Architectural Systemic Approach: The Serpentine Gallery 2005, a Reciprocal Frame Case Study
Abstract
:1. Introduction
1.1. Serpentine Gallery
1.2. Reciprocal Frame Structures
2. Methodology and Model
2.1. Graphical Tools
2.2. Systemic Analysis Process
2.2.1. Phase 1_Documentary Phase
2.2.2. Phase 2_ Diagramming and a Chronological Analysis of Reciprocal Frame Structures
2.2.3. Phase 3_ Diagramming and Systemic Analysis: (FM) Foundation Matrix—Idea, form, Image
2.2.4. Phase 4_ Diagramming and Systemic Analysis: (CLM) Construction Logic Matrix—Geometry, Material, Function
- Geometry supports deduction. It allows relationships to be established between the parts, and it helps us to realize the unit as a whole to be mastered. This deductive nature of geometry constitutes the support system for the generation of constructive entities;
- Material is the possibility. It is the path to the realization of the idea;
- From a function perspective, systemic analysis seeks to define the behavior of the elements that make up the case study. This logic underpins the study of the functions and the relationships between them.
2.3. Systemic Analysis Matrices Workflow
3. Results and Discussion
3.1. Constructive Historical Analysis of Reciprocal Frame Structures
3.2. Systemic Analysis of the Foundation Matrix
3.3. Systemic Analysis of the Constructive Logic Matrix
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FM | Foundation matrix |
CLM | Constructive logic matrix |
AGU | Advanced geometry unit |
CNC | Computer numerical control |
LVL | Laminated veneer lumber |
References
- Claeys, D. Architecture et Complexité: Un Modèle Systémique du Processus de (co) Conception qui Vise L’Architecture; Presses Universitaires de Louvain: Louvain-la-Neuve, Belgium, 2013. [Google Scholar]
- Baccarini, D. The concept of project complexity—A review. Int. J. Project Manag. 1996, 14, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Bertelsen, S. Complexity–Construction in a new Perspective. IGLC-11, Blacksburg, Virginia 2003. Available online: https://iglc.net/Papers/Details/230 (accessed on 8 January 2022).
- Wood, H.L.; Piroozfar, P.; Farr, E.R. Understanding Complexity in the AEC Industry. In Proceedings of the 29th Annual ARCOM Conference, Reading, UK, 2–4 September 2013; Citeseer: Princeton, NJ, USA, 2013; pp. 859–869. [Google Scholar]
- Williams, T.M. The Need for New Paradigms for Complex Projects; Managing and Modelling Complex Projects; Springer: Berlin/Heidelberg, Germany, 1997; pp. 9–18. [Google Scholar]
- Carrillo, P.; Chinowsky, P. Exploiting knowledge management: The engineering and construction perspective. J. Manag. Eng. 2006, 22, 2–10. [Google Scholar] [CrossRef]
- Kanapeckiene, L.; Kaklauskas, A.; Zavadskas, E.K.; Seniut, M. Integrated knowledge management model and system for construction projects. Eng. Appl. Artif. Intell. 2010, 23, 1200–1215. [Google Scholar] [CrossRef]
- Luiten, G.T.; Tolman, F.P.; Fischer, M.A. Project-modelling in AEC to integrate design and construction. Comput. Ind. 1998, 35, 13–29. [Google Scholar] [CrossRef]
- Motawa, I.; Anumba, C.; Lee, S.; Peña-Mora, F. An integrated system for change management in construction. Autom. Constr. 2007, 16, 368–377. [Google Scholar] [CrossRef]
- Tang, A.; Avgeriou, P.; Jansen, A.; Capilla, R.; Babar, M.A. A comparative study of architecture knowledge management tools. J. Syst. Softw. 2010, 83, 352–370. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Tam, C. System reliability theory based multiple-objective optimization model for construction projects. Autom. Constr. 2013, 31, 54–64. [Google Scholar] [CrossRef]
- Viljamaa, E.; Peltomaa, I. Intensified construction process control using information integration. Autom. Constr. 2014, 39, 126–133. [Google Scholar] [CrossRef]
- Wong, J.; Li, H.; Lai, J. Evaluating the system intelligence of the intelligent building systems: Part 1: Development of key intelligent indicators and conceptual analytical framework. Autom. Constr. 2008, 17, 284–302. [Google Scholar] [CrossRef]
- Zhang, X.; Mao, X.; AbouRizk, S.M. Developing a knowledge management system for improved value engineering practices in the construction industry. Autom. Constr. 2009, 18, 777–789. [Google Scholar] [CrossRef]
- Hu, S.J.; Ko, J.; Weyand, L.; ElMaraghy, H.A.; Lien, T.K.; Koren, Y.; Bley, H.; Chryssolouris, G.; Nasr, N.; Shpitalni, M. Assembly system design and operations for product variety. CIRP Ann. 2011, 60, 715–733. [Google Scholar] [CrossRef]
- Zeiler, W.; Quanjel, E. Flexible Sustainable process Innovation: Integral Building Design methodology. In Proceedings of the DS 48: Proceedings DESIGN 2008, the 10th International Design Conference, Dubrovnik, Croatia, 21–24 May 2018. [Google Scholar]
- Landherr, M.; Westkämper, E. Integrated product and assembly configuration using systematic modularization and flexible integration. Procedia CIRP 2014, 17, 260–265. [Google Scholar] [CrossRef]
- Wood, H.L.; Gidado, K. An overview of complexity theory and its application to the construction industry. In Proceedings of the 24th Annual ARCOM Conference, Cardiff, UK, 1–3 September 2008; Association of Researchers in Construction Management: Negeri Sembilan, Malaysia, 2018. [Google Scholar]
- Sánchez-Vibaek, K. System Structures in Architecture: Constituent Elements of a Contemporary Industrialised Architecture; The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation, School of Architecture: Copenhagen, Denmark, 2012. [Google Scholar]
- Nasirzadeh, F.; Nojedehi, P. Dynamic modeling of labor productivity in construction projects. Int. J. Proj. Manag. 2013, 31, 903–911. [Google Scholar] [CrossRef]
- Sarker, B.R.; Egbelu, P.J.; Liao, T.W.; Yu, J. Planning and design models for construction industry: A critical survey. Autom. Constr. 2012, 22, 123–134. [Google Scholar] [CrossRef]
- Bachman, L.R. Integrated Buildings: The Systems Basis of Architecture; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 9. [Google Scholar]
- Sánchez-Vibaek, K. The System Structure of Architectural Design-A Model Approach; Routledge: London, UK, 2017. [Google Scholar]
- Del Rio-Calleja, B.; García-Santos, A. Systemic Research in Architecture. In EURAU 2016-ABSTRACTS: EURAU 2016-In between scales-European Symposium on Research in Architecture and Urban Design; Editura Universitara Ion Mincu, Bucuresti/Ion Mincu University Publishing: Bucharest, Romania, 2016; p. 494. [Google Scholar]
- Tunçbilek, G.Z. Temporary Architecture: The Serpentine Gallery Pavilions. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2013. [Google Scholar]
- Molina Siles, P.J. La Arquitectura Efímera: Los Pabellones Temporales de la Serpentine Gallery Como Paradigma del Proceso Creativo. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2013. [Google Scholar]
- Melvin, J. Serpentine Gallery Pavilion 2005. Archit. Des. 2005, 75, 102–106. [Google Scholar] [CrossRef]
- Bernabeu Larena, A. Estrategias de Diseño Estructural en la Arquitectura Contemporánea: El Trabajo de Cecil Balmond. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2007. [Google Scholar]
- Balmond, C. Informal; Prestel: London, UK, 2002. [Google Scholar]
- Yoshida, N. Cecil Balmond: A U (Architecture and Urbanism), November 2006 Special Issue; A U Publishing Company: Singapore, 2006. [Google Scholar]
- Vrontissi, M. Structure as pattern: Balmond’s rhythm vs. Le Ricolais’ analogy. In Proceedings of IASS Annual Symposia; International Association for Shell and Spatial Structures (IASS): Madrid, Spain, 2018; Volume 2018, pp. 1–8. [Google Scholar]
- Popovic Larsen, O. Reciprocal frame (RF) structures: Real and exploratory. Nexus Netw. J. 2014, 16, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Pugnale, A.; Sassone, M. Structural reciprocity: Critical overview and promising research/design issues. Nexus Netw. J. 2014, 16, 9–35. [Google Scholar] [CrossRef]
- Mesnil, R.; Douthe, C.; Baverel, O.; Gobin, T. Form finding of nexorades using the translations method. Autom. Constr. 2018, 95, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Pugnale, A.; Parigi, D.; Kirkegaard, P.H.; Sassone, M.S. The principle of structural reciprocity: History, properties and design issues. In Full Papers: Taller, Longer, Lighter: Meeting Growing Demand with Limited Resources: IABSE-IASS Symposium 2011; Hemming Group Ltd.: London, UK, 2011. [Google Scholar]
- Zamperini, E. Timber floors made with elements shorter than the span covered in treatises and technical literature. In History of Construction Cultures Volume 1: Proceedings of the 7th International Congress on Construction History (7ICCH 2021), Lisbon, Portugal, 12–16 July 2021; CRC Press: Boca Raton, FA, USA, 2021; p. 193. [Google Scholar]
- Dubberly, H. How do you design. Compend. Models. 2004. Available online: http://www.dubberly.com/articles/how-do-you-design.html (accessed on 6 January 2022).
- Blackwell, A.F. Introduction Thinking with Diagrams. In Thinking with Diagrams; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1–3. [Google Scholar]
- Gordon, J.L. Creating knowledge maps by exploiting dependent relationships. Knowl.-Based Syst. 2000, 13, 71–79. [Google Scholar] [CrossRef]
- Newman, M.E. The structure and function of complex networks. SIAM Rev. 2003, 45, 167–256. [Google Scholar] [CrossRef] [Green Version]
- Herrero Elordi, A.J. El Lenguaje Poético de los Materiales: Arte Povera y Arquitectura. Ph.D. Thesis, Universidad de Sevilla, Seville, Spain, 2017. [Google Scholar]
- Grau-Enguix, J. La lógica constructiva. 1985-95.
- Grau-Enguix, J. El arte de apoyar. 2014. [Google Scholar]
- De Honnecourt, V. Albun de Desin et Croquis [Livre de Portraiture] ms. fr. 19093; Déparment des Manuscrits, Bibliotèque nationale de France: Paris, France, 1235. [Google Scholar]
- Da Vinci, L. Tratado de Estatica y Mecaniha [Codex Madrid I] Mss. 8937; Biblioteca Nacional de España: Madrid, Spain, 1490–1508. [Google Scholar]
- Da Vinci, L. Codex Atlanticus; Biblioteca Ambrosiana: Milano, Spain, 1989; pp. 1478–1519. [Google Scholar]
- Serlio, S. Architettura di Sebastian Serlio; Venetis s.n: Venetia, Italy, 1663. [Google Scholar]
- Yeomans, D. The Serlio floor and its derivations. ARQ Archit. Res. Q. 1997, 2, 74–83. [Google Scholar] [CrossRef]
- Wallis, J. Mechanica: Sive, de Motu, Tractatus Gometricus; Guliemi Godbid: London, UK, 1670. [Google Scholar]
- Frézier, A.F. La Théorie et la Pratique de la Coupe des Pierres et des Bois. Tome Second; Charles Antoine Jombert: Paris, France, 1783. [Google Scholar]
- Brocato, M.; Mondardini, L. Parametric analysis of structures from flat vaults to reciprocal grids. Int. J. Solids Struct. 2015, 54, 50–65. [Google Scholar] [CrossRef]
- Piekarski, M. Floor slabs made from topologically interlocking prefabs of small size. Buildings 2020, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Estrin, Y.; Krishnamurthy, V.R.; Akleman, E. Design of architectured materials based on topological and geometrical interlocking. J. Mater. Res. Technol. 2021, 15, 1165–1178. [Google Scholar] [CrossRef]
- Fourneau, N. L’art du Trait de Charpenterie; Firmin Didot: Paris, France, 1770. [Google Scholar]
- Krafft, J.C. Plans, Coupes et Elevations de Diverses Productions de la Charpente; Levrault, Schoell et Compagnie: Paris, France, 1805. [Google Scholar]
- Krafft, J.; Des Foucaux, A.L. Traité sur L’art de la Charpente Théorique et Pratique; L’auteur: Paris, France, 1819. [Google Scholar]
- Rondelet, J. Traité théorique et pratique de l’art de batir; A Paris chez l’auteur: A Paris; Didot: Paris, France, 1827. [Google Scholar]
- Tredgold, T. Elementary Principles of Carpentry: A Treatise on the Pressure and Equilibrium of Timber Framing, the Resistance of Timber, and the Construction of Fl; J. Taylorat the Architectural Library: London, UK, 1828. [Google Scholar]
- Emy, A.R. Traité de l’art de la Charpenterie; D. Avanzo: Campania, Italy, 1842; Volume 2. [Google Scholar]
- Mazzocchi, L. Trattato su le Costruzioni in Legno; Antonio Vallardi: Barcelona, Spain, 1871. [Google Scholar]
- Franke, L.; Stahr, A.; Dijoux, C.; Heidenreich, C. How does the Zollinger Node really work? In Proceedings of the IASS Annual Symposia, Barcelona, Spain, 7–10 October 2019; International Association for Shell and Spatial Structures (IASS): Madrid, Spain, 2017; Volume 2017, pp. 1–10. [Google Scholar]
- Tamke, M.; Riiber, J.; Jungjohann, H.; Ramsgaaard, M. Lamella Flock, Advances in Architectural Geometry; Springer: Wien, NY, USA, 2010. [Google Scholar]
- De l’Orme, P. Nouvelles Inventions Pour Bien Bastir et a Petits Fraiz; Féderic Morel: Paris, France, 1561. [Google Scholar]
- Flores, C. Josep Maria Jujol, 1999. Arquit. Rev. Del Col. Of. Arquit. Madr. (COAM) 1999, 318, 14–25. [Google Scholar]
- Straaten, E.V. Theo van Doesburg: L’opera Architettonica; Milano Electa: Milano, Italy, 1993. [Google Scholar]
- Popovic Larsen, O. Reciprocal Frame Architecture; Routledge: London, UK, 2007. [Google Scholar]
- Gouw, H. The Serpentine Pavillion 2005 case study. Contemp. Digit. Pract. 2011. Available online: https://issuu.com/hizkiagouw/docs/serpentine_pavilion_2005 (accessed on 25 December 2021).
- Parigi, D.; Kirkegaard, P.H.; Sassone, M. Hybrid optimization in the design of reciprocal structures. In Proceedings of the IASS Symposium 2012: From Spatial Structures to Spaces Structures, Sarajevo, Bosnia and Herzegovina, 2–4 April 2012; IASS: Madrid, Spain, 2012. [Google Scholar]
- Nagy, M.; Csóka, L.; Katona, V. The role of symmetry in reciprocal frame structures. Symmetry: Cult. Sci. 2019, 30, 15–24. [Google Scholar] [CrossRef]
- Peyton-Jones, J.; Heathcote, E. Serpentine Gallery Pavilion 2005 Designed by Ílvaro Siza, Eduardo Souto de Moura with Cecil Balmond; Serpentine Gallery and Trolley: London, UK, 2005. [Google Scholar]
- Roof Structures Gustel, R. Kiewitt Lamella Architect. Available online: https://roofstructures.tumblr.com/post/119917529529/history-of-the-lamella-roof (accessed on 8 January 2022).
- Almeida, D.; Sousa, J.P. Tradition and Innovation in Digital Architecture-Reviewing the Serpentine Gallery Pavilion 2005. In Proceedings of the 35th eCAADe Conference, Rome, Italy, 20–22 September 2017; pp. 267–276. [Google Scholar]
- Almeida, D.L. Tradição e Inovação: As Tecnologias Digitais no Projecto do Pavilhão Serpentine Gallery 2005. Ph.D. Thesis, Universidade do Porto, Porto, Portugal, 2015. [Google Scholar]
- Douthe, C.; Baverel, O. Design of nexorades or reciprocal frame systems with the dynamic relaxation method. Comput. Struct. 2009, 87, 1296–1307. [Google Scholar] [CrossRef]
- Baverel, O.; Pugnale, A. Reciprocal systems based on planar elements: Morphology and design explorations. Nexus Netw. J. 2014, 16, 179–189. [Google Scholar] [CrossRef]
- Bergis, L.; Rycke, K.D. Reciprocal frame for the roof of the Franz Masereel Centre. In Proceedings of the IASS Annual Symposia, Online, 25–28 September 2017; International Association for Shell and Spatial Structures (IASS): Madrid, Spain, 2017; Volume 2017, pp. 1–10. [Google Scholar]
- Puyol, A.G. Mass customization of reciprocal frame structures. In Proceedings of the IASS Annual Symposia, Amsterdam, The Netherlands, 17–20 August 2015; International Association for Shell and Spatial Structures (IASS): Madrid, Spain, 2015; Volume 2015, pp. 1–12. [Google Scholar]
- Kuhlmann, T.; Lordick, D. Iterative form finding for the layout of irregular reciprocal framework structures. In Proceedings of the 16th International Conference on Geometry and Graphics, Innsbruck, Austria, 4–8 August 2014. [Google Scholar]
- Pérez, A.; Remiro, B. Manual Técnico Para la Construcción con Madera Laminada; Paul Gauthier: Islas Baleares, Spain, 2003. [Google Scholar]
- Argüelles Álvarez, R.; Arriaga Martitegui, M.; Esteban Herrero G, Í.; González, R.A.B. Estructuras de Madera Bases de Cálculo; AITIM: Madrid, Spain, 2013. [Google Scholar]
- Cervera, M.L.; Queipo de Llano, J.; Gonzalez, B.; Villagra, C.; Gallego, V. (Eds.) Conceptos básicos de la construcción con madera. In Guía de Construir con Madera; Confemadera: Madrid, Spain, 2010. [Google Scholar]
- Vick, C.B. Adhesive bonding of wood materials. In Wood Handbook: Wood as an Engineering Material; General Technical Report FPL; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 1999; Volume 113, pp. 9.1–9.24. [Google Scholar]
- Gallego Molina, A.; Rescalvo Fernández, F.J.; Suárez Vargas, E. CHOPO. Madera microlaminada estructural de chopo reforzada con tejidos de carbono o basalto. Alzada 2020, Volume 120, 32–43. [Google Scholar]
- Vignote Peña, S. Productos derivados de la madera. 2014. Available online: https://oa.upm.es/32619/14/productosderivadosmadera.pdf (accessed on 31 December 2020).
- Scarano Requena, J. Proyectar con Madera Contralaminada. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2020. [Google Scholar]
- Viotto Noguera, U. El Tablero Contralaminado: Actualidad de una Alternativa Para la Media Altura. Master’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2013. [Google Scholar]
- Peraza Sánchez, F.; Peraza Sánchez, J.E. Asociación de Investigación Técnica de las Industrias de, la Madera Guía de la Madera; Madrid AITIM: Madrid, Spain, 2010. [Google Scholar]
- Menges, A. Manufacturing diversity. Archit. Des. 2006, 76, 70–77. [Google Scholar] [CrossRef]
- Grillkvist, O.; Henriksson, V.; Poulsen, E. Digital Wood-Design & Fabrication of a Full-Scale Exhibition Structure in Plywood. Master’s Thesis, Chalmers University of Technology, Sweden, 2016. [Google Scholar]
- Kohlhammer, T.; Kotnik, T. Systemic behaviour of plane reciprocal frame structures. Struct. Eng. Int. 2011, 21, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Araullo, R.; Haeusler, M.H. Asymmetrical double-notch connection system in planar reciprocal frame structures. In Proceedings of the 22nd CAADRIA Conference, Xi’an Jiaotong-Liverpool University, Suzhou, China, 5–8 April 2017; pp. 539–548. [Google Scholar]
- Gustafsson, J. Connections in Timber Reciprocal Frames. Master’s Thesis, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden, 2016. [Google Scholar]
- Arias, C.M.; Díaz, J.A. Definición paramétrica de Estructuras Recíprocas Transformables con Nodos de tres barras. Inf. Constr. 2022, 74, e437. [Google Scholar] [CrossRef]
- Grau-Enguix, J. Estudio general de las juntas y uniones. 1985-95.
- Y Scala, F.D.A. Carpintería Antigua y Moderna: Tratado General Teórico-Práctico Para uso de Carpinteros, Ingenieros; Nacente, F., Ed.; Delegación de la comisión de Asesoramiento Tecnológico del Colegio Oficial de Arquitectos de Galicia: Barcelona, Spain, 1893. [Google Scholar]
- Feio, A.O.; Lourenço, P.B.; Machado, J.S. Testing and modeling of a traditional timber mortise and tenon joint. Mater. Struct. 2014, 47, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Aira, J.R.; Arriaga Martitegui, F.; Iñiguez Gonzalez, G.; Esteban Herrero, M.; González Bravo, C. Análisis del estado de tensiones en uniones carpinteras de empalme de llave por el método de los elementos finitos. In Proceedings of the CIMAD 11, 1º Congresso Ibero-LatinoAmericano da Madeira na Construção, Coimbra, Portugal, 7–9 June 2011. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Río-Calleja, B.; Grau Enguix, J.; García-Santos, A. Architectural Systemic Approach: The Serpentine Gallery 2005, a Reciprocal Frame Case Study. Buildings 2022, 12, 1051. https://doi.org/10.3390/buildings12071051
del Río-Calleja B, Grau Enguix J, García-Santos A. Architectural Systemic Approach: The Serpentine Gallery 2005, a Reciprocal Frame Case Study. Buildings. 2022; 12(7):1051. https://doi.org/10.3390/buildings12071051
Chicago/Turabian Styledel Río-Calleja, Beatriz, Joaquín Grau Enguix, and Alfonso García-Santos. 2022. "Architectural Systemic Approach: The Serpentine Gallery 2005, a Reciprocal Frame Case Study" Buildings 12, no. 7: 1051. https://doi.org/10.3390/buildings12071051
APA Styledel Río-Calleja, B., Grau Enguix, J., & García-Santos, A. (2022). Architectural Systemic Approach: The Serpentine Gallery 2005, a Reciprocal Frame Case Study. Buildings, 12(7), 1051. https://doi.org/10.3390/buildings12071051