Critical Energy Properties Study for Unsymmetrical Deformable Structures
Abstract
:1. Introduction
2. Methods
Critical Energy Levels of a Non-Symmetric Rod System
3. Results
3.1. Tasks for Checking Strength (Structural Analysis)
- Example 1:
- Solution 1: Comparison of the external load and system response to variations in the external forces.
- Solution 2: Comparison of the forces in the rods from a given normalized load and the forces detected during self-tension of the system.
- Solution 3: Comparison of stresses in rods from a given load and allowable stresses (design resistances) according to the traditional method.
3.2. Cross-Section Sizing Tasks (Structural Design)
- Example 2:
- Solution 1: Traditional method of strength of materials.
- Solution 2: The use of forces in the rods from the normalized values of the load.
3.3. The Weak Link (WL) Problem
3.4. Problem of the Progressive Limit State Design (PLSD) of the Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gurtin, M.E. Variational Principles for Linear Elastodynamics. Arch. Ration. Mech. Anal. 1964, 16, 34–50. [Google Scholar] [CrossRef]
- Prager, W. Variational principles for elastic plates with relaxed continuity requirements. Int. J. Solids Struct. 1968, 4, 837–844. [Google Scholar] [CrossRef]
- Finlayson, B.A. Existence of Variational Principles for the Navier-Stokes Equation. AIP Phys. Fluids. Phys. Fluids 1972, 15, 963–967. [Google Scholar] [CrossRef]
- Reddy, J. Variational principles for linear coupled dynamic theory of thermoviscoelasticity. Int. J. Eng. Sci. 1976, 14, 605–616. [Google Scholar] [CrossRef]
- Arthurs, A.M.; Jones, M.E. On Variational Principles for Linear Initial Value Problems. J. Math. Anal. Appl. 1976, 54, 840–845. [Google Scholar] [CrossRef] [Green Version]
- Van Groesen, E.W.C. Variational methods in mathematical physics. Tech. Hogesch. Eindh. 1978, 216. [Google Scholar] [CrossRef]
- Anderson, I.M.; Duchamp, T. On the existence of global variational principle. Am. J. Math. 1980, 102, 781–786. Available online: http://www.jstor.org/stable/2374195 (accessed on 27 September 2011). [CrossRef] [Green Version]
- Washizu, K. Variational Methods in Elasticity and Plasticity; Pergamon Press: Oxford, UK, 1982; Volume 542. [Google Scholar]
- Auchmuty, G. Duality for Non-Convex Variational Principles. J. Differ. Equ. 1983, 50, 80–145. [Google Scholar] [CrossRef] [Green Version]
- Berdichevsky, V.L. Variational Principles of Continuum Mechanics; Springer: Berlin/Heidelberg, Germany, 2009; p. 1011. [Google Scholar]
- Bathe, K.J. Finite Element Procedures; Prentice Hall: Hoboken, NJ, USA, 2004; p. 1043. [Google Scholar]
- Angelis, F.; Cancellara, D. Multifield variational principles and computational aspects in rate plasticity. Comput. Struct. 2017, 180, 27–39. [Google Scholar] [CrossRef]
- Reddy, J.N. Energy Principles and Variational Methods in Applied Mechanics; Wiley: Hoboken, NJ, USA, 2017; p. 760. [Google Scholar] [CrossRef]
- Renaud, A.; Heuzéb, T.; Stainier, L. The discontinuous Galerkin material point method for variational hyperelastic–plastic solids. Comput. Methods Appl. Mech. Eng. 2020, 365, 112987. [Google Scholar] [CrossRef]
- Nairn, J.A.; Hammerquist, C.C.; Smith, G.D. New material point method contact algorithms for improved accuracy, large-deformation problems, and proper null-space filtering. Comput. Methods Appl. Mech. Eng. 2020, 362, 112859. [Google Scholar] [CrossRef]
- Coombs, W.M.; Augarde, C.E.; Brennan, A.G.; Brown, M.J.; Charlton, T.J.; Knappett, J.A.; Motlagh, Y.G.; Wang, L. On Lagrangian mechanics and the implicit material point method for large deformation elasto-plasticity. Comput. Appl. Mech. Eng. 2020, 358, 112622. [Google Scholar] [CrossRef]
- Portillo, D.; Oesterle, B.; Thierer, R.; Bischoff, M.; Romero, I. Structural models based on 3D constitutive laws: Variational structure and numerical solution. Comput. Methods Appl. Mech. Eng. 2020, 362, 112872. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, Q.; Atluri, S.N. Combination of the variational iteration method and numerical algorithms for nonlinear problems. Appl. Math. Model. 2019, 79, 243–259. [Google Scholar] [CrossRef]
- Samaniego, E.; Anitescu, C.; Nguyen-Thanh, V.M.; Guo, H.; Hamdia, R.; Zhuang, X.; Rabczuk, K. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput. Methods Appl. Mech. Eng. 2020, 362, 112790. [Google Scholar] [CrossRef] [Green Version]
- Ba, K.; Gakwaya, A. Thermomechanical total Lagrangian SPH formulation for solid mechanics in large deformation problems. Comput. Methods Appl. Mech. Eng. 2018, 342, 458–473. [Google Scholar] [CrossRef]
- Bai, L.; Wadee, M.A.; Köllner, A.; Yang, J. Variational modelling of local–global mode interaction in long rectangular hollow section struts with Ramberg–Osgood type material nonlinearity. Int. J. Mech. Sci. 2021, 209, 106691. [Google Scholar] [CrossRef]
- Yang, S.; Shi, W.; Chen, Z.; Qian, C.; Yang, C.; Hang, L. Composite mechanics and energy method based stiffness prediction model for composite leaf springs. Mech. Based Des. Struct. Mach. 2019, 47, 375–386. [Google Scholar] [CrossRef]
- Wu, Y.; Fu, L.; Wu, W.; Cao, Y.; Zhou, X. Nonlinear Stress Analysis of Flexible Pile Composite Foundation by Energy Method. Adv. Mater. Sci. Eng. 2018, 2018, 8176398. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Zhang, X.; Xu, W.; Zhou, M. Importance Assessment of Structural Members Based on Elastic-Plastic Strain Energy. Adv. Mater. Sci. Eng. 2019, 2019, 8019675. [Google Scholar] [CrossRef] [Green Version]
- Xiang, C.; Li, C.; Zhou, Y.; Dang, C. An Efficient Damage Identification Method for Simply Supported Beams Based on Strain Energy Information Entropy. Adv. Mater. Sci. Eng. 2020, 2020, 9283949. [Google Scholar] [CrossRef]
- Nguyen, P.; Lea, C. Failure analysis of anisotropic materials using computational homogenised limit analysis. Comput. Struct. 2021, 256, 17. [Google Scholar] [CrossRef]
- Huang, Y.; Karami, B.; Shahsavari, D. Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Archiv. Civ. Mech. Eng. 2021, 21, 139. [Google Scholar] [CrossRef]
- Yue, X.; Yue, X.; Borjalilou, V. Generalized thermoelasticity model of nonlocal strain gradient Timoshenko nanobeams. Archiv. Civ. Mech. Eng. 2021, 21, 124. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, H.; Sahmani, S. Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Archiv. Civ. Mech. Eng. 2021, 21, 114. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Arefi, M. Three-dimensional exact elastic analysis of nanoplates. Archiv. Civ. Mech. Eng. 2021, 21, 91. [Google Scholar] [CrossRef]
- Moayyedian, F.; Kadkhodayan, M. Modified Burzynski criterion along with AFR and non-AFR for asymmetric anisotropic materials. Archiv. Civ. Mech. Eng. 2021, 21, 64. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, J.J.; Li, M.J. Finite beam element with 22 DOF for curved composite box girders considering torsion, distortion, and biaxial slip. Archiv. Civ. Mech. Eng. 2020, 20, 101. [Google Scholar] [CrossRef]
- Alfutov, N.A. Osnovy Rascheta na Ustoichivost Uprugih System [Basics of Calculating the Stability of Elastic Systems]. 1991, p. 336. Available online: https://booksee.org/book/1007295 (accessed on 23 June 2009). (In Russian).
- Bryan, G.H. On the Stability of a Plane Plate Under Thrusts in Its Own Plane, with Applications to the ‘Buckling’ of the Sides of a Ship. Proc. Lond. Math. Soc. 1891, 22, 54–67. [Google Scholar] [CrossRef]
- Stupishin, L.Y. Variational criteria for critical levels of internal energy of a deformable solid. Appl. Mech. Mater. 2014, 578–579, 1584–1587. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, F.; Cai, C. A Novel Polyaxial Strength Criterion for Rock Materials under General Stress Condition. Int. J. Appl. Mech. 2018, 10, 1850082. [Google Scholar] [CrossRef]
- Perelmuter, A.; Kabantsev, O. About the Problem of Analysis Resistance Bearing Systems in Failure of a Structural Element. Int. J. Comput. Civ. Struct. Eng. 2018, 14, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Shanyavskiy, A.; Soldatenkov, A. The fatigue limit of metals as a characteristic of the multimodal fatigue life distribution for structural materials. Procedia Struct. Integr. 2019, 23, 63–68. [Google Scholar] [CrossRef]
- Jamadin, A.; Ibrahim, Z.; Jumaat, M.; Hosen, M. Serviceability assessment of fatigued reinforced concrete structures using a dynamic response technique. J. Mater. Res. Technol. 2020, 9, 4450–4458. [Google Scholar] [CrossRef]
- Atutis, E.; Atutis, M.; Budvytis, M.; Valivonis, J. Serviceability and Shear Response of RC Beams Prestressed with a Various Types of FRP Bars. Procedia Eng. 2017, 172, 60–67. [Google Scholar] [CrossRef]
- Yu-hang, W.; Wang, W.; Jie, Y. Ultimate bearing capacity correlation of steel tube con fi ned RC column under combined compression-bending-torsion load. Thin-Walled Struct. 2019, 145, 106408. [Google Scholar] [CrossRef]
- Montuori, R.; Nastri, E.; Piluso, V. Thin-Walled Structures Ultimate behaviour of high-yielding low-hardening aluminium alloy. Thin-Walled Struct. 2020, 146, 106463. [Google Scholar] [CrossRef]
- Hun, D.; Jin, S.; Seung, M. Ultimate limit state-based design versus allowable working stress-based design for box girder crane structures. Thin Walled Struct. 2019, 134, 491–507. [Google Scholar] [CrossRef]
- Stupishin, L.Y. Limit state of building structures and critical energy levels. Promyshlennoe I Grazhdanskoe Stroit. Ind. Civ. Eng. 2018, 10, 102–106. (In Russian) [Google Scholar]
- Stupishin, L.Y.; Moskevich, M.L. The problem of determining the «weak link» based on the internal energy critical levels of the construction. Izv. Vuzov. Stroit. News High. Educ. Inst. Constr. 2021, 2, 11–23. (In Russian) [Google Scholar] [CrossRef]
Bars Forces | External Force P1 = 1 | External Force P2 = 1 | Total Action of the Forces P1 + P2 | System Response R1max | System Response R2max | System Response Rmax | System Response Rmin |
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
S1–0 | 0.6373 | 0.2282 | 0.8654 | 0.8909 | 0.1495 | 0.9475 | 0.07558 |
S1–2 | 0.1295 | 0.6883 | 0.8178 | 0.181 | 0.451 | 0.3514 | 0.436 |
S1–3 | −0.6337 | 0.2794 | −0.354 | −0.886 | 0.1831 | −0.8169 | 0.2566 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stupishin, L.; Mondrus, V. Critical Energy Properties Study for Unsymmetrical Deformable Structures. Buildings 2022, 12, 779. https://doi.org/10.3390/buildings12060779
Stupishin L, Mondrus V. Critical Energy Properties Study for Unsymmetrical Deformable Structures. Buildings. 2022; 12(6):779. https://doi.org/10.3390/buildings12060779
Chicago/Turabian StyleStupishin, Leonid, and Vladimir Mondrus. 2022. "Critical Energy Properties Study for Unsymmetrical Deformable Structures" Buildings 12, no. 6: 779. https://doi.org/10.3390/buildings12060779
APA StyleStupishin, L., & Mondrus, V. (2022). Critical Energy Properties Study for Unsymmetrical Deformable Structures. Buildings, 12(6), 779. https://doi.org/10.3390/buildings12060779