Hydrothermal Evaluation of Vernacular Housing: Comparing Case Studies of Waste PET Bottles, Stone, and Adobe Houses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Prototype of PET
2.2. Adobe Prototype
2.3. Porous Stone House
2.4. Other Buildings
3. Results
3.1. Measurement of Internal and External Parameters
3.1.1. PET Prototype
3.1.2. Adobe Prototype
3.1.3. Porous Stone House, Two-Floor
3.1.4. Flagstone House with Loft
3.1.5. House of Bamboo and Date Palm Leaves-Thatched Roof
3.1.6. Housing Built with Conventional Materials
3.2. Determination of the PMV and PPD Indices
4. Discussion
4.1. PET Prototype
4.2. Adobe Prototype
4.3. Porous Stone House, Two-Floor
4.4. Flagstone House with Loft
4.5. House of Bamboo and Date Palm Leaves-Thatched Roof
4.6. Housing Built with Conventional Materials
4.7. PMV and PPD Indices for the Six Dwellings
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Azhiguzhayeva, A.; Basshieva, Z.; Malgarayeva, Z. Economic Efficiency of Housing Construction. Environmental Impact. J. Environ. Manag. Tour. 2021, 12, 703–717. [Google Scholar] [CrossRef]
- Nandhini, V.; Ambika, D.; Kumar, V.S.; Priya, S.D.; Poovizhi, G.; Rubini, V.S. An Analysis on Low Cost and Energy Efficient Materials for Sustainable Housing. Int. J. Eng. Trends Technol. 2020, 68, 88–96. [Google Scholar] [CrossRef]
- Jose, A.; Kasthurba, A.K. Alternate Construction Using Polymer Modified Stabilized Earth Blocks: A Pilot Project to Demonstrate Eco-Friendly and Sustainable Housing. J. Crit. Rev. 2020, 7, 7–13. [Google Scholar] [CrossRef]
- Shama, Z.S.; Motlak, J.B. Indicators for Sustainable Housing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 518, 022009. [Google Scholar] [CrossRef]
- Bianchi, P.F.; Yepes, V.; Vitorio, P.C.; Kripka, M. Study of Alternatives for the Design of Sustainable Low-Income Housing in Brazil. Sustainability 2021, 13, 4757. [Google Scholar] [CrossRef]
- Nicolini, E. Built Environment and Wellbeing—Standards, Multi-Criteria Evaluation Methods, Certifications. Sustainability 2022, 14, 4754. [Google Scholar] [CrossRef]
- De Jesús Pérez Bueno, J.; De Lourdes Montoya García, M.; Lopez, M.L.M.; Garcia, G.M. Bamboo Metallization for Aesthetic Finishing of Furniture and Wood Decorative Objects by an Electroless/Electrolytic Process. Wood Fiber Sci. 2019, 51, 144–159. [Google Scholar] [CrossRef]
- Ceja Soto, F.R.; Pérez Bueno, J.d.J.; Mendoza López, M.L.; Pérez Ramos, M.E.; Reyes Araiza, J.L.; Ramírez Jiménez, R.; Manzano-Ramírez, A. Evaluating the Thermal Behavior of a Sustainable Room and Roof Prototype Using Recycled Waste Materials. Recycling 2020, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Gómez, J.C.; Gonzales, M.B.; Damiani Lazo, C.A. Evaluation of Reinforced Adobe Techniques for Sustainable Reconstruction in Andean Seismic Zones. Sustainability 2021, 13, 4955. [Google Scholar] [CrossRef]
- Magdaleno López, C.; Pérez Bueno, J.J.; Mendoza López, M.L.; Reyes Araiza, J.L.; Manzano-Ramírez, A. Fly Ash Lightweight Material of the Cellular Concrete Type Using Sol-Gel and Thermal Treatment. Constr. Build. Mater. 2019, 206, 512–518. [Google Scholar] [CrossRef]
- Gencel, O.; Oguz, M.; Gholampour, A.; Ozbakkaloglu, T. Recycling Waste Concretes as Fine Aggregate and Fly Ash as Binder in Production of Thermal Insulating Foam Concretes. J. Build. Eng. 2021, 38, 102232. [Google Scholar] [CrossRef]
- Uemura Silva, V.; Nascimento, M.F.; Resende Oliveira, P.; Panzera, T.H.; Rezende, M.O.; Silva, D.A.L.; Borges de Moura Aquino, V.; Rocco Lahr, F.A.; Christoforo, A.L. Circular vs. Linear Economy of Building Materials: A Case Study for Particleboards Made of Recycled Wood and Biopolymer vs. Conventional Particleboards. Constr. Build. Mater. 2021, 285, 122906. [Google Scholar] [CrossRef]
- Magdaleno-López, C.; Pérez-Bueno, J.d.J.; Flores-Segura, J.C.; Reyes-Araiza, J.L.; Mendoza-López, M.L.; Arés, O.; Manzano-Ramírez, A. A Geopolymeric Composite of Non-Calcined Rice Husks Made of Metakaolin/Sol–Gel Silica. J. Compos. Mater. 2019, 53, 603–611. [Google Scholar] [CrossRef]
- Peng, H.; Walker, P.; Maskell, D.; Jones, B. Structural Characteristics of Load Bearing Straw Bale Walls. Constr. Build. Mater. 2021, 287, 122911. [Google Scholar] [CrossRef]
- Costes, J.P.; Evrard, A.; Biot, B.; Keutgen, G.; Daras, A.; Dubois, S.; Lebeau, F.; Courard, L. Thermal Conductivity of Straw Bales: Full Size Measurements Considering the Direction of the Heat Flow. Buildings 2017, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Alioua, T.; Agoudjil, B.; Boudenne, A.; Benzarti, K. Sensitivity Analysis of Transient Heat and Moisture Transfer in a Bio-Based Date Palm Concrete Wall. Build. Environ. 2021, 202, 108019. [Google Scholar] [CrossRef]
- Giuffrida, G.; Detommaso, M.; Nocera, F.; Caponetto, R. Design Optimisation Strategies for Solid Rammed Earthwalls in Mediterranean Climates. Energies 2021, 14, 325. [Google Scholar] [CrossRef]
- Charai, M.; Sghiouri, H.; Mezrhab, A.; Karkri, M. Thermal Insulation Potential of Non-Industrial Hemp (Moroccan Cannabis sativa L.) Fibers for Green Plaster-Based Building Materials. J. Clean. Prod. 2021, 292, 126064. [Google Scholar] [CrossRef]
- Lentz, L.C.; Antunes, E.G.P. Analysis of the Influence of Partial Replacement of Mineral Aggregate by Basaltic Rock Dust on the Production of Industrialized Adhesive Mortar. Mater. Constr. 2021, 71, e240. [Google Scholar] [CrossRef]
- Alnuaim, A.; Abbas, Y.M.; Iqbal Khan, M. Sustainable Application of Processed TBM Excavated Rock Material as Green Structural Concrete Aggregate. Constr. Build. Mater. 2021, 274, 121245. [Google Scholar] [CrossRef]
- Peñaranda Barba, M.A.; Alarcón Martínez, V.; Gómez Lucas, I.; Navarro Pedreño, J. Mitigation of Environmental Impacts in Ornamental Rock and Limestone Aggregate Quarries in Arid And Semi-Arid Areas. Glob. J. Environ. Sci. Manag. 2021, 7, 565–586. [Google Scholar] [CrossRef]
- Soto, F.R.C.; Pérez Bueno, J.d.J.; López, M.L.M.; Ramos, M.E.P.; Araiza, J.L.R.; Jiménez, R.R.; Manzano-Ramírez, A. Sustainability Metrics for Housing and the Thermal Performance Evaluation of a Low-Cost Prototype Made with Poly (Ethylene Terephthalate) Bottles. Recycling 2019, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Chi, B.; Lu, W.; Ye, M.; Bao, Z.; Zhang, X. Construction Waste Minimization in Green Building: A Comparative Analysis of LEED-NC 2009 Certified Projects in the US and China. J. Clean. Prod. 2020, 256, 120749. [Google Scholar] [CrossRef]
- Amiri, A.; Ottelin, J.; Sorvari, J. Are LEED-Certified Buildings Energy-Efficient in Practice? Sustainability 2019, 11, 1672. [Google Scholar] [CrossRef] [Green Version]
- Pushkar, S. Leed-Eb Gold Projects for Office Spaces in Large Buildings Transitioning from Version 3 (V3) to 4 (v4): Similarities and Differences between Finland and Spain. Appl. Sci. 2020, 10, 8737. [Google Scholar] [CrossRef]
- Greer, F.; Chittick, J.; Jackson, E.; Mack, J.; Shortlidge, M.; Grubert, E. Energy and Water Efficiency in LEED: How Well Are LEED Points Linked to Climate Outcomes? Energy Build. 2019, 195, 161–167. [Google Scholar] [CrossRef]
- Suzer, O. Analyzing the Compliance and Correlation of LEED and BREEAM by Conducting a Criteria-Based Comparative Analysis and Evaluating Dual-Certified Projects. Build. Environ. 2019, 147, 158–170. [Google Scholar] [CrossRef]
- Jalaei, F.F.; Jalaei, F.F.; Mohammadi, S. An Integrated BIM-LEED Application to Automate Sustainable Design Assessment Framework at the Conceptual Stage of Building Projects. Sustain. Cities Soc. 2020, 53, 101979. [Google Scholar] [CrossRef]
- Soret, G.M.; Vacca, P.; Tignard, J.; Hidalgo, J.P.; Maluk, C.; Aitchison, M.; Torero, J.L. Thermal Inertia as an Integrative Parameter for Building Performance. J. Build. Eng. 2021, 33, 101623. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; ISO: Genève, Switzerland, 2015. [Google Scholar]
- Avelino, A.D.; da Silva, L.B.; Souza, E.L. The Influence of the Metabolism in the PMV Model from ISO 7730 (2005). In Volume II: Safety and Health, Slips, Trips and Falls, Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018); Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 54–64. [Google Scholar]
- Huang, Z.; Liu, J.; Hao, H.; Dong, Y. Indoor Humidity Environment in Huizhou Traditional Vernacular Dwellings of China in Summer. Procedia Eng. 2017, 205, 1350–1356. [Google Scholar] [CrossRef]
- Huang, Z.; Yu, M.; Zheng, L.; Gong, C.; Wu, Z. One-Year Field Study on Indoor Environment of Huizhou Traditional Vernacular Dwellings in China. Procedia Eng. 2017, 205, 1316–1322. [Google Scholar] [CrossRef]
- Li, Z.; Shi, L.; Yu, Z. Improvement of Thermal Performance of Envelopes for Traditional Wooden Vernacular Dwellings of Tujia Minority in Western Hunan, China. J. Cent. South. Univ. 2016, 23, 479–483. [Google Scholar] [CrossRef]
- Widera, B. Comparative Analysis of User Comfort and Thermal Performance of Six Types of Vernacular Dwellings as the First Step towards Climate Resilient, Sustainable and Bioclimatic Architecture in Western Sub-Saharan Africa. Renew. Sustain. Energy Rev. 2021, 140, 110736. [Google Scholar] [CrossRef]
- Tarrad, M.; Sqour, S. Applications of Green Architecture in Vernacular Dwelling Architecture-a Case Study from Jordan. Int. J. Des. Nat. Ecodynamics 2020, 15, 515–522. [Google Scholar] [CrossRef]
- Cruz-Cortés, J.J.; Fraga, J.E.; Munguía-Rosas, M.A. Effects of Changes in Traditional Agroecosystems on Vernacular Dwellings: The Occupants’ Perspective. Hum. Ecol. 2019, 47, 553–563. [Google Scholar] [CrossRef]
- Shastry, V.; Mani, M.; Tenorio, R. Evaluating Thermal Comfort and Building Climatic Response in Warm-Humid Climates for Vernacular Dwellings in Suggenhalli (India). Archit. Sci. Rev. 2016, 59, 12–26. [Google Scholar] [CrossRef]
- Gao, F.; Tu, X.L.; Ma, X.; Xie, Y.; Zou, J.; Huang, X.G.; Qu, F.L.; Yu, Y.F.; Lu, L.M. NiO@Ni-MOF Nanoarrays Modified Ti Mesh as Ultrasensitive Electrochemical Sensing Platform for Luteolin Detection. Talanta 2020, 215, 8. [Google Scholar] [CrossRef]
- Feng, J.X. Active Recommendation of Architectural Design and Adaptability of Vernacular Dwellings. J. Comput. Theor. Nanosci. 2016, 13, 9401–9406. [Google Scholar] [CrossRef]
- Bolobosky, M.; James, A.; Mogollón, L. Development of a Prototype for Solar Radiation Exploitation on Galvanized Metal Roofs in Panama. In Proceedings of the 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), Panama City, Panama, 9–11 October 2019; pp. 138–143. [Google Scholar]
- Obia, A.E.; Okon, H.E.; Ekum, S.A.; Onuegbu, A.E.; Ekeng, P.O. The Role of Sulphur Dioxide and Gas Flare Particulates on the Corrosion of Galvanized Iron Roof Sheets in South-South Region of Nigeria. Sci. Res. Essays 2011, 6, 5734–5740. [Google Scholar] [CrossRef]
- Lucero-Álvarez, J.; Martin-Dominguez, I.R.; Rubín-Zacarías, F.; Ledezma-Gallegos, A.; Alarcón-Herrera, M.T. Experimental Comparison of Heat Flow through Concrete Roofing Flagstones with Different Coatings. In Proceedings of the ISES Solar World Congress, Kassel, Germany, 28 August–2 September 2011; Volume 1, pp. 592–603. [Google Scholar] [CrossRef]
- Riquelme, F.; Cuevas-García, M.; Alvarado-Ortega, J.; Taylor, S.; Ruvalcaba-Sil, J.L.; Linares-López, C.; Aguilar-Franco, M.; Yadeun-Angulo, J. New Insights into Ancient Maya Building Materials: Characterization of Mortar, Plaster, and Coquina Flagstones from Toniná. MRS Proc. 2012, 1374, 145–164. [Google Scholar] [CrossRef]
- El-Sherbiny, Y.M.; Abdel-Jaber, G.T.; Ali, W.Y. Proper Selection of Indoor Floor Based on Friction Coefficient and Electrostatic Charge. ARPN J. Eng. Appl. Sci. 2018, 13, 3052–3062. [Google Scholar]
- Ivanov, L.A.; Bokova, E.S.; Muminova, S.R.; Katuhin, L.F. Nanotechnologies: A Review of Inventions and Utility Models. Part I. Nanotechnologies Constr. 2020, 12, 27–33. [Google Scholar] [CrossRef]
- Mostofi, N.; Aghamohammadi Zanjirabad, H.; Vafaeinejad, A.; Ramezani, M.; Hemmasi, A. Developing an SDSS for Optimal Sustainable Roof Covering Planning Based on UHI Variation at Neighborhood Scale. Environ. Monit. Assess. 2021, 193, 372. [Google Scholar] [CrossRef]
- Ozmen, Y.; Baydar, E.; van Beeck, J.P.A.J. Wind Flow over the Low-Rise Building Models with Gabled Roofs Having Different Pitch Angles. Build. Environ. 2016, 95, 63–74. [Google Scholar] [CrossRef]
- Delgado Osorio, M.E.; Florez, L.M.C.; Cruz, A.; Marulanda, J.; Thomson, P. Comparison of Wind Loads on Flat and Gabled Roofs Calculated with the Colombian Building Code and Numerical Results Using CFD.Pdf. Rev. Int. Métodos Numér. Cálc. Diseño Ing. 2019, 35, 29. [Google Scholar] [CrossRef]
- Narwaria, U.S.; Singh, M.; Verma, K.K.; Bharti, P.K. Amelioration of Thermal Stress Using Modified Roof in Dairy Animals under Tropics: A Review. J. Anim. Res. 2017, 7, 801. [Google Scholar] [CrossRef]
- Mandal, D.K.; Mandal, A.; Bhakat, C.; Dutta, T.K. Effect of Heat Stress Amelioration through Open-Ridge Ventilated Thatched Roof Housing on Production and Reproduction Performance of Crossbred Jersey Cows. Trop. Anim. Health Prod. 2021, 53, 144. [Google Scholar] [CrossRef]
- Velt, K.B.; Daanen, H.A.M. Thermal Sensation and Thermal Comfort in Changing Environments. J. Build. Eng. 2017, 10, 42–46. [Google Scholar] [CrossRef]
- Saxena, S.; Yaghoobian, N. Diurnal Surface Heating and Roof Material Effects on Urban Pollution Dispersion: A Coupled Large-Eddy Simulation and Surface Energy Balance Analysis. Boundary-Layer Meteorol. 2022, 184, 143–171. [Google Scholar] [CrossRef]
- Bassoud, A.; Khelafi, H.; Mokhtari, A.M.; Bada, A. Evaluation of Summer Thermal Comfort in Arid Desert Areas. Case Study: Old Adobe Building in Adrar (South of Algeria). Build. Environ. 2021, 205, 108140. [Google Scholar] [CrossRef]
- Zonno, G.; Aguilar, R.; Boroschek, R.; Lourenço, P.B. Experimental Analysis of the Thermohygrometric Effects on the Dynamic Behavior of Adobe Systems. Constr. Build. Mater. 2019, 208, 158–174. [Google Scholar] [CrossRef]
- Zonno, G.; Aguilar, R.; Boroschek, R.; Lourenço, P.B. Analysis of the Long and Short-Term Effects of Temperature and Humidity on the Structural Properties of Adobe Buildings Using Continuous Monitoring. Eng. Struct. 2019, 196, 109299. [Google Scholar] [CrossRef]
- Zonno, G.; Aguilar, R.; Boroschek, R.; Lourenço, P.B. Environmental and Ambient Vibration Monitoring of Historical Adobe Buildings: Applications in Emblematic Andean Churches. Int. J. Archit. Herit. 2021, 15, 1113–1129. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | |
---|---|---|---|---|
P-Tmax | P-Tmin | R-Tmin | R-Tmin | |
y0 | 7.03 | 5.43 | 17.17 | −25.02 |
xc | 186.74 | 186.69 | 179.59 | 183.22 |
w | 246.14 | 241.34 | 220.64 | 515.07 |
A | 6076.7 | 5862.9 | 3528.1 | 28714.3 |
Area | 7743.8 | 7028.1 | 9367.1 | 5799.4 |
Center (days) | 182.8 | 183.0 | 180.3 | 181.6 |
Height (°C) | 26.7 | 24.8 | 29.9 | 19.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto, F.R.C.; Bueno, J.d.J.P.; Mendoza López, M.L.; Chavela, M.H.; Ramos, M.E.P.; Manzano-Ramírez, A. Hydrothermal Evaluation of Vernacular Housing: Comparing Case Studies of Waste PET Bottles, Stone, and Adobe Houses. Buildings 2022, 12, 1162. https://doi.org/10.3390/buildings12081162
Soto FRC, Bueno JdJP, Mendoza López ML, Chavela MH, Ramos MEP, Manzano-Ramírez A. Hydrothermal Evaluation of Vernacular Housing: Comparing Case Studies of Waste PET Bottles, Stone, and Adobe Houses. Buildings. 2022; 12(8):1162. https://doi.org/10.3390/buildings12081162
Chicago/Turabian StyleSoto, Flavio Roberto Ceja, José de Jesús Pérez Bueno, Maria Luisa Mendoza López, Martín Hernández Chavela, Martha Elva Pérez Ramos, and Alejandro Manzano-Ramírez. 2022. "Hydrothermal Evaluation of Vernacular Housing: Comparing Case Studies of Waste PET Bottles, Stone, and Adobe Houses" Buildings 12, no. 8: 1162. https://doi.org/10.3390/buildings12081162
APA StyleSoto, F. R. C., Bueno, J. d. J. P., Mendoza López, M. L., Chavela, M. H., Ramos, M. E. P., & Manzano-Ramírez, A. (2022). Hydrothermal Evaluation of Vernacular Housing: Comparing Case Studies of Waste PET Bottles, Stone, and Adobe Houses. Buildings, 12(8), 1162. https://doi.org/10.3390/buildings12081162