The Effect of Smart Colored Windows on Visual Performance of Buildings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Smart Color Coated Windowpane
2.2. Simulation of the Building Smart with Color Coated Windowpane
3. Results and Discussion
3.1. Experiment Setting
- a
- Type A window, which consists of a one-layer photochromic glass,
- b
- Type B window, which consists of two-layer photochromic glass,
- c
- Type C window, which consists of one-layer of photochromic glass in interior and one-layer of Low-E glass in the exterior.
- 1
- Blank (no color coating),
- 2
- Red color (R),
- 3
- Medium Blue color (MB),
- 3
- Medium Blue color (MB),
- 4
- Yellow color (Y),
- 5
- Combination of Red and Medium blue colors (RMB),
- 6
- Combination of Red and Yellow colors (RY),
- 7
- Combination of Medium blue and Yellow colors (MBY),
- 8
- Combination of Red, Medium blue, and Yellow colors (RMBY),
- 9
- Combination of 1/4 R, 1/4 MB, 1/4 MBY, and 1/4 Y colors (MCP),
- 10
- Combination of 1/2 R, 1/6 MB, 1/6 Y, and 1/6 MBY (MCPs).
3.2. DGP Analysis
3.3. UDI Analysis
3.4. A Comparison of Color Shades and Window Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bechthold, M.; Weaver, J.C. Materials science and architecture. Nat. Rev. Mater. 2017, 2, 17082. [Google Scholar] [CrossRef]
- Brzezicki, M. A Systematic Review of the Most Recent Concepts in SmartWindows Technologies with a Focus on Electrochromics. Sustainability 2021, 13, 9604. [Google Scholar] [CrossRef]
- Matin, N.H.; Eydgahi, A. Technologies Used in Responsive Facade Systems: A Comparative Study. Intell. Build. Int. 2020, 12, 54–73. [Google Scholar] [CrossRef]
- Geoff, S.; Angus, G.; Matthew, A.; Michael, C. Nanophotonics-enabled smart windows, buildings and wearables. Nanophotonics 2016, 5, 55–73. [Google Scholar] [CrossRef] [Green Version]
- Granqvist, C.G. Electrochromics and thermochromics: Towards a new paradigm for energy efficient buildings. Mater. Today 2016, 3, S2–S11. [Google Scholar] [CrossRef]
- Gugliermetti, F.; Bisegna, F. A model study of light control systems operating with Electrochromic Windows. Light. Res. Technol. 2005, 37, 3–19. [Google Scholar] [CrossRef]
- Seyfouri, M.M.; Binions, R. Sol-gel approaches to thermochromic vanadium dioxide coating for smart glazing application. Sol. Energy Mater. Sol. Cells 2017, 159, 52–65. [Google Scholar] [CrossRef]
- Li, K.; Pivnenko, M.; Chu, D.; Cockburn, A.; Neill, W. Uniform and fast switching of window-size smectic A liquid crystal panels utilising thefield gradient generated at the fringes of patterned electrodes. Liq. Cryst. 2016, 43, 735–749. [Google Scholar] [CrossRef] [Green Version]
- Khaligh, H.H.; Liew, K.; Han, Y.; Abukhdeir, N.M.; Goldthorpe, I.A. Silver nanowire transparent electrodes for liquid crystal-based smart windows. Sol. Energy Mater. Sol. Cells 2015, 132, 337–341. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, G.; Jiang, H.; Wang, Y.; Xie, S. Preparation of a fast photochromic ormosil matrix coating for smart windows. J. Mater. Sci. 2013, 48, 5862–5870. [Google Scholar] [CrossRef]
- Wu, L.Y.L.; Zhao, Q.; Huang, H.; Lim, R.J. Sol-gel based photochromic coating for solar responsive smart window. Surf. Coat. Technol. 2017, 320, 601–607. [Google Scholar] [CrossRef]
- Timmermans, G.; Saes, B.W.H.; Debije, M.G. Dual-responsive “smart” window and visually attractive coating based on a diarylethene photochromic dye. Appl. Opt. 2019, 58, 9823–9828. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhou, Y.; Shao, Z.; Zhao, S.; Chang, T.; Huang, A.; Li, N.; Ji, S.; Jin, P. Enhanced Coloration/Bleaching Photochromic Performance of WO3 Based on PVP/PU Composite Matrix. ChemistrySelect 2019, 4, 9817–9821. [Google Scholar] [CrossRef]
- Cannavale, A.; Martellotta, F.; Fiorito, F.; Ayr, U. The challenge for building integration of highly transparent photovoltaics and photoelectrochromic devices. Energies 2020, 13, 1929. [Google Scholar] [CrossRef] [Green Version]
- Tällberg, R.; Jelle, B.P.; Loonen, R.; Gao, T.; Hamdy, M. Comparison of the energy saving potential of adaptive and controllable smart windows: A state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies. Sol. Energy Mater. Sol. Cells 2019, 200, 109828. [Google Scholar] [CrossRef] [Green Version]
- Cao, D.; Xu, C.; Lu, W.; Qin, C.; Cheng, S. Sunlight-Driven Photo-Thermochromic Smart Windows. Sol. RRL 2018, 2, 1–8. [Google Scholar] [CrossRef]
- Miyazaki, H.; Ishigaki, T.; Ota, T. Photochromic smart windows employing WO3-based composite films. J. Mater. Sci. Res. 2017, 6, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Zeng, R.; Chini, A.; Srinivasan, R.S.; Jiang, P. Energy efficiency of smart windows made of photonic crystal. Int. J. Constr. Manag. 2017, 17, 100–112. [Google Scholar] [CrossRef]
- Liang, R.; Kent, M.; Wilson, R.; Wu, Y. The effect of thermochromic windows on visual performance and sustained attention. Energy Build. 2021, 236, 110778. [Google Scholar] [CrossRef]
- Wang, Y.; Runnerstrom, E.L.; Milliron, D.J. Switchable Materials for Smart Windows. Annual Review of Chemical and Biomolecular Engineering. 2021, 7, 283–304. [Google Scholar] [CrossRef]
- Zou, X.; Ji, H.; Zhao, Y.; Lu, M.; Tao, J.; Tang, P.; Liu, B.; Yu, X.; Mao, Y. Research Progress of Photo-/Electro-Driven Thermochromic Smart Windows. Nanomaterials 2021, 11, 3335. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Dong, X.; Mi, Y.; Fan, F.; Xu, Q.; Zhao, H.; Wang, S.; Long, Y. Hydrogel Smart Windows. J. Mater. Chem. A. 2020, 8, 10007–10025. [Google Scholar] [CrossRef]
- Aburas, M.; Soebarto, V.; Williamson, T.; Liang, R. Thermochromic smart window technologies for building application: A review. Appl. Energy 2019, 255, 113522. [Google Scholar] [CrossRef]
- Cui, Y.; Ke, Y.; Liu, C.; Chen, Z.; Wang, N.; Zhang, L.; Zhou, Y.; Wang, S.; Gao, Y.; Long, Y. Thermochromic VO2 for Energy-Efficient Smart Windows. Joule 2018, 2, 1707–1746. [Google Scholar] [CrossRef] [Green Version]
- Liang, R.; Wu, Y.; Wilson, R. Thermal and visual comfort analysis of an office with thermochromic smart windows applied. In Proceedings of the International Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale, Lausanne, Switzerland, 9–11 September 2015; pp. 70–71. [Google Scholar]
- Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F.S. Performance, materials and coating technologies of thermochromic thin fi lms on smart windows. Renew. Sustain. Energy Rev. 2013, 26, 353–364. [Google Scholar] [CrossRef]
- Carlucci, F.; Cannavale, A.; Fiorito, F. Electrochromic window integration in adaptive building envelopes in different climates: A genetic optimization of switchable glazing parameters to reduce energy consumptions in office buildings. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 2069, p. 012131. [Google Scholar]
- Atak, G.; Pehlivan, I.B.; Montero, J.; Granqvist, C.G.; Niklasson, G.A. Electrochromic tungsten oxide films prepared by sputtering: Optimizing cycling durability by judicious choice of deposition parameters. Electrochim. Acta. 2021, 367, 137233. [Google Scholar] [CrossRef]
- Gugole, M.; Olsson, O.; Rossi, S.; Jonsson, M.P.; Dahlin, A. Electrochromic Inorganic Nanostructures with High Chromaticity and Superior Brightness. Nano Lett. 2021, 21, 4343–4350. [Google Scholar] [CrossRef]
- Reynisson, H. Energy Performance of Dynamic Windows in Different Climates; School of Architecture and the Built Environment: Stockholm, Sweden, 2015. [Google Scholar]
- Marchwiński, J. Study of Electrochromic (EC) and Gasochromic (GC) Glazing for Buildings in Aspect of Energy Efficiency. Archit. Civ. Eng. Environ. 2021, 14, 27–38. [Google Scholar] [CrossRef]
- Nageib, A.; Elzafarany, A.M.; Elhefnawy, M.H.; Mohamed, F.O. Using smart glazing for reducing energy consumption on existing office building in hot dry climate. HBRC J. 2020, 16, 157–177. [Google Scholar] [CrossRef]
- Feng, W.; Zou, L.; Gao, G.; Wu, G.; Shen, J.; Li, W. Gasochromic smart window: Optical and thermal properties, energy simulation and feasibility analysis. Sol. Energy Mater. Sol. Cells 2016, 144, 316–323. [Google Scholar] [CrossRef]
- Kazanasmaz, T.; Grobe, L.O.; Bauer, C.; Krehel, M.; Wittkopf, S. Three approaches to optimize optical properties and size of a South-facing window for spatial Daylight Autonomy. Build. Environ. 2016, 102, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Ekici, B.; Kazanasmaz, Z.T.; Turrin, M.; Tasgetiren, M.F.; Sariyildiz, I.S. Multi-zone optimisation of high-rise buildings using artificial intelligence for sustainable metropolises. Part 1: Background, methodology, setup, and machine learning results. Sol. Energy 2021, 224, 373–389. [Google Scholar] [CrossRef]
- Ekici, B.Z.; Kazanasmaz, Z.T.; Turrin, M.; Tasgetiren, M.F.; Sariyildiz, I.S. Multi-zone optimization of high-rise buildings using artificial intelligence for sustainable metropolises. Part 2: Optimization problems, algorithms, results, and method validation. Sol. Energy 2021, 224, 309–326. [Google Scholar] [CrossRef]
- González, J.; Fiorito, F. Daylight Design of Office Buildings: Optimisation of External Solar Shadings by Using Combined Simulation Methods. Buildings 2015, 5, 560–580. [Google Scholar] [CrossRef] [Green Version]
- Dürr, H.; Kranz, C.; Schulz, C.; Kilburg, H.; Jönsson, H.P. Molecular and supramolecular systems in photochromism: Dihy. droindolizines—New versatile molecules. J. Chem. Sci. 1995, 107, 645–658. [Google Scholar] [CrossRef]
- Heidari Matin, N.; Eydgahi, A.; Zareanshahraki, F. Interdisciplinary Educational Modules: Using Smart Colored Windows in Responsive Façade Systems. Technol. Interface Int. J. 2021, 21, 11–20. [Google Scholar]
- Reinhart, C.F.; Weisman, L. The daylit area: Correlating architectural student assessments with current and emerging daylight availability metric. Build. Environ. 2012, 50, 155–164. [Google Scholar] [CrossRef]
- Reinhart, C.F.; Jakubiec, A.; Ibarra, R. Definition of a reference office for standardized evaluations of dynamic facade and lighting technologies. In Proceedings of the Building Simulation, Chambéry, France, 25–28 August 2013; Volume 13, pp. 560–580. [Google Scholar]
- Reinhart, C.F.; Walkenhorst, O. Validation of dynamic radiance-based daylight simulations for a test office with external blinds. Energy Build. 2001, 33, 683–697. [Google Scholar] [CrossRef]
- Reinhart, C.F.; Andersen, M. Development and validation of a radiance model for a translucent panel. Energy Build. 2006, 38, 890–904. [Google Scholar] [CrossRef]
- Brzezicki, M. An Evaluation of Useful Daylight Illuminance in an Office Room with a Light Shelf and Translucent Ceiling at 51° N. Buildings 2021, 11, 494. [Google Scholar] [CrossRef]
- Brzezicki, M.; Regucki, P.; Kasperski, J. Optimization of Useful Daylight Illuminance for Vertical Shading Fins Covered by Photovoltaic Panels for a Case Study of an Office Room in the City of Wroclaw, Poland. Buildings 2021, 11, 637. [Google Scholar] [CrossRef]
- Wienold, J.; Christo_ersen, J. Towards a New Daylight Glare Rating. In Proceedings of the 10 Europäischer Lichtkongress, Berlin, Germany, 21 September 2005; pp. 157–161. [Google Scholar]
- Salim, F.; Khoo, C. Designing elastic transformable structures: Towards soft responsive architecture. In Proceedings of the International Conference on Computer Aided Architectural Design Research, Hong Kong, China, 27–29 April 2011. [Google Scholar]
- Matin, N.H.; Eydgahi, A. Factors affecting the design and development of responsive facades: A historical evolution. Intell. Build. Int. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Matin, N.H.; Eydgahi, A. A data-driven optimized daylight pattern for responsive facades design. Intell. Build. Int. 2021, 1–12. [Google Scholar] [CrossRef]
- Jakubiec, J.A.; Reinhart, C.F. A concept for predicting occupants’ long term visual comfort within daylit spaces. Leukos 2016, 12, 185–202. [Google Scholar] [CrossRef]
- Nabil, A.; Mardaljevic, J. Useful daylight illuminance: A new paradigm for assessing daylight in buildings. Light. Res. Technol. 2005, 37, 41–57. [Google Scholar] [CrossRef]
- Nabil, A.; Mardaljevic, J. Useful daylight illuminances: A replacement for daylight factors. Energy Build. 2006, 38, 905–913. [Google Scholar] [CrossRef]
- Mardaljevic, J. Simulation of annual daylighting profiles for internal illuminance. J. Lighting Res. Technol. 2000, 32, 111–118. [Google Scholar] [CrossRef]
- Tabadkani, A.; Banihashemi, S.; Hosseini, M.R. Daylighting and Visual Comfort of Oriental sun Responsive Skins: A Parametric Analysis. Build. Simul. 2018, 11, 663–676. [Google Scholar] [CrossRef]
- Hoffmann, S.; McNeil, A.; Lee, E.; Kalyanam, R. Discomfort glare with complex fenestration systems and the impact on energy use when using daylighting control. In Proceedings of Advanced Building Skins Conference, Bern, Switzerland, 3–4 November 2015. [Google Scholar]
- Kent, M.G.; Altomonte, S.; Tregenza, P.R.; Wilson, R. Discomfort glare andtime of day. Lighting Res. Technol. 2014, 47, 641–657. [Google Scholar] [CrossRef] [Green Version]
- Mardaljevic, J.; Andersen, M.; Roy, N.; Christoffersen, J. Daylighting metrics: I there a relation between useful daylight illuminanceand daylight glare probability? In Proceedings of the First Building Simulation and Optimization Conference, Loughborough, UK, 10–11 September 2012. [Google Scholar]
- De Carli, M.; De Giuli, V.; Zecchin, R. Review on visual comfort in office buildings and influence of daylight in productivity. Indoor Air 2008, 2008, 17–22. [Google Scholar]
- Somasundaram, S.; Chong, A.; Wei, Z.; Thangavelu, S. Energy saving potential of low-e coating based retrofit double glazing for tropical climate. Energy Build. 2020, 206, 109570. [Google Scholar] [CrossRef]
- Haghshenas, M.; Bemanian, M.; Ghiabaklou, Z. Analysis the Criteria of Solar Trasmittance from Stained Glasses Used in Some of the Orosis from Safavid Dynasty. J. Color Sci. Technol. 2016, 10, 55–64. [Google Scholar]
- Haghshenas, M.; Bemanian, M.; Ghiabaklou, Z. Investigating the Effect of Changing the Transmitted Light’s Color on Thermal and Visual Comfort. Naqshejahan 2017, 6, 013–025. [Google Scholar]
- Tashakori, M. Design of a Computer-Controlled Sun-Tracking Facade Model. Master Thesis, The Pennsylvania State University, State College, PA, USA, 2014. [Google Scholar]
- Kolarevic, B.; Parlac, V. Building Dynamics: Exploring Architecture of Change; Routledge Press: London, UK, 2015. [Google Scholar]
- Adriaenssens, S.; Rhode-Barbarigos, L.; Kilian, A.; Baverel, O.; Charpentier, V.; Horner, M.; Buzatu, D. Dialectic form finding of passive and adaptive shading enclosures. Energies 2014, 7, 5201–5220. [Google Scholar] [CrossRef]
- Khoo, C.; Burry, J.; Burry, M. Soft responsive kinetic system: An elastic transformable architectural skin for climatic and visual control. In Proceeding of the Annual Conference of the Association for Computer Aided Design in Architecture, Calgary, AL, Canada, 11–16 October 2011; pp. 334–341. [Google Scholar]
Ref. No. | Year | Authors | Coating Type | Dependent Variables | Method |
---|---|---|---|---|---|
[27] | 2021 | Cannavale et al. | Electrochromic | Building Energy Efficiency& Visual Comfort | Review |
[31] | 2021 | Marchwiński | Gasochromic & electrochromic | Energy consumption | Simulation |
[19] | 2021 | Liang et al. | Thermochromic | Visual comfort | questionnaires |
[20] | 2021 | Wang et al. | Thermochromic | Energy efficiency cooling load | Laboratory |
[21] | 2021 | Zoe et al. | photo-/electro-driven Thermochromic | Energy efficiency | Review |
[14] | 2021 | Cannavale et al. | Photochromic | Energy efficiency | Laboratory & simulation |
[32] | 2020 | Nageib et al. | Gasochromic, thermochromic & electrochromic | Energy consumption | Simulation |
[22] | 2020 | Zhou et al. | Thermochromic | Energy consumption with heat storage | Laboratory & simulation |
[23] | 2019 | Aburas et al. | Thermochromic | energy-saving performance, thermal & visual comfort | Review |
[15] | 2019 | Tällberg et al. | Photochromic | Energy consumption | Simulation |
[24] | 2018 | Cui et al. | Thermochromic | Energy-saving performance | Review |
[16] | 2018 | Cao et al. | Photochromic | Energy consumption | Laboratory & simulation |
[28] | 2018 | Granqvist et al. | Electrochromic | Energy efficiencywith good indoor comfort | Review |
[17] | 2017 | Miyazaki et al. | Photochromic | Optical properties | Laboratory |
[18] | 2017 | Zeng et al. | Photochromic | Energy performance | Review |
[29] | 2016 | Rossi et al. | Electrochromic | energy saving and visual comfort | Laboratory & Physical experiment |
[33] | 2016 | Feng et al. | Gasochromic & electrochromic | Energy consumption | Simulation |
[30] | 2015 | Reynisson, H. | electrochromic | Energy consumption | Simulation |
[25] | 2015 | Liang et al. | Thermocromich | Thermal comfort, Visual comfort, Energyconsumption | Simulation |
[26] | 2013 | Kamalisarvestani et al. | Thermocromich | Energy-saving potentials and thermal comfort | Review |
Coating Compositions | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Red Dye | Medium Blue Dye | Yellow Dye | Thermoplastic Acrylic Resin | Additive | Solvent | Total (wt%) | Solid Content (wt%) | Dye Content (wt%) | ||
Photochromic Coating | Blank | 0 | 0 | 0 | 62.2 | 0.1 | 37.7 | 100 | 24.98 | 0 |
Red | 0.25 | 0 | 0 | 61.65 | 0.1 | 38 | 100 | 25.01 | 1 | |
Medium Blue | 0 | 0.25 | 0 | 61.65 | 0.1 | 38 | 100 | 25.01 | 1 | |
Yellow | 0 | 0 | 0.25 | 61.65 | 0.1 | 38 | 100 | 25.01 | 1 | |
Red-Medium Blue | 0.125 | 0.125 | 0 | 61.65 | 0.1 | 38.05 | 100 | 24.99 | 1 | |
Red-Yellow | 0.125 | 0 | 0.125 | 61.65 | 0.1 | 38 | 100 | 25.01 | 1 | |
Medium Blue-Yellow | 0 | 0.125 | 0.125 | 61.65 | 0.1 | 38 | 100 | 25.01 | 1 | |
Red-Medium Blue-Yellow | 0.08 | 0.085 | 0.085 | 61.65 | 0.1 | 38 | 100 | 25.01 | 1 |
DGP Improvement Rate of Type B | DGP Improvement Rate of Type C | ||||||||
---|---|---|---|---|---|---|---|---|---|
East | North | South | West | East | North | South | West | ||
Photochromic Coatings Used | Blank | 16% | 15% | 4% | 17% | 26% | 20% | 9% | 21% |
R | 24% | 17% | 13% | 16% | 29% | 17% | 18% | 16% | |
MB | 24% | 11% | 11% | 13% | 29% | 22% | 14% | 18% | |
Y | 17% | 6% | 6% | 15% | 28% | 17% | 12% | 20% | |
RMB | 12% | 11% | 13% | 13% | 24% | 17% | 14% | 18% | |
RY | 18% | 11% | 11% | 15% | 24% | 17% | 13% | 15% | |
MBY | 12% | 6% | 8% | 15% | 24% | 11% | 14% | 17% | |
RMBY | 17% | 11% | 9% | 15% | 28% | 17% | 13% | 18% | |
MCP | 18% | 11% | 8% | 13% | 29% | 16% | 14% | 15% | |
MCPs | 24% | 11% | 10% | 15% | 24% | 17% | 13% | 18% | |
Average | 18% | 11% | 9% | 15% | 26% | 17% | 13% | 18% |
Improvement Rate of Color Shades in Type B | Improvement Rate of Color Shades in Type C | ||||||||
---|---|---|---|---|---|---|---|---|---|
East | North | South | West | East | North | South | West | ||
Photochromic Coatings Used | R | 32% | 25% | 45% | 24% | 37% | 25% | 48% | 24% |
MB | 32% | 20% | 43% | 19% | 37% | 30% | 45% | 24% | |
Y | 21% | 15% | 39% | 17% | 32% | 25% | 43% | 21% | |
RMB | 21% | 20% | 44% | 19% | 32% | 25% | 45% | 24% | |
RY | 26% | 20% | 43% | 21% | 32% | 25% | 45% | 21% | |
MBY | 21% | 15% | 41% | 17% | 32% | 20% | 44% | 19% | |
RMBY | 21% | 20% | 41% | 19% | 32% | 25% | 44% | 21% | |
MCP | 26% | 15% | 41% | 19% | 37% | 20% | 45% | 21% | |
MCPs | 32% | 20% | 43% | 21% | 32% | 25% | 45% | 24% | |
Average | 26% | 19% | 42% | 20% | 33% | 24% | 45% | 22% |
Day &Time | Facade Orientation | Window Type | Most Effective Color Shades |
---|---|---|---|
25 May 12:00 p.m. | South | Type C | R, RMB, MCPs, MBY |
North | Type C | MB, R, MCP, MCPs | |
East | Type C | R, MB, MCP, MCPs | |
West | Type C | R, MCPs, MB, MCP | |
16 September 12:00 p.m. | South | Type C | R, MCPs, RMB, MCP |
North | Type C | R, RMBY, Y, MCPs | |
East | Type C | R, MCPs, RMB, MCP | |
West | Type C | R, MCPs, RMB, MCP | |
25 May 6:00 p.m. | South | Type C | R, MB, MCPs, MCP |
North | Type C | MB, R, MCPs, MCP | |
East | Type C | R, MCP, RMBY, RMB | |
West | Type C | Y, MCPs, MB, R | |
16 September 6:00 p.m. | South | Type C | R, MB, MCPs, MCP |
North | Type C | R, MB, MCP, MCPs | |
East | Type C | R, MB, MCP, MCPs | |
West | Type C | R, MB, MCPs MCP |
Day &Time | Facade Orientation | Window Type | Most Effective Color Shades |
---|---|---|---|
25 May 12:00 p.m. | South | Type C | RMB, MCP, MCPs, MBY |
North | Type A | MBY, MCPs, MB, MCP | |
East | Type A | MB, MCPs, MCP, MBY | |
West | Type A | MCPs, MB, MBY, RMBY | |
16 September 12:00 p.m. | South | Type B | MB, RMB, MCP, MCPs |
North | Type C | CMP, RY, CMPs, R | |
East | Type C | RMB, MB, MCPs, MCP | |
West | Type C | RMBY, MCPs, MCP, RMB | |
25 May 6:00 p.m. | South | Type A | MCP, Y, MCP, RMB |
North | Type A | MCP, MBY, MCPs, MB | |
East | Type A | MCP, MCPs, RMBY, MB | |
West | Type A | MCPs, MBY, Y, MCP | |
16 September 6:00 p.m. | South | Type C | MCP, MCPs, RMBY, MBY |
North | Type A | MCPs, RMBY, RMB, MBY | |
East | Type A | MCP, RMB, RY, MCPs | |
West | Type A | MBY, RMB, Y, MCP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heidari Matin, N.; Eydgahi, A.; Matin, P. The Effect of Smart Colored Windows on Visual Performance of Buildings. Buildings 2022, 12, 861. https://doi.org/10.3390/buildings12060861
Heidari Matin N, Eydgahi A, Matin P. The Effect of Smart Colored Windows on Visual Performance of Buildings. Buildings. 2022; 12(6):861. https://doi.org/10.3390/buildings12060861
Chicago/Turabian StyleHeidari Matin, Negar, Ali Eydgahi, and Payam Matin. 2022. "The Effect of Smart Colored Windows on Visual Performance of Buildings" Buildings 12, no. 6: 861. https://doi.org/10.3390/buildings12060861
APA StyleHeidari Matin, N., Eydgahi, A., & Matin, P. (2022). The Effect of Smart Colored Windows on Visual Performance of Buildings. Buildings, 12(6), 861. https://doi.org/10.3390/buildings12060861