A Study on the Properties of Geopolymer Concrete Modified with Nano Graphene Oxide
Abstract
:1. Introduction
Research Significance
2. Experimental Plan
2.1. Materials
2.2. Characterization of Graphene Oxide (GO)
2.3. Mix Proportioning
2.4. Sample Preparation and Casting
2.5. Testing Procedures
3. Results and Discussion
3.1. Compressive Strength
3.2. X-ray Diffraction (XRD) Analysis
3.3. Modulus of Elasticity (M.O.E.)
- fc = Average compressive strength of concrete (MPa) after 28 days
- p = Concrete density (kg/m3)
- Ec = Modulus of elasticity (MPa)
- f’c = Characteristics compressive strength (MPa) of concrete
3.4. Thermal Conductivity
3.5. Rapid Chloride Penetration Test (RCPT)
4. Conclusions
- Adding GO to GBFS-fly ash-based GPC improved compressive strength values compared to the control specimen. Among various doses of graphene oxide (0.05 wt.%, 0.15 wt.%, 0.25 wt.%, and 0.35 wt.%), the utmost improved compressive strength was obtained in the geopolymer concrete specimen with 0.25 wt.% graphene oxide.
- The high surface area of graphene oxide behaved as a filler that filled the gaps and improved the compressive strength characteristics of GPC.
- The proposed relationship (Equation (6)) lies well within the range of existing codes and past studies, meaning that the proposed equation in present research Ec = 0.037 × p1.5 × √f’c (“F”) can be adopted to accurately estimate the M.O.E. of graphene oxide-added GBFS fly ash-based GPC cured in water at room temperature.
- When G.O. was added by more than 0.25 wt.%, the strength began to decrease.
- The M.O.E. of graphene oxide-added GBFS fly ash-based G.P.C. was improved by 21–27% compared to the reference GP. samples after curing for 56 days.
- The XRD test showed a mineralogy of different from which the suitability of graphene oxide in geopolymer concrete was confirmed.
- The thermal conductivity of GPC GO modified samples depicted that the M3 mix had the lowest thermal conductivity (about 33%) lower than other mixes.
- The RCPT test recognized the unprecedented resistance capacity of graphene oxide GPC samples against the permeability of chloride ions. At an optimal dose of graphene oxide (0.25 wt.%), the permeability of chloride ions was the lowest recorded (add value here).
5. Future Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. Advances in alternative cementitious binders. Cem. Concr. Res. 2011, 41, 1232–1243. [Google Scholar] [CrossRef]
- Zaid, O.; Zamir Hashmi, S.R.; Aslam, F.; Alabduljabbar, H. Experimental Study on Mechanical Performance of Recycled Fine Aggregate Concrete Reinforced With Discarded Carbon Fibers. Front. Mater. 2021, 8, 481. [Google Scholar] [CrossRef]
- Zaid, O.; Aslam, F.; Alabduljabbar, H. To evaluate the performance of waste marble powder and wheat straw ash in steel fiber reinforced concrete. Struct. Concr. 2021, 23, 19–38. [Google Scholar] [CrossRef]
- Althoey, F.; Zaid, O.; de-Prado-Gil, J.; Palencia, C.; Ali, E.; Hakeem, I.; Martínez-García, R. Impact of sulfate activation of rice husk ash on the performance of high strength steel fiber reinforced recycled aggregate concrete. J. Build. Eng. 2022, 54, 104610. [Google Scholar] [CrossRef]
- Aslam, F.; Zaid, O.; Althoey, F.; Alyami, S.H.; Qaidi, S.M.A.; de Prado Gil, J.; Martínez-García, R. Evaluating the influence of fly ash and waste glass on the characteristics of coconut fibers reinforced concrete. Struct. Concr. 2022. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Harrison, T.; Jones, M.R.; Lawrence, D. The Production of Low Energy Cements. Lea’s Chemistry of Cement and Concrete, 5th ed.; Hewlett, P.C., Liska, M., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 341–361. [Google Scholar]
- Zaid, O.; Mukhtar, F.M.; M-García, R.; El Sherbiny, M.G.; Mohamed, A.M. Characteristics of high-performance steel fiber reinforced recycled aggregate concrete utilizing mineral filler. Case Stud. Constr. Mater. 2022, 16, e00939. [Google Scholar] [CrossRef]
- Zaid, O.; Ahmad, J.; Siddique, M.S.; Aslam, F. Effect of Incorporation of Rice Husk Ash Instead of Cement on the Performance of Steel Fibers Reinforced Concrete. Front. Mater. 2021, 8, 14–28. [Google Scholar] [CrossRef]
- Zaid, O.; Ahmad, J.; Siddique, M.S.; Aslam, F.; Alabduljabbar, H.; Khedher, K.M. A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Richard, P.; Cheyrezy, M. Composition of reactive powder concretes. Cem. Concr. Res. 1995, 25, 1501–1511. [Google Scholar] [CrossRef]
- Vieira, A.P.; Toledo Filho, R.D.; Tavares, L.M.; Cordeiro, G.C. Effect of particle size, porous structure and content of rice husk ash on the hydration process and compressive strength evolution of concrete. Constr. Build. Mater. 2020, 236, 117553. [Google Scholar] [CrossRef]
- Ascensao, G.; Seabra, M.P.; Aguiar, J.B.; Labrincha, J.A. Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability. J. Clean. Prod. 2017, 148, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Grabois, T.M.; Cordeiro, G.C.; Toledo Filho, R.D. Fresh and hardened-state properties of self-compacting lightweight concrete reinforced with steel fibers. Constr. Build. Mater. 2016, 104, 284–292. [Google Scholar] [CrossRef]
- Khotbehsara, M.; Mohseni, E.; Yazdi, M.A.; Sarker, P.; Ranjbar, M. Effect of nano-CuO and fly ash on the properties of self-compacting mortar. Constr. Build. Mater. 2015, 94, 758–766. [Google Scholar] [CrossRef]
- Joseph, B.; Mathew, G. Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Sci. Iran. 2012, 19, 1188–1194. [Google Scholar] [CrossRef] [Green Version]
- Tay, C.H.; Norkhairunnisa, M. Mechanical Strength of Graphene Reinforced Geopolymer Nanocomposites: A Review. Front. Mater. 2021, 276. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Wu, X.; Zhang, P.; Hu, S. Advances of graphene- and graphene oxide-modified cementitious materials. Nanotechnol. Rev. 2020, 9, 465–477. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Li, M.; Jiang, J.; Guo, L.; Wang, W.; Zhang, W.; Zhang, Z.; Duan, P. Effects of graphene oxide on microstructure and mechanical properties of graphene oxide-geopolymer composites. Constr. Build. Mater. 2020, 247, 118544. [Google Scholar] [CrossRef]
- Intarabut, D.; Sukontasukkul, P.; Phoo-Ngernkham, T.; Zhang, H.; Yoo, D.Y.; Limkatanyu, S.; Chindaprasirt, P. Influence of Graphene Oxide Nanoparticles on Bond-Slip Reponses between Fiber and Geopolymer Mortar. Nanomaterials 2022, 12, 943. [Google Scholar] [CrossRef]
- Mohseni, E.; Tsavdaridis, K. Effect of Nano-Alumina on Pore Structure and Durability of Class F Fly Ash Self-Compacting Mortar. Am. J. Eng. Appl. Sci. 2016, 9, 323–333. [Google Scholar] [CrossRef]
- Ng, D.S.; Paul, S.C.; Anggraini, V.; Kong, S.Y.; Qureshi, T.S.; Rodriguez, C.R.; Liu, Q.; Šavija, B. Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars. Constr. Build. Mater. 2020, 258, 119627. [Google Scholar] [CrossRef]
- Toniolo, N.; Boccaccini, A.R. Fly ash-based geopolymers containing added silicate waste. A review. Ceram. Int. 2017, 43, 14545–14551. [Google Scholar] [CrossRef]
- Aydın, S.; Baradan, B. Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Mater. Des. 2012, 35, 374–383. [Google Scholar] [CrossRef]
- Islam, A.; Alengaram, U.J.; Jumaat, M.Z.; Bashar, I.I. The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Mater. Des. 2014, 56, 833–841. [Google Scholar] [CrossRef]
- Shahmansouri, A.A.; Akbarzadeh Bengar, H.; Ghanbari, S. Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method. J. Build. Eng. 2020, 31, 101326. [Google Scholar] [CrossRef]
- Mohammedameen, A.; Younis, K.; Alzeebaree, R.; Arbili, M.; Ibrahim, T. Performance of Self-Compacting Geopolymer Concrete with and without Portland Cement at Ambient Temperature; Springer: Singapore, 2022; pp. 657–668. [Google Scholar]
- Yakovlev, G.; Polyanskikh, I.; Gordina, A.; Pudov, I.; Černý, V.; Gumenyuk, A.; Smirnova, O. Influence of Sulphate Attack on Properties of Modified Cement Composites. Appl. Sci. 2021, 11, 8509. [Google Scholar] [CrossRef]
- Smirnova, O. Compatibility of shungisite microfillers with polycarboxylate admixtures in cement compositions. ARPN J. Eng. Appl. Sci. 2019, 14, 600–610. [Google Scholar]
- Smirnova, O.M. Low-Clinker Cements with Low Water Demand. J. Mater. Civ. Eng. 2020, 32, 6020008. [Google Scholar] [CrossRef]
- Saidova, Z.; Yakovlev, G.; Smirnova, O.; Gordina, A.; Kuzmina, N. Modification of Cement Matrix with Complex Additive Based on Chrysotyl Nanofibers and Carbon Black. Appl. Sci. 2021, 11, 6943. [Google Scholar] [CrossRef]
- Cwirzen, A.; Engblom, R.; Punkki, J.; Habermehl-Cwirzen, K. Effects of curing: Comparison of optimised alkali-activated PC-FA-BFS and PC concretes. Mag. Concr. Res. 2014, 66, 315–323. [Google Scholar] [CrossRef]
- Wardhono, A.; Law, D.W.; Strano, A. The Strength of Alkali-activated Slag/fly Ash Mortar Blends at Ambient Temperature. Procedia Eng. 2015, 125, 650–656. [Google Scholar] [CrossRef] [Green Version]
- Yip, C.K.; Lukey, G.C.; Provis, J.L.; van Deventer, J.S.J. Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 2008, 38, 554–564. [Google Scholar] [CrossRef]
- Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S.K. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 2015, 85, 78–90. [Google Scholar] [CrossRef]
- Alanazi, H.; Yang, M.; Zhang, D.; Gao, Z. Early strength and durability of metakaolin-based geopolymer concrete. Mag. Concr. Res. 2016, 69, 46–54. [Google Scholar] [CrossRef]
- Okoye, F.N.; Mishra, S.; Singh, N. Durability of fly ash based geopolymer concrete in the presence of silica fume. J. Clean. Prod. 2017, 149, 1062–1067. [Google Scholar] [CrossRef]
- Phoo-ngernkham, T.; Chindaprasirt, P.; Sata, V.; Hanjitsuwan, S.; Hatanaka, S. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater. Des. 2014, 55, 58–65. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Hunpratub, S.; Thongbai, P.; Maensiri, S.; Sata, V.; Chindaprasirt, P. Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cem. Concr. Compos. 2014, 45, 9–14. [Google Scholar] [CrossRef]
- ACI 318-14 ACI 318-14; Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2014.
- Mangadhoddi, V.; Rao, T.D. Tie-confinement aspects of fly ash-GGBS based geopolymer concrete short columns. Constr. Build. Mater. 2017, 151, 28–35. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P. Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr. Build. Mater. 2017, 130, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Wallah, S.; Rangan, B. Low-Calcium Fly Ash-Based Geopolymer Concrete: Long Term Properties; Curtin University of Technology: Perth, Australia, 2006. [Google Scholar]
- Allahverdi, A.; Škvára, F. Sulfuric acid attack on hardened paste of geopolymer cements Part 1. Mechanism of corrosion at relatively high concentrations. Ceram. Silik. 2005, 49, 225–229. [Google Scholar]
- Mohseni, E. Assessment of Na2SiO3 to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites. Constr. Build. Mater. 2018, 186, 904–911. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Lu, C.; Liu, B.; Zhang, K.; Li, C. Influence of graphene oxide additions on the microstructure and mechanical strength of cement. New Carbon Mater. 2015, 30, 349–356. [Google Scholar] [CrossRef]
- Saafi, M.; Tang, L.; Fung, J.; Rahman, M.; Liggat, J. Enhanced Properties of Graphene/Fly Ash Geopolymeric Composite Cement. Cem. Concr. Res. 2015, 67, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Zaid, O.; Hashmi, S.R.Z.; Aslam, F.; Abedin, Z.U.; Ullah, A. Experimental study on the properties improvement of hybrid graphene oxide fiber-reinforced composite concrete. Diam. Relat. Mater. 2022, 124, 108883. [Google Scholar] [CrossRef]
- Indukuri, C.S.R.; Nerella, R.; Madduru, S.R.C. Effect of graphene oxide on microstructure and strengthened properties of fly ash and silica fume based cement composites. Constr. Build. Mater. 2019, 229, 116863. [Google Scholar] [CrossRef]
- Novoselov, K.; Geim, A.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Electric Field Effect in Atomically Thin Carbon Films. Nat. Mater. 2004, 6, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Lv, S.; Ma, Y.; Qiu, C.; Sun, T.; Liu, J.; Zhou, Q. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 2013, 49, 121–127. [Google Scholar] [CrossRef]
- Yan, S.; He, P.; Jia, D.; Yang, Z.; Duan, X.; Wang, S.; Zhou, Y. In situ fabrication and characterization of graphene/geopolymer composites. Ceram. Int. 2015, 41, 11242–11250. [Google Scholar] [CrossRef]
- Naresh Kumar, T.; Vishnu Vardhan, K.; Hari Krishna, M.; Venkata Nagaraja, P. Effect of graphene oxide on strength properties of cementitious materials: A review. Mater. Today Proc. 2021, 46, 2157–2160. [Google Scholar] [CrossRef]
- Smirnova, O.M.; de Navascués, I.; Mikhailevskii, V.R.; Kolosov, O.I.; Skolota, N.S. Sound-Absorbing Composites with Rubber Crumb from Used Tires. Appl. Sci. 2021, 11, 7347. [Google Scholar] [CrossRef]
- Smirnova, O. Development of classification of rheologically active microfillers for disperse systems with Portland cement and superplasticizer. Int. J. Civ. Eng. Technol. 2018, 9, 1966–1973. [Google Scholar]
- Smirnova, O.; Menéndez-Pidal, I.; Alekseev, A.; Petrov, D.; Popov, M. Strain Hardening of Polypropylene Microfiber Reinforced Composite Based on Alkali-Activated Slag Matrix. Materials 2022, 15, 1607. [Google Scholar] [CrossRef]
- Smirnova, O.; Kazanskaya, L.; Koplík, J.; Tan, H.; Gu, X. Concrete Based on Clinker-Free Cement: Selecting the Functional Unit for Environmental Assessment. Sustainability 2020, 13, 135. [Google Scholar] [CrossRef]
- ASTM C 618; Standard Specification for Coal FA and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2008.
- ASTM C989/C989M-18a; Standard Specification for Slag Cement for Use in Concrete and Mortars. ASTM International: West Conshohocken, PA, USA, 2018.
- Li, X.; Liu, Y.M.; Li, W.G.; Li, C.Y.; Sanjayan, J.G.; Duan, W.H.; Li, Z. Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste. Constr. Build. Mater. 2017, 145, 402–410. [Google Scholar] [CrossRef]
- Kumar, H.V.; Woltornist, S.J.; Adamson, D.H. Fractionation and characterization of graphene oxide by oxidation extent through emulsion stabilization. Carbon N. Y. 2016, 98, 491–495. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.-B. Alkali activation of Australian slag cements. Cem. Concr. Res. 1999, 29, 113–120. [Google Scholar] [CrossRef]
- Brough, A.R.; Atkinson, A. Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cem. Concr. Res. 2002, 32, 865–879. [Google Scholar] [CrossRef]
- Escalante-Garcia, J.I.; Fuentes, A.; Fraire-Luna, P.; Gorokhovsky, A.; Mendoza-Suarez, G. Hydration Products and Reactivity of Blast-Furnace Slag Activated by Various Alkalis. J. Am. Ceram. Soc. 2003, 86, 2148–2153. [Google Scholar] [CrossRef]
- Shi, C.; Krivenko, P.V.; Roy, D. Alkali-Activated Cements and Concretes; Taylor Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- ASTM C 39; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. American Society for Testing Materials ASTM: West Conshohocken, PA, USA, 2017.
- ASTM C469-14; Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM C1202-07; Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International: West Conshohocken, PA, USA, 2007.
- Deb, P.S.; Sarker, P.K.; Barbhuiya, S. Effects of nano-silica on the strength development of geopolymer cured at room temperature. Constr. Build. Mater. 2015, 101, 675–683. [Google Scholar] [CrossRef]
- Rehman, S.; Ibrahim, Z.; Memon, S.; Aunkor, T.; Faisal, A.; Mehmood, K.; Ali, S. Influence of Graphene Nanosheets on Rheology, Microstructure, Strength Development and Self-Sensing Properties of Cement Based Composites. Sustainability 2018, 10, 822. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W.; Collins, F.; Li, D.; Duan, W.H.; Wang, M.C. Mechanical properties and microstructure of a graphene oxide–cement composite. Cem. Concr. Compos. 2015, 58, 140–147. [Google Scholar] [CrossRef]
- Long, W.-J.; Zheng, D.; Duan, H.; Han, N.; Xing, F. Performance enhancement and environmental impact of cement composites containing graphene oxide with recycled fine aggregates. J. Clean. Prod. 2018, 194, 193–202. [Google Scholar] [CrossRef]
- Imtiaz, L.; Rehman, S.; Memon, S.; Khan, M.; Faisal, A. A Review of Recent Developments and Advances in Eco-Friendly Geopolymer Concrete. Appl. Sci. 2020, 10, 7838. [Google Scholar] [CrossRef]
- AS 3600; Reinforced Concrete Design, Cement Concrete and Aggregates Australia, Australian Standards. Cement & Concrete Aggregates Australia: Sydney, Australia, 2001.
- Roy, R.; Mitra, A.; Ganesh, A.T.; Sairam, V. Effect of Graphene Oxide Nanosheets dispersion in cement mortar composites incorporating Metakaolin and Silica Fume. Constr. Build. Mater. 2018, 186, 514–524. [Google Scholar] [CrossRef]
- Diaz-Loya, E.I.; Allouche, E.; Vaidya, S. Mechanical Properties of Fly-Ash-Based Geopolymer Concrete. Aci. Mater. J. 2011, 108, 300–306. [Google Scholar]
- Rehman, S.; Imtiaz, L.; Aslam, F.; Khan, M.; Haseeb, M.; Faisal, A.; Alyousef, R.; Alabduljabbar, H. Experimental Investigation of NaOH and KOH Mixture in SCBA-Based Geopolymer Cement Composite. Materials 2020, 13, 3437. [Google Scholar] [CrossRef]
- Saleh, P.; Jaf, D.; Arbili, M.; Karpuzcu, M. Validation of feret regression model for fly ash based geopolymer concrete. Polytech. J. 2018, 8, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Sengul, O.; Azizi, S.; Karaosmanoğlu, F.; Tasdemir, M. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build. 2011, 43, 671–676. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Kodur, V.; Wu, B.; Cao, L.; Wang, F. Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr. Build. Mater. 2016, 109, 17–24. [Google Scholar] [CrossRef]
- Ng, S.-C.; Low, K.-S. Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel. Energy Build. 2010, 42, 2452–2456. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Kunhanandan Nambiar, E.K.; Indu Siva Ranjani, G. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- He, X.; Yuhua, Z.; Qaidi, S.; Isleem, H.F.; Zaid, O.; Althoey, F.; Ahmad, J. Mine tailings-based geopolymers: A comprehensive review. Ceram. Int. 2022, 48, 24192–24212. [Google Scholar] [CrossRef]
Physical Property | Fine Aggregate | Coarse Aggregate |
---|---|---|
Maximum aggregate size (mm) | 4.75 | 25.0 |
Fineness modulus | 2.69 | 6.52 |
Specific gravity | 2.65 | 2.78 |
Flakiness index (%) | - | 11.0 |
Absorption (%) | 1.23 | 1.06 |
Elongation index (%) | - | 12.4 |
Impact value (%) | - | 16.5 |
LOI | SiO2 | CaO | Fe2O3 | Al2O3 | MgO | K2O | Na2O | |
---|---|---|---|---|---|---|---|---|
GBFS | 0.3 | 28.2 | 45.9 | 4.5 | 12.8 | 7.2 | 2.0 | 0.3 |
Fly ash | - | 53.4 | 2.6 | 4.2 | 27.6 | 3.4 | 0.7 | 0.3 |
Mix ID | Description | Binder | Aggregates | G.O. (Grams) | Solution | H2O | |||
---|---|---|---|---|---|---|---|---|---|
Fly Ash | GBFS | Coarse | Fine | NaOH | Na2SiO3 | ||||
M1 (FA85-G15) | M1-GO-0 | 354.83 | 62.61 | 1221 | 609 | 0.00 | 47.10 | 117.15 | 215 |
M1-GO-0.05 | 20.87 | ||||||||
M1-GO-0.15 | 62.61 | ||||||||
M1-GO-0.25 | 104.36 | ||||||||
M1-GO-0.35 | 146.10 | ||||||||
M2 (FA75-G25) | M2-GO-0 | 313.08 | 104.36 | 1221 | 609 | 0.00 | 47.10 | 117.15 | 215 |
M2-GO-0.05 | 20.87 | ||||||||
M2-GO-0.15 | 62.61 | ||||||||
M2-GO-0.25 | 104.36 | ||||||||
M2-GO-0.35 | 146.10 | ||||||||
M3 (FA65-G35) | M3-GO-0 | 271.34 | 146.10 | 1221 | 609 | 0.00 | 47.10 | 117.15 | 215 |
M3-GO-0.05 | 20.87 | ||||||||
M3-GO-0.15 | 62.61 | ||||||||
M3-GO-0.25 | 104.36 | ||||||||
M3-GO-0.35 | 146.10 |
Mix ID | Description | Comp. Strength (MPa) | GPC Density (kg/m3) | Modulus of Elasticity (GPa) | |||||
---|---|---|---|---|---|---|---|---|---|
Exp. 56 Days | [40] | [74] | [75] | [76] | Current Research | ||||
M1 (FA85-G15) | M1-GO-0 | 40.12 | 2329 | 27.81 | 30.38 | 30.64 | 28.54 | 26.17 | 26.78 |
M1-GO-0.05 | 51.04 | 2347 | 29.85 | 34.92 | 33.37 | 31.65 | 30.06 | 30.98 | |
M1-GO-0.15 | 53.84 | 2361 | 30.39 | 36.19 | 34.22 | 32.45 | 31.14 | 32.04 | |
M1-GO-0.25 | 56.74 | 2373 | 33.34 | 37.29 | 34.97 | 33.25 | 32.15 | 32.99 | |
M1-GO-0.35 | 52.46 | 2376 | 31.69 | 35.94 | 34.22 | 32.58 | 30.98 | 31.82 | |
M2 (FA75-G25) | M2-GO-0 | 42.63 | 2341 | 28.72 | 34.3 | 32.25 | 31.47 | 31.00 | 32.00 |
M2-GO-0.05 | 54.92 | 2352 | 31.91 | 36.38 | 34.26 | 32.74 | 31.30 | 32.51 | |
M2-GO-0.15 | 56.74 | 2360 | 32.67 | 37.12 | 34.71 | 33.41 | 31.89 | 32.88 | |
M2-GO-0.25 | 58.74 | 2367 | 33.56 | 37.93 | 35.26 | 34.21 | 32.76 | 33.65 | |
M2-GO-0.35 | 56.31 | 2373 | 32.59 | 37.24 | 34.92 | 33.32 | 32.07 | 32.94 | |
M3 (FA65-G35) | M3-GO-0 | 46.53 | 2352 | 29.13 | 34.3 | 33.85 | 32.45 | 31.00 | 32.00 |
M3-GO-0.5 | 59.37 | 2368 | 33.63 | 38.18 | 35.42 | 33.84 | 32.85 | 33.74 | |
M3-GO-1.5 | 61.62 | 2386 | 34.16 | 39.22 | 36.15 | 35.1 | 33.75 | 34.86 | |
M3-GO-2.5 | 64.27 | 2385 | 36.12 | 40.21 | 36.7 | 35.6 | 34.36 | 35.75 | |
M3-GO-3.5 | 62.61 | 2396 | 35.34 | 39.78 | 36.56 | 35.45 | 33.21 | 35.26 |
Mix ID | Description | Charge Traveled (Coulombs) | Penetration (ASTM C 1202) [68] | |
---|---|---|---|---|
M1 (FA85-G15) | M1-GO-0 | 4147 | <4000 | High |
M1-GO-0.05 | 3164 | 2000–4000 | Moderate | |
M1-GO-0.15 | 2565 | |||
M1-GO-0.25 | 1721 | 1000–2000 | Low | |
M1-GO-0.35 | 2076 | 2000–4000 | Moderate | |
M2 (FA75-G25) | M2-GO-0 | 3869 | 2000–4000 | Moderate |
M2-GO-0.05 | 2563 | |||
M2-GO-0.15 | 1879 | 1000–2000 | Low | |
M2-GO-0.25 | 1568 | |||
M2-GO-0.35 | 1704 | |||
M3 (FA65-G35) | M3-GO-0 | 3395 | 2000–4000 | Moderate |
M3-GO-0.5 | 2241 | |||
M3-GO-1.5 | 1594 | 1000–2000 | Low | |
M3-GO-2.5 | 1169 | |||
M3-GO-3.5 | 1427 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maglad, A.M.; Zaid, O.; Arbili, M.M.; Ascensão, G.; Șerbănoiu, A.A.; Grădinaru, C.M.; García, R.M.; Qaidi, S.M.A.; Althoey, F.; de Prado-Gil, J. A Study on the Properties of Geopolymer Concrete Modified with Nano Graphene Oxide. Buildings 2022, 12, 1066. https://doi.org/10.3390/buildings12081066
Maglad AM, Zaid O, Arbili MM, Ascensão G, Șerbănoiu AA, Grădinaru CM, García RM, Qaidi SMA, Althoey F, de Prado-Gil J. A Study on the Properties of Geopolymer Concrete Modified with Nano Graphene Oxide. Buildings. 2022; 12(8):1066. https://doi.org/10.3390/buildings12081066
Chicago/Turabian StyleMaglad, Ahmed M., Osama Zaid, Mohamed M. Arbili, Guilherme Ascensão, Adrian A. Șerbănoiu, Cătălina M. Grădinaru, Rebeca M. García, Shaker M. A. Qaidi, Fadi Althoey, and Jesús de Prado-Gil. 2022. "A Study on the Properties of Geopolymer Concrete Modified with Nano Graphene Oxide" Buildings 12, no. 8: 1066. https://doi.org/10.3390/buildings12081066
APA StyleMaglad, A. M., Zaid, O., Arbili, M. M., Ascensão, G., Șerbănoiu, A. A., Grădinaru, C. M., García, R. M., Qaidi, S. M. A., Althoey, F., & de Prado-Gil, J. (2022). A Study on the Properties of Geopolymer Concrete Modified with Nano Graphene Oxide. Buildings, 12(8), 1066. https://doi.org/10.3390/buildings12081066