Seismic Performance and Optimization of a Novel Partial Seismic Isolation System for Frame Structures
Abstract
:1. Introduction
2. Partial Seismic Isolation System and Numerical Model
2.1. Partial Seismic Isolation System
2.2. Numerical Model
2.3. Selection of Seismic Isolation Bearing
2.4. Seismic Waves
3. Analysis of Seismic Isolation Effect
3.1. Modal Analysis
3.2. Dynamic Properties of Seismically Isolated Rooms
3.3. Hysteresis Performance of the Vibration Isolation Bearing
3.4. Safety of Partial Seismic Isolation Systems
3.5. Effect of Partial Seismic Isolation on the Structure as a Whole
4. Optimal Design of Partial Seismic Isolation Systems
4.1. Influence of Bearing Type on Vibration Damping in Isolated Rooms
4.2. Effect of Spatial Variations on Seismic Damping in Vibration Isolated Rooms
4.3. Effect of Load Level on Vibration in Isolated Rooms
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tan, D.Y.; Yang, Q.S. Analysis of seismic performance of partially isolated structures. Earthq. Eng. Eng. Dyn. 1993, 2, 66–74. [Google Scholar] [CrossRef]
- Morales, E.; Filiatrault, A.; Aref, A. Seismic floor isolation using recycled tires for essential buildings in developing countries. Bull. Earthq. Eng. 2018, 16, 6299–6333. [Google Scholar] [CrossRef]
- Losanno, D.; Ravichandran, N.; Parisi, F.; Calabrese, A.; Serino, G. Seismic performance of a Low-Cost base isolation system for unreinforced brick Masonry buildings in developing countries. Soil Dyn. Earthq. Eng. 2021, 141, 106501. [Google Scholar] [CrossRef]
- Vaiana, N.; Losanno, D.; Ravichandran, N. A novel family of multiple springs models suitable for biaxial rate-independent hysteretic behavior. Comput. Struct. 2021, 244, 106403. [Google Scholar] [CrossRef]
- Losanno, D.; Palumbo, F.; Calabrese, A.; Barrasso, T.; Vaiana, N. Preliminary Investigation of Aging Effects on Recycled Rubber Fiber Reinforced Bearings (RR-FRBs). J. Earthq. Eng. 2021, 1–18. [Google Scholar] [CrossRef]
- Baggio, S.; Berto, L.; Rocca, I.; Saetta, A. Vulnerability assessment and seismic mitigation intervention for artistic assets: From theory to practice. Eng. Struct. 2018, 167, 272–286. [Google Scholar] [CrossRef]
- Pellecchia, D.; Feudo, S.L.; Vaiana, N.; Dion, J.; Rosati, L. A procedure to model and design elastomeric-based isolation systems for the seismic protection of rocking art objects. Comput.-Aided Civ. Infrastruct. Eng. 2021. [Google Scholar] [CrossRef]
- Pellecchia, D.; Sessa, S.; Vaiana, N.; Rosati, L. Comparative Assessment on the Rocking Response of Seismically Base-Isolated Rigid Blocks. Procedia Struct. Integr. 2020, 29, 2452–3216. [Google Scholar] [CrossRef]
- Mezghani, F.; del Rincón, A.F.; Fernandez, P.G.; De-Juan, A.; Sanchez-Espiga, J.; Rueda, F.V. Effectiveness study of wire mesh vibration damper for sensitive equipment protection from seismic events. Mech. Syst. Signal Processing 2022, 164, 108160. [Google Scholar] [CrossRef]
- Jia, G.; Gidaris, I.; Taflanidis, A.A.; Mavroeidis, G.P. Reliability-based assessment/design of floor isolation systems. Eng. Struct. 2014, 78, 41–56. [Google Scholar] [CrossRef]
- Wu, Y.X.; Huang, J.; Lin, S.Z.; Qi, A. Design and application status of seismic isolation constitution of building. China Civ. Eng. J. 2018, 51, 62–73+94. [Google Scholar] [CrossRef]
- Cheng, R.; Chen, W.; Hao, H.; Li, J. A state-of-the-art review of road tunnel subjected to blast loads. Tunn. Undergr. Space Technol. 2021, 112, 103911. [Google Scholar] [CrossRef]
- Ning, X.Q.; Dai, J.W. A review of seismic resilience and performance-based seismic study of non-structural systems. Earthq. Eng. Eng. Dyn. 2017, 37, 85–92. [Google Scholar] [CrossRef]
- Cheng, R.; Zhou, Z.; Chen, W.; Hao, H. Effects of Axial Air Deck on Blast-Induced Ground Vibration. Rock Mech. Rock Eng. 2021, 55, 1037–1053. [Google Scholar] [CrossRef]
- Yin, X.S.; Li, Y.Y.; Li, B.L.; Sun, L.-Y. A new method for vertical damping with TMD system. Earthq. Resist. Eng. Retrofit. 2020, 42, 57–63. [Google Scholar] [CrossRef]
- Deringöl, A.H.; Güneyisi, E.M. Influence of nonlinear fluid viscous dampers in controlling the seismic response of the base-isolated buildings. Structures 2021, 34, 1923–1941. [Google Scholar] [CrossRef]
- Chen, W.; Tao, Z.; Dai, B.H. Seismic control method, properties and practical engineering analysis of main structure retrofitted with attached damping structure. J. Build. Struct. 2021, 42, 92–100. [Google Scholar] [CrossRef]
- Ye, L.H.; Qu, Z.; Sun, H.L.; Gong, T. Earthquake loss evaluation of medical facility seismically retrofitted by different seismic damage control methods. J. Build. Struct. 2020, 41, 15–26. [Google Scholar] [CrossRef]
- Murota, N.; Suzuki, S.; Mori, T.; Wakishima, K.; Sadan, B.; Tuzun, C.; Sutcu, F.; Erdik, M. Performance of high-damping rubber bearings for seismic isolation of residential buildings in Turkey. Soil Dyn. Earthq. Eng. 2021, 143, 106620. [Google Scholar] [CrossRef]
- Sung, Y.C.; Hung, H.H.; Chou, K.W.; Su, C.K.; Hsu, C.W. Shaking table testing of a reinforced concrete frame retrofitted with a steel oval member equipped with rubber cylinders. Eng. Struct. 2021, 237, 112202. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Song, W.; Lei, Y.D.; Wang, T. Shaking table test study on friction-pendulum isolated frame structures. China Civ. Eng. J. 2020, 53, 240–245. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Luo, Y. Self-centering eccentrically braced frames using shape memory alloy bolts and post-tensioned tendons. J. Constr. Steel Res. 2016, 125, 190–204. [Google Scholar] [CrossRef]
- Yang, Q.R.; Wang, L.Y.; Liu, W.G.; Xu, H.; Xu, H. Mechanical model and experimental research of the inclined rotational three-dimensional seismic isolation device. J. Vib. Eng. 2021, 34, 462–471. [Google Scholar] [CrossRef]
- Li, S.; Wei, B.; Tan, H.; Li, C.; Zhao, X. Equivalence of friction and viscous damping in a spring-friction system with concave friction distribution. J. Test. Eval. 2020, 49, 372–395. [Google Scholar] [CrossRef]
- Yan, G.Y.; Xiao, X.F.; Wu, Y.X.; Li, C.; Zhao, X. Shaking table test of isolated single-tower structures with a large chassis under near-fault ground motions. J. Vib. Eng. 2018, 31, 799–810. [Google Scholar] [CrossRef]
- Özuygur, A.R.; Noroozinejad Farsangi, E. Influence of Pulse-Like Near-Fault Ground Motions on the Base-Isolated Buildings with LRB Devices. Pract. Period. Struct. Des. Constr. 2021, 26, 04021027. [Google Scholar] [CrossRef]
- Islam, A.; Al-Kutti, W.A. Seismic response variation of multistory base-isolated buildings applying lead rubber bearings. Comput. Concr. 2018, 21, 495–504. [Google Scholar] [CrossRef]
- Zhang, R.F.; Wu, M.R.; Zhou, F.Y.; Wu, Y.X.; Jiang, J.L. Research on mid-story isolation of structure using inerter isolation system. World Earthq. Eng. 2020, 36, 8–16. [Google Scholar] [CrossRef]
- Liu, Y.H.; Liu, X.H.; Tan, P. Dynamic reliability for inter-story hybrid isolation structure. J. Vib. Eng. 2019, 32, 324–330. [Google Scholar] [CrossRef]
- Vaiana, N.; Spizzuoco, M.; Serino, G. Wire rope isolators for seismically base-isolated lightweight structures: Experimental characterization and mathematical modeling. Eng. Struct. 2017, 140, 0141–0296. [Google Scholar] [CrossRef]
- Basar, T.; Deb, S.K.; Das, P.J.; Sarmah, M. Seismic response control of low-rise unreinforced masonry building test model using low-cost and sustainable un-bonded scrap tyre isolator (U-STI). Soil Dyn. Earthq. Eng. 2021, 142, 106561. [Google Scholar] [CrossRef]
- Engle, T.; Mahmoud, H.; Chulahwat, A. Hybrid Tuned Mass Damper and Isolation Floor Slab System Optimized for Vibration Control. J. Earthq. Eng. 2015, 19, 1197–1221. [Google Scholar] [CrossRef]
- Kong, D.R.; Yang, Z.Q.; Wei, L.S.; Zhang, Y.S.; Zhang, T.J. Research on seismic parameters of multistory isolated structure with limit design. Earthq. Resist. Eng. Rotrofitting 2021, 43, 96–102+118. [Google Scholar] [CrossRef]
- Li, F.Y.; Zhou, D.Y.; Zhong, Y.C.; Zhang, H. Seismic Performance Analysis of an Existing Medical Building Strengthened by Seismic Isolation Technology. Struct. Eng. 2021, 37, 167–176. [Google Scholar] [CrossRef]
- JG/T 118-2018 [S]; Rubber Isolation Bearings for Buildings. Standards Press of China: Beijing, China, 2018.
- Wei, B.; Hu, Z.; He, X.; Jiang, L. Evaluation of optimal ground motion intensity measures and seismic fragility analysis of a multi-pylon cable-stayed bridge with super-high piers in mountainous areas. Soil Dyn. Earthq. Eng. 2020, 129, 105945. [Google Scholar] [CrossRef]
- Hu, Z.; Wei, B.; Jiang, L.; Li, S.; Yu, Y.; Xiao, C. Assessment of optimal ground motion intensity measure for high-speed railway girder bridge (HRGB) based on spectral acceleration. Eng. Struct. 2022, 252, 113728. [Google Scholar] [CrossRef]
- GB 50011-2010 [S]; Code for Seismic Design of Buildings. China Architecture & Building Press: Beijing, China, 2010.
Bearing Type | Effective Diameter (mm) | Total Rubber Thickness (mm) | Pre-Yield Stiffness (kN/m) | Equivalent Stiffness (kN/m) | Vertical Stiffness (kN/mm) | Yield Force (kN) |
---|---|---|---|---|---|---|
LRB300 | 300 | 56 | 6440 | 760 | 1100 | 16 |
Mode of Vibration | Original Structure | Isolated Structure | ||||||
---|---|---|---|---|---|---|---|---|
Period (s) | UX | UY | RZ | Period (s) | UX | UY | RZ | |
1 | 0.413 | 0.820 | 0 | 0 | 0.413 | 0.798 | 0 | 0 |
2 | 0.383 | 0 | 0.826 | 0 | 0.384 | 0 | 0.804 | 0 |
3 | 0.340 | 0 | 0 | 0.830 | 0.340 | 0 | 0 | 0.825 |
4 | 0.124 | 0.118 | 0 | 0 | 0.133 | 0 | 0 | 0 |
5 | 0.117 | 0 | 0.116 | 0 | 0.132 | 0 | 0 | 0 |
Mode of Vibration | Period (s) | UX | UY | RZ |
---|---|---|---|---|
1 | 0.669 | 0 | 0.025 | 0 |
2 | 0.668 | 0.025 | 0 | 0 |
3 | 0.486 | 0 | 0 | 0.001 |
Type of Bearing | Effective Diameter (mm) | Total Rubber Thickness (mm) | Equivalent Stiffness (kN/m) | Vertical Stiffness (kN/mm) |
---|---|---|---|---|
LNR300 | 300 | 56 | 490 | 900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Qiu, Y.; Xiong, J.; Liu, Y.; Xu, Y. Seismic Performance and Optimization of a Novel Partial Seismic Isolation System for Frame Structures. Buildings 2022, 12, 876. https://doi.org/10.3390/buildings12070876
Chen B, Qiu Y, Xiong J, Liu Y, Xu Y. Seismic Performance and Optimization of a Novel Partial Seismic Isolation System for Frame Structures. Buildings. 2022; 12(7):876. https://doi.org/10.3390/buildings12070876
Chicago/Turabian StyleChen, Baokui, Yuxin Qiu, Jingang Xiong, Yaru Liu, and Yanqing Xu. 2022. "Seismic Performance and Optimization of a Novel Partial Seismic Isolation System for Frame Structures" Buildings 12, no. 7: 876. https://doi.org/10.3390/buildings12070876
APA StyleChen, B., Qiu, Y., Xiong, J., Liu, Y., & Xu, Y. (2022). Seismic Performance and Optimization of a Novel Partial Seismic Isolation System for Frame Structures. Buildings, 12(7), 876. https://doi.org/10.3390/buildings12070876