 0.745 | ||||||||
Amot1 | 0.577 | ||||||||
LP3 | 0.817 | ||||||||
LP1 | 0.761 | ||||||||
LP5 | 0.712 | ||||||||
Initial Eigenvalues | 7.686 | 7.350 | 3.435 | 2.151 | 1.913 | 1.832 | 1.666 | 1.329 | 1.163 |
% of Variance | 19.707 | 18.845 | 8.807 | 5.514 | 4.906 | 4.696 | 4.271 | 3.408 | 2.983 |
Cumulative % | 19.707 | 38.553 | 47.360 | 52.874 | 57.780 | 62.477 | 66.747 | 70.155 | 73.138 |
Cronbach’s Alpha | 0.960 | 0.962 | 0.839 | 0.841 | 0.806 | 0.813 | 0.804 | 0.774 | 0.844 |
Kaiser–Meyer–Olkin Measure of Sampling Adequacy | 0.844 | ||||||||
Bartlett’s Test of Sphericity | |||||||||
Approx. Chi-Square | 6053.051 | ||||||||
df | 741 | ||||||||
Sig. | 0.000 | ||||||||
Composite Reliability (CR) | 0.959 | 0.959 | 0.839 | 0.831 | 0.756 | 0.813 | 0.805 | 0.785 | 0.831 |
Average Variance Extracted (AVE) | 0.743 | 0.825 | 0.572 | 0.552 | 0.508 | 0.521 | 0.508 | 0.559 | 0.622 |
Indicator | Recommended Level | Initial Model | Final Model |
---|---|---|---|
χ2/df | from 1 to 2 [114] | 1.823 | 1.850 |
CFI | 0 (no fit) to 1 (perfect fit) [103,112] | 0.673 | 0.899 |
TFI | 0 (no fit) to 1 (perfect fit) [103,112] | 0.662 | 0.890 |
GFI | 0 (no fit) to 1 (perfect fit) [103,112] | 0.553 | 0.778 |
NFI | 0 (no fit) to 1 (perfect fit) [103,112] | 0.486 | 0.806 |
AIC | Smaller value [115] | 5938.987 | 1.458.08 |
RMSEA | <0.05, very good fit; 0.05–0.08, fairly good fit 0.08–0.10, acceptable fit; >0.1, unacceptable fit [116] | 0.062 | 0.063 |
H | Path | β | p | Remark | Comparison with Other Findings | |
---|---|---|---|---|---|---|
Construction Field | Non-Construction Fields | |||||
H4b | CS → CM | 0.530 | *** | The first feature | - | (+) E.O. [34]; (n.s.) Edu. [72]; (n.s.) Edu. [73] |
H5b | RS → CM | 0.220 | 0.001 | - | (n.s.) E.O. [34]; (–) Edu. [72]; (n.s.) Edu. [73] | |
H7 | CM → CLP | 0.237 | 0.020 | (+) [30]; (+) [28] | (+) H.C. [74] | |
H10 | CM → WE | 0.448 | *** | - | (–) V.W. [76]; (+) S.C. [78] | |
H3c | AS → Amot | –0.029 | 0.469 | - | (–) E.O. [34] | |
H4c | CS → Amot | 0.047 | 0.319 | - | (–) E.O. [34] | |
H5c | RS → Amot | 0.013 | 0.742 | - | (–) E.O. [34] | |
H8 | Amot → CLP | 0.002 | 0.987 | (–) [30] | - | |
H11 | Amot → WE | –0.262 | 0.186 | - | (–) E.O. [34]; (n.s.) S.C. [78] | |
H2b | CS → CLP | 0.241 | 0.023 | The second feature | - | (+) T.O. [55]; (+) Edu. [57]; (+) F.O. [49] |
H2c | RS → CLP | 0.214 | 0.005 | - | (+) T.O. [55]; (+) Edu. [57]; (+) F.O. [49] | |
H4a | CS → AM | 0.403 | *** | - | (+) E.O. [34]; (+) Edu. [72]; (+) Edu. [68]; (+) Edu. [73] | |
H5a | RS → AM | 0.330 | *** | (n.s.) E.O. [34]; (+) Edu. [72]; (+) Edu. [68]; (+) Edu. [73] | ||
H6 | AM → CLP | 0.268 | *** | (+) [30] | - | |
H9 | AM → WE | 0.364 | *** | - | (+) Edu. [68]; (+) S. [77]; (+) S.C. [78]; (+) V.W. [76]; (+) M. [88]; (+) Edu. [89] | |
H1a | EL → AS | 0.374 | *** | The third feature | - | (+) E.O. [34]; (+) H.O. [50] |
H1b | EL → CS | –0.051 | 0.533 | - | (+) E.O. [34] | |
H1c | EL → RS | 0.046 | 0.653 | - | (+) E.O. [34] | |
H2a | AS → CLP | –0.044 | 0.512 | - | (+) T.O. [55]; (+) Edu. [57]; (+) F.O. [49] | |
H3a | AS → AM | –0.134 | 0.090 | - | (+) E.O. [34]; (n.s.) Edu. [72]; (+) Edu. [68]; (+) Edu. [73] | |
H3b | AS → CM | –0.043 | 0.526 | - | (–) E.O. [34]; (–) Edu. [72]; (n.s.) Edu. [73] | |
H12 | WE → CLP | 0.069 | 0.195 | The fourth feature | (+) [87] | (+) H.C. [74]; (+) S.C. [78]; (+) Su.C. [90] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tam, N.V.; Watanabe, T.; Hai, N.L. Importance of Autonomous Motivation in Construction Labor Productivity Improvement in Vietnam: A Self-Determination Theory Perspective. Buildings 2022, 12, 763. https://doi.org/10.3390/buildings12060763
Tam NV, Watanabe T, Hai NL. Importance of Autonomous Motivation in Construction Labor Productivity Improvement in Vietnam: A Self-Determination Theory Perspective. Buildings. 2022; 12(6):763. https://doi.org/10.3390/buildings12060763
Chicago/Turabian StyleTam, Nguyen Van, Tsunemi Watanabe, and Nguyen Luong Hai. 2022. "Importance of Autonomous Motivation in Construction Labor Productivity Improvement in Vietnam: A Self-Determination Theory Perspective" Buildings 12, no. 6: 763. https://doi.org/10.3390/buildings12060763
APA StyleTam, N. V., Watanabe, T., & Hai, N. L. (2022). Importance of Autonomous Motivation in Construction Labor Productivity Improvement in Vietnam: A Self-Determination Theory Perspective. Buildings, 12(6), 763. https://doi.org/10.3390/buildings12060763