On-Site Risk Assessment Methodology of Historic Timber Structures: The Case Study of Santa Cruz Church
Abstract
:1. Introduction
1.1. Aims and Objectives
1.2. Background: Traditional Carpentry and Non-Destructive Testing Methods
2. The Case Study: Santa Cruz Church
3. Materials and Methods
3.1. Scope: Implementation of the Methodological Framework in the Case Study
3.2. Methodological Framework
- Organoleptic inspection: First, a visual inspection was carried out to determine, in a preliminarily manner, the state of the structure.
- Measurements: The possible deformations of the elements of the structure were measured with a digital inclinometer and a laser meter to check some possible risk indicators.
- Application of NDT:
- -
- Resistography allowed knowing the state of the internal parts of the elements against the wall.
- -
- Thermo-hygrometry: Temperature and humidity were recorded, as well as the hygrometry of the timber pieces.
- Modelling and structural calculation: Data were transferred to the calculation program.
- The analysis of the results provided decision-making outlines for refurbishment processes.
3.2.1. Organoleptic Inspection
3.2.2. Measurement of Possible Deformations
3.2.3. Application of NDT
- Resistography.
- Hygrothermal study: Moisture test by electrical resistance.
3.2.4. Structural Simulation
- Original model construction:
- -
- -
- Calculation conditions: Class of the wood service referred to in the regulations [51]. In this case, the structure is in a Class of Service 2.
- -
- -
- Timber structural safety parameters are provided by the structural Spanish code and implemented by the CYPE 3D parameters options.
- Current model construction:
- -
- Timber elements modification sizes: These are obtained by the geometrical survey and organoleptic and NDT inspection results.
- -
- Timber conditions: These are obtained by the NDT data results and the literature knowledge implementation. It reflects the possible decay, moisture variations, or deterioration.
- Calculation and comparison of results:
4. Results and Discussion
4.1. Organoleptic Inspecion Results
4.2. Measurement of Deformations Results
4.3. Non-Destructive Tests Results
4.3.1. Resistography Results
4.3.2. Hygrothermal Study: Moisture Results by Electrical Resistance Test
4.3.3. NDT Analysis
4.4. Visual Classification
4.5. Structural Simulation Results
4.5.1. Original Model Construction
4.5.2. Current Model Construction
- General slight loss of surface density: By means of the punch test, it has been quantified at an average depth of 3 mm of perimeter shape in all pieces, in line with what was published in [26,27] (except the wall plates that will be seen later). Therefore, new dimensions have been assigned to the beams, reducing by 3 mm on each face.
- General high humidity: According to the hygrothermal study carried out, timber can reach the value of MC = 18% at different times of the year. This leads to a resistance loss of up to 30% in relation to a timber MC = 12% conditions [24]. To simulate this characteristic loss and following the indications of the reference code [51], all timbers have been reassigned to a C-14 Resistant Class. Then, always according to the code, their mechanical characteristic values are 30% lower than those considered for the C-22 Resistant Class timber. In this manner, a generalized 30% properties decrease has been simulated in all elements due to the action of their high MC levels.
- Rafters, high moisture contained in a localized manner: In certain areas of some rafter, the observed MC rises up to 20–24%. For these values, the losses of mechanical properties are up to 35% over the originals at 12% MC [24]. The properties of all beams have already been reduced by a general margin of 30% by reassigning them as C-14 timber classification. To consider the additional 5% (35–30% properties loss already applied), it was decided to reduce the most MC affected beam area dimensions. The equivalent section has been calculated as 95% of the originally contemplated one, leaving a final rafter’s dimension of 12 × 16 cm applied into the affected areas.
- Wall plate-lost section due to decay: As obtained in the resistographies made and corroborated by the prospections, the wall plates have lost on average 50% of their effective section due to rot (Figure 19a,b). To simulate this, an effective section half from the original one has been transferred to the modelled beams.
- Wall plates, saturation of still healthy wood fibre: The remaining wood that has not rotted has a high MC above the saturation point (MC > 28%) Again, according to [24], saturated timber has lost up to 40% of its mechanical properties compared to one with a standard MC level. To simulate this reduction, the wall plates had already been applied by the C-14 Resistant Class (which makes a 30% reduction) and the effective section reduced by an additional 10% (on the section already reduced by half because of rotting). In this manner, simplifying to a square shape, the final dimensions of the wall plates have been configured with 15 × 13.4 cm.
4.5.3. Calculation
- Hypothesis 1: (Figure 20a) The timber frame and its wall plates rest on the wall. It has been modelled as a structural sheet; a rigid element in its plane that can be characterized according to the parameters of the existing wall [68]. In this manner, it is possible to observe the most reliable behaviour with respect to the structure, in which the resulting thrust of all the elements rests on the wall plates and solidarity on the walls. This means that there are no significant lateral displacements of the whole. However, this hypothesis does not consider the possible internal deformation of the section of the wall plates, which is considered a dimensionless bar. To also contemplate this possibility, the second hypothesis has been modelled.
- Hypothesis 2: (Figure 20b) In order to reproduce the structural behaviour, if wall plates sections deformations occur, the structure has been modelled without the external link of the wall. This had previously been already observed in other sectors produced by the rotting of the pieces. Therefore, to this end, the supports of the wall plates have been configured as supported external links, but with only one degree of freedom of movement in the rafter beam direction. In this manner, if there are resulting efforts from lateral thrust, it implies the wall plate’s rigidity and the tie beams coercing the movements. Therefore, the tie beams were responsible for withstand those thrusts, as if there were no walls. This allows the study of wall plates displacement behaviours, a critical piece of this structure, if the internal rot leads to deform it to the point that its inner face moves as if it were not linked to the wall.
4.5.4. Results Comparison
4.6. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Candelas-Gutierrez, A. The Power of Geometric Relationships in Mudéjar Timber Roof Frames. Nexus Netw. J. 2017, 19, 521–545. [Google Scholar] [CrossRef]
- Querol, M.Á. Manual de Gestión Del Patrimonio Cultural; Akal: Madrid, Spain, 2010. [Google Scholar]
- The Athens Charter for the Restoration of Historic Monuments—1931. First International Congress of Architects and Technicians of Historic Monuments, Athens 1931. Available online: https://www.icomos.org/en/167-the-athens-charter-for-the-restoration-of-historic-monuments (accessed on 5 May 2003).
- The Venice Charter. Second International Congress of Architects and Technicians of Historic Monuments, Venice, 1964. Available online: https://www.icomos.org/charters/venice_e.pdf (accessed on 1 October 2003).
- Sola-Caraballo, J.; Rincón-Calderón, J.M.; Rivera-Gómez, C.; Galán-Marín, C. Intervenir El Patrimonio: La Parroquia Mayor de Santa Cruz; Contemplar La Ruina vs. Rehabilitar El Monumento. In Proceedings of the XV Congreso Internacional de Rehabilitación del Patrimonio Arquitectónico y Edificado, Granada, Spain, 8–10 September 2021. [Google Scholar]
- López de Arenas, D. Breve Compendio de La Carpintería de Lo Blanco y Tratado de Alarifes. Digital Library of the Centro de Estudios Históricos de Obras Públicas y Urbanismo (CEHOPU), Dependent on the Transportes, Movilidad y Agenda Urbana Ministry (MITMA), from the Spanish Government (Open Access). Available online: http://www.cehopu.cedex.es/img/bibliotecaD/1633_Diego_Lopez_de_Arenas_Carpinteria_de_lo_blanco.pdf (accessed on 23 June 2022).
- Riggio, M.; D’Ayala, D.; Parisi, M.A.; Tardini, C. Assessment of Heritage Timber Structures: Review of Standards, Guidelines and Procedures. J. Cult. Herit. 2018, 31, 220–235. [Google Scholar] [CrossRef]
- Cruz, H.; Yeomans, D.; Tsakanika, E.; Macchioni, N.; Jorissen, A.; Touza, M.; Mannucci, M.; Lourenço, P.B. Guidelines for On-Site Assessment of Historic Timber Structures. Int. J. Archit. Herit. 2015, 9, 277–289. [Google Scholar] [CrossRef]
- Poletti, E.; Dutu, A.; Ruggieri, N.; Vieux-Champagne, F. Historic Timber Frame Structures—A Comparison of Different Constructive Systems and their Resistance to Seismic Actions. In Proceedings of the Shatis 17 International Conference on Structural Health Assessment of Timber Structures, Istanbul, Turkey, 21 September 2017. [Google Scholar]
- Duțu, A. An Engineering View on the Traditional Timber Frames with Infills in Romania. In Masonry Construction in Active Seismic Regions; Elsevier: Amsterdam, The Netherlands, 2021; pp. 377–420. ISBN 978-0-12-821087-1. [Google Scholar]
- Murta, A.; Pinto, J.; Varum, H. Structural Vulnerability of Two Traditional Portuguese Timber Structural Systems. Eng. Fail. Anal. 2011, 18, 776–782. [Google Scholar] [CrossRef]
- Rodriguez, V.; Avellaneda, J. Typological and Structural System in Traditional Timber Rood of Multi-Aisle Buildings in Europe. In Proceedings of the World Conference on Timber Engineering, Auckland, New Zealand, 15–19 July 2012; Volume 43. [Google Scholar]
- Moradei, J.; Brütting, J.; Fivet, C.; Sherrow-Groves, N.; Wilson, D.; Fischer, A.; Ye, J.; Cañada, J. Structural Characterization of Traditional Moment-Resisting Timber Joinery. Proc. IASS Annu. Symp. 2018, 2018, 1–8. [Google Scholar]
- Nuere Matauco, E. Carpintería Mudéjar, ¿Islámica o Cristiana? In Proceedings of the Congreso Internacional de Rehabilitación del Patrimonio Arquitectónico y Edificado, Granada, Spain, 8–10 September 2021. [Google Scholar]
- Nuere Matauco, E. La Carpinterí a de Armar Española; Instituto Español de Arquitectura: Mexico City, Mexico, 2000; ISBN 84-89150-37-0. [Google Scholar]
- Nuere Matauco, E. Dibujo, Geometría, Y Carpinteros; Discurso Leído En La Real Academia de San Fernando: Madrid, Spain, 2010. [Google Scholar]
- Candelas Gutiérrez, A.L. Proceso Constructivo, Ornamento y Estructura En Las Armaduras de Par y Nudillo. In Proceedings of the Primer Congreso Nacional de Historia de la Construcción, Madrid, Spain, 19–20 September 1996; pp. 19–21. [Google Scholar]
- Candelas Gutiérrez, A.L.; Nuere Matauco, E. Análisis Constructivo de la Carpintería de Armar en la Provincia de Huelva, Su Relación Con Los Tratados de Carpintería. Ph.D. Thesis, Universidad de Sevilla, Sevilla, Spain, 1999. [Google Scholar]
- Candelas Gutiérrez, A.L. Carpintería de Lo Blanco Onubense; Diputación provincial de Huelva, Servicios de Publicaciones: Huelva, Spain, 2001; ISBN 84-8163-275-9. [Google Scholar]
- Candelas-Gutiérrez, A.; Borrallo-Jimenez, M. Methodology of Restoration of Historical Timber Roof Frames. Application to Traditional Spanish Structural Carpentry. Int. J. Archit. Herit. 2020, 14, 51–74. [Google Scholar] [CrossRef]
- Bonamini, G. Il Manuale Del Legno Strutturale. Vol. IV Interventi Sulle Strutture, 1st ed.; Mancosu: Rome, Italy, 2004; Volume 4. [Google Scholar]
- Nilsson, T.; Rowell, R. Historical Wood—Structure and Properties. J. Cult. Herit. 2012, 13, S5–S9. [Google Scholar] [CrossRef]
- Argüelles Álvarez, R.; Arriaga Martitegui, F.; Martínez Calleja, J.J. Estructuras de Madera: Diseño y Cálculo; AITIM: Madrid, Spain, 2000; ISBN 84-87381-17-0. [Google Scholar]
- Arriaga Martitegui, F.; Peraza Sánchez, F.; Esteban Herrero, M. Madera Aserrada Estructural; AITIM: Madrid, Spain, 2003; ISBN 84-87381-25-1. [Google Scholar]
- Cuartero, J.; Cabaleiro, M.; Sousa, H.S.; Branco, J.M. Tridimensional Parametric Model for Prediction of Structural Safety of Existing Timber Roofs Using Laser Scanner and Drilling Resistance Tests. Eng. Struct. 2019, 185, 58–67. [Google Scholar] [CrossRef]
- Verbist, M.; Matos, F.T.; Branco, J.M. Structural and Health Assessment of Historic Timber Roofs from the Convent of Christ in Tomar. J. Civ. Struct. Health Monit. 2019, 9, 491–511. [Google Scholar] [CrossRef]
- Stepinac, M.; Rajčić, V.; Honfi, D. Decision Analysis and Scenarios for the Assessment of Existing Timber Structures. In Proceedings of the IABSE Symposium 2019, Guimarães, Portugal, 27–29 March 2019; pp. 479–486. [Google Scholar]
- Kurz, J.H.; Boller, C. Some Background of Monitoring and NDT Also Useful for Timber Structures. J. Civ. Struct. Health Monit. 2015, 5, 99–106. [Google Scholar] [CrossRef]
- Llana, D.F.; Íñiguez-González, G.; Díez, M.R.; Arriaga Martitegui, F. Nondestructive Testing Used on Timber in Spain: A Literature Review. Maderas Cienc. Tecnol. 2020, 22, 133–156. [Google Scholar] [CrossRef] [Green Version]
- Vössing, K.J.; Niederleithinger, E. Nondestructive Assessment and Imaging Methods for Internal Inspection of Timber. A Review. Holzforschung 2018, 72, 467–476. [Google Scholar] [CrossRef]
- Rodríguez-Liñán, C.; Morales-Conde, M.J.; Rubio de-Hita, P.; Pérez-Gálvez, F. Inspección with Non Destructive Techniques of a Historic Building: Oratorio San Felipe Neri (Cádiz) | Inspección Mediante Técnicas No Destructivas de Un Edificio Histórico: Oratorio San Felipe Neri (Cádiz). Inf. Constr. 2011, 63, 13–22. [Google Scholar] [CrossRef]
- Pérez-Gálvez, F.; Rubio de-Hita, P.; Ordóñez-Martín, M.; Morales-Conde, M.J.; Rodríguez-Liñán, C. Sustainable Restoration of Traditional Building Systems in the Historical Centre of Sevilla (Spain). Energy Build. 2013, 62, 648–659. [Google Scholar] [CrossRef]
- Morales-Conde, M.J.; Rodríguez-Liñán, C.; de Hita, R.P. Application of Non-Destructive Techniques in the Inspection of the Wooden Roof of Historic Buildings: A Case Study; Trans Tech Publications: Zürich, Switzerland, 2013; Volume 778, ISBN 978-3-03785-812-7. [Google Scholar]
- Rodríguez Liñán, C.; Morales Conde, M.J.; Rubio de Hita, P.; Pérez-Gálvez, F. Application of Non-Destructive Techniques in the Inspection of Wooden Structures of Protected Buildings: The Case of Nuestra Señora de Los Dolores Church (Isla Cristina, Huelva). Int. J. Archit. Herit. 2015, 9, 324–340. [Google Scholar] [CrossRef]
- Niemz, P.; Mannes, D. Non-Destructive Testing of Wood and Wood-Based Materials. J. Cult. Herit. 2012, 13, S26–S34. [Google Scholar] [CrossRef]
- Kasal, B.; Anthony, R.W. Advances in in Situ Evaluation of Timber Structures. Prog. Struct. Eng. Mater. 2004, 6, 94–103. [Google Scholar] [CrossRef]
- Kim, G.C.; Kim, J.H. Changes in Mechanical Properties of Wood Due to 1 Year Outdoor Exposure. J. Korean Wood Sci. Technol. 2020, 48, 12–21. [Google Scholar] [CrossRef]
- Jaskowska-Lemańska, J.; Przesmycka, E. Semi-Destructive and Non-Destructive Tests of Timber Structure of Various Moisture Contents. Materials 2021, 14, 96. [Google Scholar] [CrossRef]
- Rinn, F. Device for Material Testing, Especially Wood, by Drill Resistance Measurements. Germany Patent DE4122494B4, 3 September 1990. [Google Scholar]
- Casado, M.; Acuña, L. La Técnica Resistográfica y La Madera Estructural. In Proceedings of the Iberomadera 2007, Congreso Iberoamericano de Productos Forestales, Buenos Aires, Argentina, 3–5 July 2007. [Google Scholar]
- Acuña, L.; Basterra, L.A.; Casado, M.M.; López, G.; Ramón-Cueto, G.; Relea, E.; Martínez, C.; González, A. Aplicación Del Resistógrafo a La Obtención De La Densidad Y La Diferenciación De Especies De Madera. Mater. Constr. 2011, 61, 451–464. [Google Scholar] [CrossRef] [Green Version]
- Nowak, T.P.; Jasieńko, J.; Hamrol-Bielecka, K. In Situ Assessment of Structural Timber Using the Resistance Drilling Method—Evaluation of Usefulness. Constr. Build. Mater. 2016, 102, 403–415. [Google Scholar] [CrossRef]
- Nowak, T.; Patalas, F.; Karolak, A. Estimating Mechanical Properties of Wood in Existing Structures—Selected Aspects. Materials 2021, 14, 1941. [Google Scholar] [CrossRef] [PubMed]
- Arriaga Martitegui, F.; Esteban Herrero, M.; Relea, E. Evaluation of the Load Carrying Capacity of Large Cross Section Coniferous Timber in Standing Structures. Mater. Constr. 2005, 55, 43–52. [Google Scholar] [CrossRef]
- Rodríguez Liñán, C.; Rubio de Hita, P. Evaluación Del Estado de La Madera En Obras de Rehabilitación Mediante Técnicas de Ultrasonidos y Obtención de Parámetros Resistentes. Inf. Constr. 1995, 47, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Conde García, M.; Fernández Golfín Seco, J.I.; Hermoso Prieto, E. Improving the Prediction of Strength and Rigidity of Structural Timber by Combining Ultrasound Techniques with Visual Grading Parameters. Mater. Constr. 2007, 57, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, A.; Tarozzi, M. Toward a Quantitative Evaluation of Timber Strength through On-Site Tests; CRC Press: Boca Raton, FL, USA, 2019; pp. 1737–1742. [Google Scholar]
- AENOR UNE 56544; Clasificación Visual de La Madera Aserrada Para Uso Estructural. Maderas Coníferas. 2011.
- Barozzi, G.; Cosentino, N.; Lanzoni, L.; Tarantino, A.M. Safety Assessment of Historic Timber Structural Elements. Case Stud. Constr. Mater. 2018, 8, 530–541. [Google Scholar] [CrossRef]
- Spanish Norm: Código Técnico de la Edificación (CTE). Documento Básico, Seguridad Estructural- Madera (DB-SE-M). 2019. Available online: https://www.codigotecnico.org/pdf/Documentos/SE/DBSE-M.pdf (accessed on 6 May 2021).
- EN 1990:2002+A1; Eurocode—Basis of Structural Design. Eurocode: Brussel, Belgium, 2002.
- Satheeskumar, N.; Henderson, D.J.; Ginger, J.D.; Wang, C.H. Finite Element Modelling of the Structural Response of Roof to Wall Framing Connections in Timber-Framed Houses. Eng. Struct. 2017, 134, 25–36. [Google Scholar] [CrossRef]
- Milch, J.; Tippner, J.; Sebera, V.; Kunecký, J.; Kloiber, M.; Navrátil, M. The Numerical Assessment of a Full-Scale Historical Truss Structure Reconstructed with Use of Traditional All-Wooden Joints. J. Cult. Herit. 2016, 21, 759–766. [Google Scholar] [CrossRef]
- Bertolini-Cestari, C.; Invernizzi, S.; Marzi, T.; Spano, A. Numerical Survey, Analysis and Assessment of Past Interventions on Historical Timber Structures: The Roof of Valentino Castle. Wiad. Konserw. 2016, 11, 87–97. [Google Scholar]
- Diz-Mellado, E.; Mascort-Albea, E.J.; Romero-Hernández, R.; Galán-Marín, C.; Rivera-Gómez, C.; Ruiz-Jaramillo, J.; Jaramillo-Morilla, A. Non-Destructive Testing and Finite Element Method Integrated Procedure for Heritage Diagnosis: The Seville Cathedral Case Study. J. Build. Eng. 2021, 37, 102134. [Google Scholar] [CrossRef]
- Chasnov, J.R. Numerical Methods for Engineers; The Hong Kong University of Science and Technology: Hong Kong, China, 2020. [Google Scholar]
- Shabani, A.; Kioumarsi, M.; Plevris, V.; Stamatopoulos, H. Structural Vulnerability Assessment of Heritage Timber Buildings: A Methodological Proposal. Forests 2020, 11, 881. [Google Scholar] [CrossRef]
- Bermudo, J.E.C. Ecija Artística y Monumental; Varo, J.M., Ed.; Gráficas Sol: Buenos Aires, Argentina, 1992; ISBN 84-87165-31-1. [Google Scholar]
- Arzobispado-de-Sevilla Archivo General Del Arzobispado de Sevilla (AGAS). Seville. Available online: https://www.archisevilla.org/documentacion/archivo-historico/ (accessed on 8 July 2021).
- Sancho, A. Planta de La Iglesia de Santa Cruz de Écija 1947. SGI Fototeca-Laboratorio de Arte. Universidad de Sevilla. Available online: https://citius.us.es/fototeca/ficha.php?id=8466303d18 (accessed on 23 June 2022).
- Nuere Matauco, E. La Carpintería de Lo Blanco: Lectura Dibujada Del Primer Manuscrito de Diego López de Arenas; Ministerio de Cultura: Madrid, Spain, 1985; ISBN 84-276-0713-X. [Google Scholar]
- De la Mata Jiménez, J.; (Director) Esteban Herrero, M. Influencia de La Humedad de La Madera En La Evaluación de Las Propiedades Mecánicas Del Pino Silvestre Mediante Técnicas No Destructivas. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2011. [Google Scholar]
- Climate Data for Cities Worldwide. Available online: https://en.climate-data.org/ (accessed on 20 March 2021).
- Cype Ingenieros, Cype 3D, Cype Ingenieros S.A. Madrid. Available online: https://info.cype.com/es/software/cype-3d/ (accessed on 23 June 2022).
- Autodesk. AutoCAD. Autodesk, Inc.: Mill Valley, CA, USA, 2019. [Google Scholar]
- Spanish Norm: Código Técnico de la Edificación (CTE). Documento Básico, Seguridad Estructural - Acciones en la Edificación (DB-SE-AE). 2009. Available online: https://www.codigotecnico.org/pdf/Documentos/SE/DBSE-AE.pdf (accessed on 6 May 2021).
- Branco, J.M.; Descamps, T. Analysis and Strengthening of Carpentry Joints. Constr. Build. Mater. 2015, 97, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Gálvez, F.; Rodríguez-Liñán, C.; Rubio-de-Hita, P. Determinación de Las Características Mecánicas de Los Muros de Fábrica de Ladrillo En La Arquitectura Doméstica Sevillana de Los Siglos XVIII Y XIX. Inf. Constr. 2009, 61, 19–28. [Google Scholar] [CrossRef]
Rainiest month (outdoor data): January | ||
T° min = 9 °C | RHmax = 76% | EMCmax = 16.5% (outdoor) |
Least rainy month (outdoor data): July | ||
T° max = 28.6 °C | RHmin = 35% | EMCmin = 7% (outdoor) |
Load | Duration | Safety Factor | Magnitude (kN/m2) |
---|---|---|---|
Own weight | Continuous | 1.35 | Calculated by software |
Dead loads (roof sheathing) | Continuous | 1.35 | 2 |
Maintenance overload | Variable | 1.50 | 0.5 |
Wind | Variable | 1.50 | Pressure = 0.96 |
Suction = 0.45 |
Test R2_Drilling depth: 9 cm | |
Test R3_Drilling depth: 16 cm | |
Test R1_Drilling depth: variable, 5–9 cm (3 drills) | |
Test R4_Drilling depth: variable, 4–6 cm (3 drills) | |
Test R5 Case study wall plate_Drilling depth: 11 cm (one drill with two voids) | |
First measurement (rainy day) | |
Environmental conditions Outdoor | Environmental conditions indoors |
T = 13.0 °C | T = 13.9 °C |
RH(air) = 90% | RH(air) = 82% |
Theoretical expected timber EMC = 19% | |
Second measurement (sunny day) | |
Environmental conditions Outdoor | Environmental conditions indoors |
T = 20.8 °C | T = 15.5 °C |
RH(air) = 48% | RH(air) = 63% |
Theoretical expected timber EMC = 12% |
Original Conditions (cm) | Simulation of Deteriorated State (cm) | ||
---|---|---|---|
Resistance Class = C-22 | Resistance Class = C-14 | ||
Rafters | 13 × 17 | Unspecific = 12.4 × 16.4 | High Moisture Content = 12 × 16 |
Collar beams | 13 × 11 | 12.4 × 10.4 | |
Ridge beam | 7 × 17 | 6.4 × 16.4 | |
Wall Plates | 26 × 18 | 15 × 13.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sola-Caraballo, J.; Rincón-Calderón, J.M.; Rivera-Gómez, C.; López-Martínez, J.A.; Galán-Marín, C. On-Site Risk Assessment Methodology of Historic Timber Structures: The Case Study of Santa Cruz Church. Buildings 2022, 12, 935. https://doi.org/10.3390/buildings12070935
Sola-Caraballo J, Rincón-Calderón JM, Rivera-Gómez C, López-Martínez JA, Galán-Marín C. On-Site Risk Assessment Methodology of Historic Timber Structures: The Case Study of Santa Cruz Church. Buildings. 2022; 12(7):935. https://doi.org/10.3390/buildings12070935
Chicago/Turabian StyleSola-Caraballo, Javier, José María Rincón-Calderón, Carlos Rivera-Gómez, José Antonio López-Martínez, and Carmen Galán-Marín. 2022. "On-Site Risk Assessment Methodology of Historic Timber Structures: The Case Study of Santa Cruz Church" Buildings 12, no. 7: 935. https://doi.org/10.3390/buildings12070935
APA StyleSola-Caraballo, J., Rincón-Calderón, J. M., Rivera-Gómez, C., López-Martínez, J. A., & Galán-Marín, C. (2022). On-Site Risk Assessment Methodology of Historic Timber Structures: The Case Study of Santa Cruz Church. Buildings, 12(7), 935. https://doi.org/10.3390/buildings12070935