A Case Study of Mapping the Heating Storage Capacity in a Multifamily Building within a District Heating Network in Mid-Sweden
Abstract
:1. Introduction
2. Theory
2.1. Designed Power Requirement for Space Heating System
2.2. Building Time Constant
3. Methods
- Delivered hourly DH power (kWh/h) for the whole building—space and domestic hot water heating combined.
- Indoor temperatures (°C) (hourly averaged value of all the building’s apartments is used in this study). Indoor temperature in each apartment is measured and monitored in one position in the main entrance hall (around 1 m above the floor on the wall).
- Hourly outdoor temperature (°C).
The Calculation Procedure
- Building time constant
- 2.
- Total heat loss coefficient and balance temperature
- 3.
- Building thermal capacity
4. Results and Discussion
4.1. Building Energy Signature
4.2. Simulated Building Time Constant
4.3. Field Measurement Building Time Constant
4.4. Building Thermal Capacity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, Y.; Yan, D.; Hong, T.; Xiao, C.; Luo, X.; Zhang, Q. Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China. Appl. Energy 2017, 195, 890–904. [Google Scholar] [CrossRef] [Green Version]
- Abergel, T.; Dean, B.; Dulac, J.; Hamilton, I. Status Report Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; Global Alliance for Buildings and Construction: Paris, France, 2018. [Google Scholar]
- United Nations United Nations Sustainable Development Goals (SDGs). Available online: https://sdgs.un.org/goals (accessed on 6 July 2022).
- Campaniço, H.; Soares, P.M.M.; Cardoso, R.M.; Hollmuller, P. Impact of climate change on building cooling potential of direct ventilation and evaporative cooling: A high resolution view for the Iberian Peninsula. Energy Build. 2019, 192, 31–44. [Google Scholar] [CrossRef]
- European Commission. Climate Action: European Climate Law. Available online: https://ec.europa.eu/clima/eu-action/european-green-deal/european-climate-law_en (accessed on 6 July 2022).
- European Commission. A European Green Deal: Striving to be the First Climate-Neutral Continent. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 6 July 2022).
- Energiföretagen Miljövärdering av Fjärrvärme [Report in Swedish: Environmental Assessment of District Heating]. Available online: https://www.energiforetagen.se/statistik/fjarrvarmestatistik/miljovardering-av-fjarrvarme/ (accessed on 15 December 2021).
- Frederksen, S.; Werner, S. District Heating and Cooling; Studentlitteratur AB: Lund, Sweden, 2013; ISBN 978-9-14408-530-2. [Google Scholar]
- Energimarknadsbyrån Vad är Fjärrvärme? Available online: https://www.energimarknadsbyran.se/fjarrvarme/vad-ar-fjarrvarme/ (accessed on 15 December 2021).
- Noussan, M.; Jarre, M.; Poggio, A. Real Operation Data Analysis on District Heating Load Patterns. Energy 2017, 129, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Lund, H.; Østergaard, P.A.; Chang, M.; Werner, S.; Svendsen, S.; Sorknæs, P.; Thorsen, J.E.; Hvelplund, F.; Mortensen, B.O.G.; Mathiesen, B.V.; et al. The status of 4th generation district heating: Research and results. Energy 2018, 164, 147–159. [Google Scholar] [CrossRef]
- Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, J.E.; Hvelplund, F.; Mathiesen, B.V. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy 2014, 68, 1–11. [Google Scholar] [CrossRef]
- Persson, U.; Werner, S. Heat distribution and the future competitiveness of district heating. Appl. Energy 2011, 88, 568–576. [Google Scholar] [CrossRef]
- Gadd, H.; Werner, S. Achieving low return temperatures from district heating substations. Appl. Energy 2014, 136, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Verda, V.; Colella, F. Primary energy savings through thermal storage in district heating networks. Energy 2011, 36, 4278–4286. [Google Scholar] [CrossRef]
- Vandermeulen, A.; van der Heijde, B.; Helsen, L. Controlling district heating and cooling networks to unlock flexibility: A review. Energy 2018, 151, 103–115. [Google Scholar] [CrossRef]
- Werner, S. The Heat Load in District Heating Systems. Ph.D. Thesis, Chalmers University of Technology, Chalmers, Sweden, 1984. [Google Scholar]
- Gadd, H.; Werner, S. Daily heat load variations in Swedish district heating systems. Appl. Energy 2013, 106, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Gadd, H.; Werner, S. Heat load patterns in district heating substations. Appl. Energy 2013, 108, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Calikus, E.; Nowaczyk, S.; Sant’Anna, A.; Gadd, H.; Werner, S. A data-driven approach for discovering heat load patterns in district heating. Appl. Energy 2019, 252, 113409. [Google Scholar] [CrossRef]
- Buffa, S.; Fouladfar, M.H.; Franchini, G.; Lozano Gabarre, I.; Andrés Chicote, M. Advanced Control and Fault Detection Strategies for District Heating and Cooling Systems—A Review. Appl. Sci. 2021, 11, 455. [Google Scholar] [CrossRef]
- Eriksson, M.; Akander, J.; Moshfegh, B. Development and validation of energy signature method—Case study on a multi-family building in Sweden before and after deep renovation. Energy Build. 2020, 210, 109756. [Google Scholar] [CrossRef]
- Nordström, G.; Johnsson, H.; Lidelöw, S. Using the energy signature method to estimate the effective U-value of buildings. In Sustainability in Energy and Buildings; Springer: Berlin/Heidelberg, Germany, 2013; pp. 35–44. [Google Scholar]
- Arteconi, A.; Costola, D.; Hoes, P.; Hensen, J.L.M. Analysis of control strategies for thermally activated building systems under demand side management mechanisms. Energy Build. 2014, 80, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Johansson, C.; Wernstedt, F.; Davidsson, P. Distributed thermal storage using multi-agent systems. In Proceedings of the International Conference on Agreement Technologies, Dubrovnik, Croatia, 15–16 October 2012. [Google Scholar]
- Mathiesen, B.V.; Drysdale, D.; Lund, H.; Paardekooper, S.; Ridjan, I.; Connolly, D.; Thellufsen, J.Z.; Jensen, J.S. Future Green Buildings: A Key to Cost-Effective Sustainable Energy Systems; Aalborg University: Aalborg, Denmark, 2016. [Google Scholar]
- Turski, M.; Sekret, R. Buildings and a district heating network as thermal energy storages in the district heating system. Energy Build. 2018, 179, 49–56. [Google Scholar] [CrossRef]
- Masy, G.; Georges, E.; Verhelst, C.; Lemort, V.; André, P. Smart grid energy flexible buildings through the use of heat pumps and building thermal mass as energy storage in the Belgian context. Sci. Technol. Built Environ. 2015, 21, 800–811. [Google Scholar] [CrossRef]
- Reynders, G. Quantifying the Impact of Building Design on the Potential of Structural Storage for Active Demand Response in Residential Buildings. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2015. [Google Scholar]
- Kensby, J.; Trüschel, A.; Dalenbäck, J.-O. Potential of residential buildings as thermal energy storage in district heating systems—Results from a pilot test. Appl. Energy 2015, 137, 773–781. [Google Scholar] [CrossRef]
- Cholewa, T.; Siuta-Olcha, A.; Smolarz, A.; Muryjas, P.; Wolszczak, P.; Guz, Ł.; Bocian, M.; Balaras, C.A. An easy and widely applicable forecast control for heating systems in existing and new buildings: First field experiences. J. Clean. Prod. 2022, 352, 131605. [Google Scholar] [CrossRef]
- Bilous, I.; Deshko, V.; Sukhodub, I. Parametric analysis of external and internal factors influence on building energy performance using non-linear multivariate regression models. J. Build. Eng. 2018, 20, 327–336. [Google Scholar] [CrossRef]
- Gadd, H.; Werner, S. Fault detection in district heating substations. Appl. Energy 2015, 157, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Abel, E.; Nilsson, P.-E.; Ekberg, L.; Fahlén, P.; Jagemar, L.; Clark, R.; Fanger, O.; Fitzner, K.; Gunnarsen, L.; Nielsen, P.V. Achieving the Desired Indoor Climate-Energy Efficiency Aspects of System Design; Studentlitteratur: Skåne Län, Sweden, 2003; ISBN 9-14-40323-58. [Google Scholar]
- Boverket Öppna Data—Dimensionerande Vinterutetemperatur (DVUT 1981-2010) för 310 Orter i Sverige. Available online: https://www.boverket.se/contentassets/b6c74238383c4b4e82b6d0c7311a1534/smhi-210976-v1-smhi_rapport_2016_69_dimensionerande_vinterutetemperatur_dvut_1981-2010_310_orter.pdf (accessed on 16 December 2021).
- BS EN ISO 52016-1:2017; Energy Performance of Buildings—Energy Needs for Heating and Cooling, Internal Temperatures and Sensible and Latent Heat Loads—Part 1: Calculation Procedures. ISO: Geneva, Switzerland, 2017.
- EQUA AB IDA Indoor Climate and Energy. Available online: http://www.equa.se/en/ida-ice (accessed on 1 August 2017).
- Kropf, S.; Zweifel, G. Validation of the Building Simulation Program IDA-ICE According to CEN 13791 “Thermal Performance of Buildings-Calculation of Internal Temperatures of a Room in Summer Without Mechanical Cooling-General Criteria and Validation Procedures”; HLK Engineering: New Delhi, India, 2001. [Google Scholar]
- Moosberger, S. IDA ICE CIBSE-Validation: Test of IDA Indoor Climate and Energy Version 4.0 According to CIBSE TM33, Issue 3; EQAU Simulation Technology Group: Stockholm, Sweden, 2007. [Google Scholar]
- Hayati, A. Measurements and modeling of airing through porches of a historical church. Sci. Technol. Built Environ. 2018, 24, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, M. A Statistical Approach to Estimate Thermal Performance and Energy Renovation of Multifamily Buildings: Case Study on a Swedish City District. Licentiate dissertation. Gävle University: Gävle, Sweden, 2022. [Google Scholar]
- Erba, S.; Barbieri, A. Retrofitting buildings into thermal batteries for demand-side flexibility and thermal safety during power outages in winter. Energies 2022, 15, 4405. [Google Scholar] [CrossRef]
- Johra, H.; Heiselberg, P.; Le Dréau, J. Influence of envelope, structural thermal mass and indoor content on the building heating energy flexibility. Energy Build. 2019, 183, 15. [Google Scholar] [CrossRef]
- Widén, J.; Lundh, M.; Vassileva, I.; Dahlquist, E.; Ellegård, K.; Wäckelgård, E. Constructing load profiles for household electricity and hot water from time-use da-ta-modelling approach and validation. Energy Build. 2017, 41, 753–768. [Google Scholar] [CrossRef]
- Rasmussen, C.; Bacher, P.; Calì, D.; Nielsen, H.A.; Madsen, H. Method for scalable and automatised thermal building performance documentation and screening. Energies 2020, 13, 3866. [Google Scholar] [CrossRef]
Heated Area | Indoor Temperature (Averaged between 4:00–9:00) | Indoor Temperature Decay (4:00–9:00) | Time Constant | Supplied DH Power (Hourly Averaged between 4:00–9:00) | Supplied DH (21 December) | Corrected Supplied DH (21 December) | Saved DH (21 December) | Heat Loss Coefficient | Thermal Capacity |
---|---|---|---|---|---|---|---|---|---|
m2 | °C | °C | h | kWh/h | kWh | kWh | kWh | W/K | kWh/K |
2445 | 22.6 | 0.3 | 180 | 12.2 | 755 | 818 | 63 | 1410 | 253.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayati, A.; Akander, J.; Eriksson, M. A Case Study of Mapping the Heating Storage Capacity in a Multifamily Building within a District Heating Network in Mid-Sweden. Buildings 2022, 12, 1007. https://doi.org/10.3390/buildings12071007
Hayati A, Akander J, Eriksson M. A Case Study of Mapping the Heating Storage Capacity in a Multifamily Building within a District Heating Network in Mid-Sweden. Buildings. 2022; 12(7):1007. https://doi.org/10.3390/buildings12071007
Chicago/Turabian StyleHayati, Abolfazl, Jan Akander, and Martin Eriksson. 2022. "A Case Study of Mapping the Heating Storage Capacity in a Multifamily Building within a District Heating Network in Mid-Sweden" Buildings 12, no. 7: 1007. https://doi.org/10.3390/buildings12071007
APA StyleHayati, A., Akander, J., & Eriksson, M. (2022). A Case Study of Mapping the Heating Storage Capacity in a Multifamily Building within a District Heating Network in Mid-Sweden. Buildings, 12(7), 1007. https://doi.org/10.3390/buildings12071007