Freezing Effect of Enhancing Tubes in a Freeze-Sealing Pipe Roof Method Based on the Unsteady-State Conjugate Heat Transfer Model
Abstract
:1. Introduction
2. Engineering Background
3. Numerical Model
3.1. Assumptions and Computational Model
3.2. Governing Equation of Unsteady-State Conjugate Heat Transfer Model
- (1)
- Severe phase transition zone: when the temperature in this zone changes by 1 °C, the variation in unfrozen water content is greater than or equal to 1%;
- (2)
- Transition zone: when the temperature in this zone changes by 1 °C, the variation in unfrozen water content is between 0.1% and 1%;
- (2)
- Frozen zone: when the temperature in this zone decreases by 1 °C, the amount of the water phase becoming ice is less than 0.1%.
3.3. Model Parameter
3.4. The Shape of the Enhancing Freezing Tubes
3.5. Calculation Scheme
4. Results and Analysis
4.1. The Layout of the Enhancing Freezing Tubes
4.2. The Operating Duration of the Enhancing Freezing Tubes
4.3. The Heat Preservation Measures of the Enhancing Freezing Tubes
5. Conclusions
- (1)
- The greater the contact area between the enhancing freezing tube and the inner wall of the steel pipe, the better the freezing effect. Considering both the freezing effect and frost heave control, the semicircular enhancing freezing tube scheme is superior to the other three shapes of freezing tubes.
- (2)
- The enhancing freezing tubes arranged far away from the excavation surface (Scheme B) have a better freezing effect.
- (3)
- The freezing efficiency is the highest when the enhancing freezing tubes and the master freezing tubes are operated at the same time (Scheme C), but the enhancing freezing tubes can be operated and closed intermittently according to the working conditions to control frost heave.
- (4)
- The effect of the heat preservation measures of the enhancing freezing tubes is not obvious, but it does affect the cooling capacity of the air in the hollow pipe which, in turn, affects the function of the hollow pipe as a freezing pipe, thereby affecting the freezing effect. It is recommended not to use heat preservation measures (Scheme E).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jörg, S.; Paul, E.; Josef, S. Metro Line U5 In Berlin–Design Challenges Due To Complex Geotechnical Conditions/U-Bahnlinie U5 In Berlin–Besondere Herausforderungen Für Die Planung Aufgrund Der Komplexen Geotechnischen Gegebenheiten. Geomech. Und Tunnelbau 2013, 6, 487–493. [Google Scholar] [CrossRef]
- Hu, X.; Hong, Z.; Fang, T. Analytical Solution to Steady-State Temperature Field with Typical Freezing Tube Layout Employed in Freeze-Sealing Pipe Roof Method. Tunn. Undergr. Space Technol. 2018, 79, 336–345. [Google Scholar] [CrossRef]
- Hong, Z.; Hu, X.; Fang, T. Analytical Solution to Steady-State Temperature Field of Freeze-Sealing Pipe Roof Applied to Gongbei Tunnel Considering Operation of Limiting Tubes. Tunn. Undergr. Space Technol. 2020, 105, 103571. [Google Scholar] [CrossRef]
- Hu, Q.; Shi, R.; Hu, Y.; Cai, Q.; Qu, M.; Zhao, W.; He, L. Method to Evaluate the Safety of Tunnels through Steeply Inclined Strata in Cold Regions Based on the Sidewall Frost Heave Model. J. Perform. Constr. Facil. 2018, 32, 04018030. [Google Scholar] [CrossRef]
- Hu, X.; Fang, T.; Chen, J.; Ren, H.; Guo, W. A Large-Scale Physical Model Test on Frozen Status in Freeze-Sealing Pipe Roof Method for Tunnel Construction. Tunn. Undergr. Space Technol. 2018, 72, 55–63. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Hu, X. Research on Influence of Construction Thermal Disturbance on the Freezing-Sealing Pipe Roof. Tumu Gongcheng Xuebao/China Civ. Eng. J. 2015, 48, 374–379. [Google Scholar]
- Ren, H.; Hu, X.; Hong, Z.; Zhang, J. Experimental Study on Active Freezing Scheme of Freeze-Sealing Pipe Roof Used in Ultra-Shallow Buried Tunnels. Yantu Gongcheng Xuebao/Chin. J. Geotech. Eng. 2019, 41, 320–328. [Google Scholar] [CrossRef]
- Hu, X.; Deng, S.; Wang, Y. Test Investigation on Mechanical Behavior of Steel Pipe-Frozen Soil Composite Structure Based on Freeze-Sealing Pipe Roof Applied to Gongbei Tunnel. Tunn. Undergr. Space Technol. 2018, 79, 346–355. [Google Scholar] [CrossRef]
- Kostina, A.; Zhelnin, M.; Plekhov, O.; Agutin, K.A. THM-Coupled Numerical Analysis of Temperature and Groundwater Level in-Situ Measurements in Artificial Ground Freezing. Frat. Ed. Integr. Strutt. 2022, 16, 1–19. [Google Scholar] [CrossRef]
- Tounsi, H.; Rouabhi, A.; Tijani, M.; Guerin, F. Thermo-Hydro-Mechanical Modeling of Artificial Ground Freezing: Application in Mining Engineering. Rock Mech. Rock Eng. 2019, 52, 3889–3907. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Hu, X. Analysis on Water Sealing Effect of Freezing-Sealing Pipe Roof Method. Dixia Kongjian Yu Gongcheng Xuebao/Chin. J. Undergr. Space Eng. 2015, 11, 751–758. [Google Scholar]
- Chen, J.; Zhang, D.; Huang, H.; Shadabfar, M.; Zhou, M.; Yang, T. Image-Based Segmentation and Quantification of Weak Interlayers in Rock Tunnel Face via Deep Learning. Autom. Constr. 2020, 120, 103371. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, M.; Huang, H.; Zhang, D.; Peng, Z. Automated Extraction and Evaluation of Fracture Trace Maps from Rock Tunnel Face Images via Deep Learning. Int. J. Rock Mech. Min. Sci. 2021, 142, 104745. [Google Scholar] [CrossRef]
- Zueter, A.F.; Xu, M.; Alzoubi, M.A.; Sasmito, A.P. Development of Conjugate Reduced-Order Models for Selective Artificial Ground Freezing: Thermal and Computational Analysis. Appl. Therm. Eng. 2021, 190, 116782. [Google Scholar] [CrossRef]
- Vitel, M.; Rouabhi, A.; Tijani, M.; Guerin, F. Modeling Heat Transfer between a Freeze Pipe and the Surrounding Ground during Artificial Ground Freezing Activities. Comput. Geotechnics 2015, 63, 99–111. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, J.; Yang, H.; Song, Y. Application of Artificial Ground Freezing Technology in Modern Urban Underground Engineering. Adv. Mater. Sci. Eng. 2020, 2020, 1619721. [Google Scholar] [CrossRef]
- Alzoubi, M.A.; Nie-Rouquette, A.; Sasmito, A.P. Conjugate Heat Transfer in Artificial Ground Freezing Using Enthalpy-Porosity Method: Experiments and Model Validation. Int. J. Heat Mass Transfer. 2018, 126, 740–752. [Google Scholar] [CrossRef]
- Kozlowski, T. A Comprehensive Method of Determining the Soil Unfrozen Water Curves 2. Stages of the Phase Change Process in Frozen Soil-Water System. Cold Reg. Sci. Technol. 2003, 36, 81–92. [Google Scholar] [CrossRef]
- Singh, S.; Bhargava, R. Numerical Simulation of a Phase Transition Problem with Natural Convection Using Hybrid FEM/EFGM Technique. Int. J. Numer. Methods Heat Fluid Flow. 2015, 25, 570–592. [Google Scholar] [CrossRef]
- Bellur, K.; Médici, E.F.; Hermanson, J.C.; Choi, C.K.; Allen, J.S. Determining Solid-Fluid Interface Temperature Distribution during Phase Change of Cryogenic Propellants Using Transient Thermal Modeling. Cryogenics 2018, 91, 103–111. [Google Scholar] [CrossRef]
- Frolov, D. Calculating Scheme of Ground Freezing Depth on the Basis of Data on Seasonal Snowfall Deposition, Snow Cower Accumulation and Temperature Variation. In Proceedings of the 9th International Conference on Computational Information Technologies for Environmental Sciences, Moscow, Russia, 27 May–6 June 2019; IPO Publishing Ltd.: Beijing, China, 2019; Volume 386. [Google Scholar]
- Park, J.; Yoon, H.-K.; Kim, J. Effect of Water Distribution Patterns on the Activation Energy of Unsaturated Soils during Phase Transformation. Vadose Zone J. 2021, 20, e20170. [Google Scholar] [CrossRef]
- Yao, M.; Chait, A. An Alternative Formulation of the Apparent Heat-Capacity Method for Phase-Change Problems. Numer Heat Tranf. B-Fundam. 1993, 24, 279–300. [Google Scholar] [CrossRef]
- Bonacina, C.; Comini, G.; Fasano, A.; Primicerio, M. Numerical Solution of Phase-Change Problems. Int. J. Heat Mass Transf. 1973, 16, 1825–1832. [Google Scholar] [CrossRef]
- Pepper, D.W. Computational Heat Transfer Using The Method of Second Moments. Numer. Heat Transf. Part. B Fundam. 2002, 42, 189–201. [Google Scholar] [CrossRef]
- Bronfenbrener, L. A Non-Instantaneous Kinetic Model for Freezing in Porous Media. Chem. Eng. Processing: Process. Intensifi. 2008, 47, 1631–1646. [Google Scholar] [CrossRef]
- Stuurop, J.C.; Van der Zee, S.E.A.T.M.; Voss, C.I.; French, H.K. Simulating Water and Heat Transport with Freezing and Cryosuction in Unsaturated Soil: Comparing an Empirical, Semi-Empirical and Physically-Based Approach. Adv. Water Resour. 2021, 149, 103846. [Google Scholar] [CrossRef]
- Kebria, M.M.; Na, S.; Yu, F. An Algorithmic Framework for Computational Estimation of Soil Freezing Characteristic Curves. Int. J. Numer. Anal. Methods Geomech. 2022, 46, 1544–1565. [Google Scholar] [CrossRef]
- Lee, R.; Chiou, W. Finite-Element Analysis of Phase-Change Problems Using Multilevel Techniques. Numer. Heat Transf. 1995, 27, 277–290. [Google Scholar] [CrossRef]
- Hromadka, T.V.; Guymon, G.L.; Berg, R.L. Some Approaches to Modeling Phase Change in Freezing Solis. Cold Reg. Sci. Technol. 1981, 4, 137–145. [Google Scholar] [CrossRef]
- Ryzhkov, S.V.; Kuzenov, V.V. Analysis of the Ideal Gas Flow over Body of Basic Geometrical Shape. Int. J. Heat Mass Transf. 2019, 132, 587–592. [Google Scholar] [CrossRef]
- Tiwari, N.; Moharana, M.K. Effect of Conjugate Heat Transfer in Single-Phase Laminar Flow through Partially Heated Microtubes. Sadhana Acad. Proc. Eng. Sci. 2021, 46, 28. [Google Scholar] [CrossRef]
- Sugawara, M.; Tago, M. Freezing of Water in a Closed Vertical Tube Cooled by Air Flow. Int. J. Heat Mass Transf. 2019, 133, 800–811. [Google Scholar] [CrossRef]
- De Guzman, E.M.B.; Stafford, D.; Alfaro, M.C.; Doré, G.; Arenson, L.U. Large-Scale Direct Shear Testing of Compacted Frozen Soil under Freezing and Thawing Conditions. Cold Reg. Sci. Technol. 2018, 151, 138–147. [Google Scholar] [CrossRef]
- Wang, J.; Nishimura, S.; Tokoro, T. Laboratory Study and Interpretation of Mechanical Behavior of Frozen Clay through State Concept. Soils Found. 2017, 57, 194–210. [Google Scholar] [CrossRef]
- Palmer, A.C.; Williams, P.J. Frost Heave and Pipeline Upheaval Buckling. Can. Geotech. J. 2003, 40, 1033–1038. [Google Scholar] [CrossRef]
- Peterson, R.A. Assessing the Role of Differential Frost Heave in the Origin of Non-Sorted Circles. Quat. Res. 2011, 75, 325–333. [Google Scholar] [CrossRef]
- Zueter, A.F.; Madiseh, A.G.; Hassani, F.P.; Sasmito, A.P. Effect of Freeze Pipe Eccentricity in Selective Artificial Ground Freezing Applications. J. Therm. Sci. Eng. Appl. 2021, 14, 1884–2023. [Google Scholar] [CrossRef]
- Tabilo, E.J.; Moraga, N.O. Improved Water Freezing with Baffles Attached to a Freezing Tunnel: Mathematical Modeling and Numerical Simulation by a Conjugate Finite Volume Model. Int. J. Refrig. 2021, 128, 177–185. [Google Scholar] [CrossRef]
- Gusyachkin, A.M.; Sabitov, L.S.; Khakimova, A.M.; Hayrullin, A.R. Effects of Moisture Content on Thermal Conductivity of Thermal Insulation Materials. IOP Conf. Ser. Mater. Sci. Eng. 2019, 570, 012029. [Google Scholar] [CrossRef]
- Birsan, D.C.; Scutelnicu, E.; Visan, D. Modeling of Heat Transfer in Pipeline Steel Joint Performed by Submerged Double-Arc Welding Procedure. Adv. Mater. Res. 2013, 814, 33–40. [Google Scholar] [CrossRef]
- Sanchez, N.; Güngör, Ö.E.; Liebeherr, M.; Ilić, N. Development of X80M Line Pipe Steel for Spiral Welded Pipes With Low Temperature Toughness and Excellent Weldability. In Proceedings of the 2014 10th International Pipeline Conference, Risk and Reliability, Calgary, AB, Canada, 29 September–3 October 2014; pp. 1–11. [Google Scholar] [CrossRef]
Soil Layer Number | Lithology | Moisture Content w (%) | Density ρ (kg/m3) | Dry Density ρd (kg/m3) |
---|---|---|---|---|
① | Artificial fill | 16.05 | 1660 | 1470 |
③-3 | Pebble sand | 13.54 | 2000 | 1760 |
④-3 | Muddy silty clay | 47.6 | 1820 | 1230 |
⑤-1 | Silty clay | 26.37 | 2010 | 1590 |
⑤-2 | Fine sand | 18.25 | 1950 | 1650 |
⑤-3 | Muddy silty clay | 38.27 | 1880 | 1360 |
⑥-2 | Medium sand | 17.92 | 2020 | 1720 |
⑦-1 | Gravel clay | 31.98 | 1890 | 1430 |
⑧-1 | Completely decomposed granite | 17.31 | 2040 | 1740 |
⑧-2 | Highly weathered granite | 19.65 | 1980 | 1650 |
Material Names | Thermal Conductivity at Different Temperatures | ||||||
---|---|---|---|---|---|---|---|
−30 °C | −20 °C | −10 °C | 0 °C | 10 °C | 20 °C | 30 °C | |
①-Artificial fill | / | 1.962 | 1.690 | 1.511 | 1.398 | 1.109 | / |
③-3 Pebble sand | / | 1.925 | 1.758 | 1.538 | 1.217 | 1.066 | / |
④-3 Muddy silty clay | / | 2.047 | 1.772 | 1.614 | 1.485 | 1.206 | / |
⑤-2 Fine sand | / | 2.019 | 1.775 | 1.719 | 1.497 | 1.266 | / |
⑤-3 Muddy silty clay | / | 1.994 | 1.893 | 1.643 | 1.402 | 1.344 | / |
⑦-1 Gravel clay | / | 2.030 | 1.790 | 1.623 | 1.442 | 1.319 | / |
Air | 0.022 | 0.0228 | 0.0236 | 0.0244 | 0.0251 | 0.0259 | 0.0267 |
−40 °C | −20 °C | 0 °C | 10 °C | 20 °C | 30 °C |
---|---|---|---|---|---|
15.60 | 16.83 | 17.09 | 17.59 | 18.08 | 18.56 |
−30 °C | −20 °C | −10 °C | 0 °C | 10 °C | 20 °C | 30 °C |
---|---|---|---|---|---|---|
1011 | 1009 | 1009 | 1010 | 1012 | 1013 | 1014 |
Material | Density (kg/m3) | Thermal Conductivity (W/(kg·K)) | Specific Heat (J/(kg·K)) |
---|---|---|---|
Steel | 7850 | 44.7 | 459.8 |
Concrete | 2344 | 1.835 | 419.8 |
Shape A | Shape B | Shape C | Shape D | |||||
---|---|---|---|---|---|---|---|---|
Active Freezing for 30 Days | Left Side | Right Side | Left Side | Right Side | Left Side | Right Side | Left Side | Right Side |
Thickness of frozen soil curtain (m) | 1.076 | 0.938 | 1.274 | 1.477 | 1.225 | 1.288 | 1.193 | 1.195 |
Differentials (m) | 0.138 | 0.203 | 0.063 | 0.002 | ||||
Thickness unevenness degree | 12.825% | 15.934% | 5.143% | 1.676% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, S.; Hu, D.; She, S.; Hong, Z.; Hu, X.; Zhou, F. Freezing Effect of Enhancing Tubes in a Freeze-Sealing Pipe Roof Method Based on the Unsteady-State Conjugate Heat Transfer Model. Buildings 2022, 12, 1373. https://doi.org/10.3390/buildings12091373
Deng S, Hu D, She S, Hong Z, Hu X, Zhou F. Freezing Effect of Enhancing Tubes in a Freeze-Sealing Pipe Roof Method Based on the Unsteady-State Conjugate Heat Transfer Model. Buildings. 2022; 12(9):1373. https://doi.org/10.3390/buildings12091373
Chicago/Turabian StyleDeng, Shengjun, Dong Hu, Siyuan She, Zequn Hong, Xiangdong Hu, and Feng Zhou. 2022. "Freezing Effect of Enhancing Tubes in a Freeze-Sealing Pipe Roof Method Based on the Unsteady-State Conjugate Heat Transfer Model" Buildings 12, no. 9: 1373. https://doi.org/10.3390/buildings12091373
APA StyleDeng, S., Hu, D., She, S., Hong, Z., Hu, X., & Zhou, F. (2022). Freezing Effect of Enhancing Tubes in a Freeze-Sealing Pipe Roof Method Based on the Unsteady-State Conjugate Heat Transfer Model. Buildings, 12(9), 1373. https://doi.org/10.3390/buildings12091373