Reality Capture in Construction Project Management: A Review of Opportunities and Challenges
Abstract
:1. Introduction
2. Research Methods
3. Results and Discussion
3.1. Annual Trend of Publications
3.2. Opportunities of RC in Construction Project Management
3.2.1. Pre-Construction Phase—Planning and Designing
Data Accuracy and Reliability
Effectiveness and Efficiency of AEC Professionals
Site Condition and Design Visualization
Reduction in Project Risk
Prevent Cost Overruns
3.2.2. Construction Phase
Data Accessibility
Site Layout Planning in Large-Scale Construction Projects
Monitoring of Site Progress
Enhanced Stakeholders Collaboration
Remote Construction Supervision and Control
Health and Safety Assessment
Project Team Communication and Data Acquisition
Enhance Assessment of Work Done and Approval for Payment
As-Built Model Visualization
RC Gives Life to Building Information Modeling (BIM)
Scheduling and Cost Monitoring
Productivity Measurement
Defect and Quality Assessment
As-Built Digital Documentation
Reduction in Variations
3.3. Challenges of Reality Capture in Construction Management
3.3.1. Higher Initial Investment Costs
3.3.2. Technical Requirement
3.3.3. Field Operational Difficulties
3.3.4. Human Capacity Building/Professional Training Requirement
3.3.5. Cultural Concerns
3.3.6. Data Security
3.3.7. Institutional Barriers
3.3.8. Sharing of Information
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almukhtar, A.; Saeed, Z.O.; Abanda, H.; Tah, J.H.M. Reality Capture of Buildings Using 3D Laser Scanners. CivilEng 2021, 2, 214–235. [Google Scholar] [CrossRef]
- Masood, K. Reality Capture (RECAP) Project Final Report Truong-An Pham; Aalto University: Espoo, Finland, 2020. [Google Scholar]
- Lecia. Reality Capture for Construction and Engineering Projects Embrace Digitalisation: Gain Information to Make Smart, Informed Decisions; Lecia: Heerbrug, Switzerland, 2018; pp. 1–17, Leica Geosystems AG, 9435 Heerbrugg, Switzerland. All rights reserved. Printed in Switzerland—2017. Leica Geosystems AG is part of Hexagon AB. 000000en—03.17. [Google Scholar]
- Mayer, J. Facts You Need to Know about 3D Reality Capture; Hexagon Geosystems Blog, Reality Capture Division; Hexagon Geosystems: Vienna, Austria, 23 August 2019. [Google Scholar]
- Fobiri, G.; Musonda, I.; Muleya, F. A Scientometric Review of Reality Capture Applications in the Built Environment. In Proceedings of the 21st International Conference on Construction Applications on Virtual Reality, Middlesbrough, UK, 8–10 December 2021; Dawood, N., Rahimian, F., Sheikhkhoshkar, M., Eds.; Teesside University Press: Middlesbrough, UK, 2021; pp. 112–124. [Google Scholar]
- Skrzypczak, I.; Oleniacz, G.; Leśniak, A.; Zima, K.; Mrówczyńska, M.; Kazak, J.K. Scan-to-BIM Method in Construction: Assessment of the 3D Buildings Model Accuracy in Terms Inventory Measurements. Build. Res. Inf. 2022, 1–22. [Google Scholar] [CrossRef]
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Ajayi, S.O.; Akinade, O.O.; Owolabi, H.A.; Alaka, H.A.; Pasha, M. Big Data in the Construction Industry: A Review of Present Status, Opportunities, and Future Trends. Adv. Eng. Inf. 2016, 30, 500–521. [Google Scholar] [CrossRef]
- Cavka, H.B.; Staub-French, S.; Poirier, E.A. Developing Owner Information Requirements for BIM-Enabled Project Delivery and Asset Management. Autom. Constr. 2017, 83, 169–183. [Google Scholar] [CrossRef]
- Wong, J.K.W.; Ge, J.; He, S.X. Digitisation in Facilities Management: A Literature Review and Future Research Directions. Autom. Constr. 2018, 92, 312–326. [Google Scholar] [CrossRef]
- Luhmann, T.; Chizhova, M.; Gorkovchuk, D. Fusion of UAV and Terrestrial Photogrammetry with Laser Scanning for 3D Reconstruction of Historic Churches in Georgia. Drones 2020, 4, 53. [Google Scholar] [CrossRef]
- Alizadehsalehi, S.; Yitmen, I. The Impact of Field Data Capturing Technologies on Automated Construction Project Progress Monitoring. Procedia Eng. 2016, 161, 97–103. [Google Scholar] [CrossRef]
- Han, K.K.; Golparvar-Fard, M. Potential of Big Visual Data and Building Information Modeling for Construction Performance Analytics: An Exploratory Study. Autom. Constr. 2017, 73, 184–198. [Google Scholar] [CrossRef]
- Liudmila, K.; Konstantin, Z.; Liudmila, K.; Current, Z.K. International Journal of Innovative Technologies in Economy Creative Commons current state and prospects of construction industry development. Int. J. Innov. Technol. Econ. 2020, 1, 1–7. [Google Scholar] [CrossRef]
- Omar, H.; Mahdjoubi, L.; Kheder, G. Towards an Automated Photogrammetry-Based Approach for Monitoring and Controlling Construction Site Activities. Comput. Ind. 2018, 98, 172–182. [Google Scholar] [CrossRef]
- Bosché, F.; Ahmed, M.; Turkan, Y.; Haas, C.T.; Haas, R. The Value of Integrating Scan-to-BIM and Scan-vs-BIM Techniques for Construction Monitoring Using Laser Scanning and BIM: The Case of Cylindrical MEP Components. Autom. Constr. 2015, 49, 201–213. [Google Scholar] [CrossRef]
- Omar, T.; Nehdi, M.L. Data Acquisition Technologies for Construction Progress Tracking. Autom. Constr. 2016, 70, 143–155. [Google Scholar] [CrossRef]
- Nath, N.D.; Behzadan, A.H. Deep Convolutional Networks for Construction Object Detection Under Different Visual Conditions. Front. Built Environ. 2020, 6, 97. [Google Scholar] [CrossRef]
- Kim, C.; Son, H.; Kim, C. Fully Automated Registration of 3D Data to a 3D CAD Model for Project Progress Monitoring. Autom. Constr. 2013, 35, 587–594. [Google Scholar] [CrossRef]
- Ali, A.K.; Lee, O.J.; Lee, D.; Park, C. Remote Indoor Construction Progress Monitoring Using Extended Reality. Sustainability 2021, 13, 2290. [Google Scholar] [CrossRef]
- Valero, E.; Forster, A.; Bosché, F.; Wilson, L.; Leslie, A. Comparison of 3D Reality Capture Technologies for the Survey of Stone Walls. In Proceedings of the 8th International Congress on Archaeology, Computer Graphics, Cultural Heritage and Innovation, Valencia, Spain, 5–7 September 2016. [Google Scholar] [CrossRef]
- Hamledari, H.; Davari, S.; Azar, E.R.; McCabe, B.; Flager, F.; Fischer, M. UAV-Enabled Site-to-BIM Automation: Aerial Robotic- and Computer Vision-Based Development of As-Built/As-Is BIMs and Quality Control. In Proceedings of the Construction Research Congress 2018: Construction Information Technology—Selected Papers from the Construction Research Congress, New Orleans, LO, USA, 2–4 April 2018; Volume 2018, pp. 336–346. [Google Scholar] [CrossRef]
- Murphy, Z.; Saripally, D.; Dhakla, S.; Trujillo, R.; Luttmann, E.; Sreekumar, A. Leveraging Advanced VDC Methods and Reality Capture to Increase the Predictability for Prefabrication. In Proceedings of the 26th Annual Conference of the International Group for Lean Construction: Evolving Lean Construction towards Mature Production Management Across Cultures and Frontiers, Cehnnai, India, 16–22 July 2018; Volume 1, pp. 101–111. [Google Scholar] [CrossRef]
- Hamledari, H.; Fischer, M. Construction Payment Automation Using Blockchain-Enabled Smart Contracts and Reality Capture Technologies. arXiv 2020, arXiv:2010.15232. [Google Scholar] [CrossRef]
- Cribbs, J. Supporting a Model for Increased Labor Time Utilization When Engaging Building Information Modeling for Prefabrication. In Proceedings of the Construction Research Congress 2020: Project Management and Controls, Materials, and Contracts, Tempe, AR, USA, 8–10 March 2020; pp. 841–850. [Google Scholar] [CrossRef]
- McHugh, K.; Koskela, L.; Tezel, A. Reality Capture Connecting Project Stakeholders. In Proceedings of the 29th Annual Conference on International Group Lean Construction, Lima, Peru, 14–16 July 2021; pp. 737–746. [Google Scholar] [CrossRef]
- Park, C.S.; Lee, D.Y.; Kwon, O.S.; Wang, X. A Framework for Proactive Construction Defect Management Using BIM, Augmented Reality and Ontology-Based Data Collection Template. Autom. Constr. 2013, 33, 61–71. [Google Scholar] [CrossRef]
- Tawfik, G.M.; Dila, K.A.S.; Mohamed, M.Y.F.; Tam, D.N.H.; Kien, N.D.; Ahmed, A.M.; Huy, N.T. A Step by Step Guide for Conducting a Systematic Review and Meta-Analysis with Simulation Data. J. Trop. Med. Health 2019, 47, 46. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef]
- Adeyinka-ojo, S. PRISMA Statement and Thematic Analysis Framework in Hospitality and Tourism; University of South Florida: Tampa, FL, USA, 2021. [Google Scholar]
- Syafizal, S.; Mohd, Z. BIM Requirements across a Construction Project Lifecycle: A PRISMA-Compliant Systematic Review and Meta-Analysis. Int. J. Innov. Creat. Chang. 2020, 12, 569–590. [Google Scholar]
- Sidani, A.; Matoseiro, F.; Duarte, J.; Baptista, J.S. Impact of BIM-Based Virtual and Augmented Reality Interfaces on Health and Safety in Construction Projects: Protocol for a Systematic Review. Int. J. Occup. Environ. Health 2018, 2, 67–74. [Google Scholar] [CrossRef]
- Charef, R.; Alaka, H.; Emmitt, S. Beyond the Third Dimension of BIM: A Systematic Review of Literature and Assessment of Professional Views. J. Build. Eng. 2018, 19, 242–257. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Desouza, K.C.; Butler, L.; Roozkhosh, F. Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature. Energies 2020, 13, 1473. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Luo, W.Z.; Shan, M.; Pan, D.W.; Mu, W.J. Systematic Analysis of PPP Research in Construction Journals: From 2009 to 2019. Eng. Constr. Archit. Manag. 2020, 27, 3309–3339. [Google Scholar] [CrossRef]
- Tober, M. PubMed, ScienceDirect, Scopus or Google Scholar—Which Is the Best Search Engine for an Effective Literature Research in Laser Medicine? Sci. Direct Med. Laser Appl. 2011, 26, 139–144. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; López-Cózar, E.D. Google Scholar, Web of Science, and Scopus: A Systematic Comparison of Citations in 252 Subject Categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef] [Green Version]
- Derbe, G.; Li, Y.; Wu, D.; Zhao, Q. Scientometric Review of Construction Project Schedule Studies: Trends, Gaps and Potential Research Areas. J. Civ. Eng. Manag. 2020, 26, 343–363. [Google Scholar] [CrossRef]
- Olanipekun, A.O.; Sutrisna, M. Facilitating Digital Transformation in Construction—A Systematic Review of the Current State of the Art. Front. Built Environ. 2021, 7, 1–21. [Google Scholar] [CrossRef]
- Vaquero, T.S.; Silva, J.R.; Beck, J.C. Post-Design Analysis for Building and Refining AI Planning Systems. Eng. Appl. Artif. Intell. 2013, 26, 1967–1979. [Google Scholar] [CrossRef]
- Tshidavhu, F.; Khatleli, N. An Assessment of the Causes of Schedule and Cost Overruns in South African Megaprojects: A Case of the Critical Energy Sector Projects of Medupi and Kusile. Acta Structilia 2020, 27, 119–143. [Google Scholar] [CrossRef]
- Faremi, J.; Ogunsanmi, O. Factors Affecting Cost and Time Control in Construction Projects. Lagos J. Environ. Stud. 2019, 8, 1–12. [Google Scholar]
- Greco, M.; Grimaldi, M.; Locatelli, G.; Serafini, M. How Does Open Innovation Enhance Productivity? An Exploration in the Construction Ecosystem. Technol. Forecast. Soc. Chang. 2021, 168, 120740. [Google Scholar] [CrossRef]
- Yang, J.B.; Chen, C.C. Causes of Budget Changes in Building Construction Projects: An Empirical Study in Taiwan. Eng. Econ. 2015, 60, 1–21. [Google Scholar] [CrossRef]
- You, Z.; Wu, C. A Framework for Data-Driven Informatization of the Construction Company. Adv. Eng. Inform. 2019, 39, 269–277. [Google Scholar] [CrossRef]
- Templin, T.; Popielarczyk, D. The Use of Low-Cost Unmanned Aerial Vehicles in the Process of Building Models for Cultural Tourism, 3D Web and Augmented/Mixed Reality Applications. Sensors 2020, 20, 5457. [Google Scholar] [CrossRef]
- Keitaanniemi, A.; Virtanen, J.; Rönnholm, P.; Kukko, A.; Rantanen, T.; Vaaja, M.T. The Combined Use of SLAM Laser Scanning and TLS for the 3D Indoor Mapping. Buildings 2021, 11, 386. [Google Scholar] [CrossRef]
- Yang, J.; Park, M.W.; Vela, P.A.; Golparvar-Fard, M. Construction Performance Monitoring via Still Images, Time-Lapse Photos, and Video Streams: Now, Tomorrow, and the Future. Adv. Eng. Inform. 2015, 29, 211–224. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Nguyen, P.T.; Do, S.T. Application of BIM and 3D Laser Scanning for Quantity Management in Construction Projects. Hindawi Adv. Civ. Eng. 2020, 2020, 8839923. [Google Scholar] [CrossRef]
- Valero, E.; Forster, A.; Bosché, F.; Hyslop, E.; Wilson, L.; Turmel, A. Automated Defect Detection and Classification in Ashlar Masonry Walls Using Machine Learning. Autom. Constr. 2019, 106, 102846. [Google Scholar] [CrossRef]
- Serrat, C.; Banaszek, S.; Cellmer, A.; Gibert, V.; Banaszek, A. UAV, Digital Processing and Vectorization Techniques Applied to Building Condition Assessment and Follow-Up. Tehnički Glas. 2017, 11, 507–513. [Google Scholar] [CrossRef]
- Cajzek, R.; Cajzek, R.; Gradnje, G.; Klanšek, U. An unmanned aerial vehicle for multi-purpose tasks in construction industry. J. Appl. Eng. Sci. 2016, 14, 314–327. [Google Scholar] [CrossRef]
- Jacob-Loyola, N.; Muñoz-La Rivera, F.; Herrera, R.F.; Atencio, E. Unmanned Aerial Vehicles (Uavs) for Physical Progress Monitoring of Construction. Sensors 2021, 21, 4227. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, C.; Song, S.; Demirkesen, S.; Chang, R. Improving Tolerance Control on Modular Construction Project with 3d Laser Scanning and Bim: A Case Study of Removable Floodwall Project. Appl. Sci. 2020, 10, 8680. [Google Scholar] [CrossRef]
- Regona, M.; Yigitcanlar, T.; Xia, B.; Li, R.Y.M. Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 45. [Google Scholar] [CrossRef]
- Haslinda, A.N.; Xian, T.W.; Norfarahayu, K.; Fikri, R.M.H.; Muhammad, H. Investigation on the Factors Influencing Construction Time and Cost Overrun for High-Rise Building Projects In Penang. IOP Conf. Ser. J. Phys. Conf. Ser. 2018, 995, 012043. [Google Scholar] [CrossRef]
- Ahiaga-Dagbui, D.D. Rethinking construction cost overruns: An Artificial Neural Network Approach to Construction Cost Estimation. CE-Cost Data 2014, 257, 1–275. [Google Scholar]
- Jeong, W.S.; Chang, S.; Son, J.W.; Yi, J.S. BIM-Integrated Construction Operation Simulation for Just-in-Time Production Management. Sustainability 2016, 8, 1106. [Google Scholar] [CrossRef]
- Sweis, G.J.; Hiari, A.; Thneibat, M.; Hiyassat, M.; Abu-Khader, W.S.; Sweis, R.J. Understanding the Causes of Material Wastage in the Construction Industry. Jordan J. Civ. Eng. 2021, 15, 180–192. [Google Scholar]
- Abobakr, A.T. Necessity of Cost Control Process (Pre- & Post—Contract Stage) in Construction Projects. Master’s Thesis, Construction and Real Estate Management, HTW Berlin—University of Applied Sciences, Berlin, Germany, Helsinki Metropolia—University of Applied Sciences, Helsinki, Finland, 2017; pp. 1–145. [Google Scholar]
- Zhao, L.; Mbachu, J.; Liu, Z. Identifying Significant Cost-Influencing Factors for Sustainable Development in Construction Industry Using Structural Equation Modelling. Math. Probl. Eng. 2020, 2020, 4810136. [Google Scholar] [CrossRef]
- Shah, R. An Exploration of Causes for Delay and Cost Overruns in Construction Projects: Case Study of Australia, Malaysia & Ghana. J. Adv. Coll. Eng. Manag. 2016, 2, 41–55. [Google Scholar]
- Hamledari, H.; Rezazadeh Azar, E.; McCabe, B. IFC-Based Development of As-Built and As-Is BIMs Using Construction and Facility Inspection Data: Site-to-BIM Data Transfer Automation. J. Comput. Civ. Eng. 2018, 32, 04017075. [Google Scholar] [CrossRef]
- Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S. Integrated Sequential As-Built and As-Planned Representation with D4AR Tools in Support of Decision-Making Tasks in the AEC/FM Industry. J. Constr. Eng. Manag. 2011, 137, 1099–1116. [Google Scholar] [CrossRef]
- Patel, T.; Guo, B.H.W.; Zou, Y. A Scientometric Review of Construction Progress Monitoring Studies. Eng. Constr. Archit. Manag. 2021, 1–30. [Google Scholar] [CrossRef]
- Chunyaem, W.; Charoensiriwath, C.; Panuwatwanich, K.; Saito, S.; Padungtin, P. Application of Artificial Intelligence to Auto-Mate Construction Materials Data Classification. In Proceedings of the Creative Construction Conference, Budapest, Hungary, 29 June–2 July 2019. [Google Scholar]
- Amusan, L.M.; Aigbavboa, C.; Fayomi, O.S.; Owolabi, J.D. Lean Thinking and Industrial 4.0 Approach to Achieving Construction 4.0 for Industrialization and Technological Development. Buildings 2020, 20, 221. [Google Scholar]
- Hammad, A.W.A.; da Costa, B.B.F.; Soares, C.A.P.; Haddad, A.N. The Use of Unmanned Aerial Vehicles for Dynamic Site Layout Planning in Large-Scale Construction Projects. Buildings 2021, 11, 602. [Google Scholar] [CrossRef]
- Xu, J.; Cheung, C.; Manu, P.; Ejohwomu, O. Safety Leading Indicators in Construction: A Systematic Review. Saf. Sci. 2021, 139, 105250. [Google Scholar] [CrossRef]
- Bureau of Labor Statistics. US Department Of Labor, Occupational Outlook Handbook, 2016–2017; Bureau of Labor Statistic: Washington, DC, USA, 2016.
- Winge, S.; Albrechtsen, E.; Mostue, B.A. Causal Factors and Connections in Construction Accidents. Science 2019, 112, 130–141. [Google Scholar] [CrossRef]
- Zhang, C.; Arditi, D. Advanced Progress Control of Infrastructure Construction Projects Using Terrestrial Laser Scanning Technology. Infrastructures 2020, 5, 83. [Google Scholar] [CrossRef]
- Duarte-Vidal, L.; Herrera, R.F.; Atencio, E.; Muñoz-La Rivera, F. Interoperability of Digital Tools for the Monitoring and Control of Construction Projects. Appl. Sci. 2021, 11, 370. [Google Scholar] [CrossRef]
- Puri, N.; Turkan, Y. Bridge Construction Progress Monitoring Using Lidar and 4D Design Models. Autom. Constr. 2020, 109, 102961. [Google Scholar] [CrossRef]
- Braun, A.; Tuttas, S.; Borrmann, A.; Stilla, U. A Concept for Automated Construction Progress Monitoring Using BIM-Based Geometric Constraints and Photogrammetric Point Clouds. J. Inf. Technol. Constr. 2015, 20, 68–79. [Google Scholar]
- Mahami, H.; Nasirzadeh, F.; Ahmadabadian, A.H.; Nahavandi, S. Automated Progress Controlling and Monitoring Using Daily Site Images and Building Information Modelling. Buildings 2019, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Pučko, Z.; Šuman, N.; Rebolj, D. Automated Continuous Construction Progress Monitoring Using Multiple Workplace Real Time 3D Scans. Adv. Eng. Inform. 2018, 38, 27–40. [Google Scholar] [CrossRef]
- Rahimian, F.; Seyedzadeh, S.; Oliver, S.; Rodriguez, S.; Dawood, N. On-Demand Monitoring of Construction Projects through a Game-like Hybrid Application of BIM and Machine Learning. Autom. Constr. 2020, 110, 3012. [Google Scholar] [CrossRef]
- Cao, Y.; Li, H.; Su, L. Decision-Making for Project Delivery System with Related-Indicators Based on Pythagorean Fuzzy Weighted Muirhead Mean Operator. Infrastructures 2020, 11, 451. [Google Scholar] [CrossRef]
- Czerniawski, T.; Leite, F. Automated Digital Modeling of Existing Buildings: A Review of Visual Object Recognition Methods. Autom. Constr. 2020, 113, 103131. [Google Scholar] [CrossRef]
- Diara, F.; Rinaudo, F. Ark-Bim: Open-Source Cloud-Based Hbim Platform for Archaeology. Appl. Sci. 2021, 11, 8770. [Google Scholar] [CrossRef]
- Manzoor, B.; Othman, I.; Kang, J.M.; Geem, Z.W. Influence of Building Information Modeling (BIM) Implementation in High-Rise Buildings towards Sustainability. Appl. Sci. 2021, 11, 7626. [Google Scholar] [CrossRef]
- Mixajlovna, T.V.; Nikolaevich, P.A.; Yurievich, I.M.; Yurievich, A.V. Integral Monitoring of High-Rise Buildings While Minimizing the Number of Sensors. J. Appl. Eng. Sci. 2020, 18, 649–664. [Google Scholar] [CrossRef]
- Zhang, S.; Sulankivi, K.; Kiviniemi, M.; Romo, I.; Eastman, C.M.; Teizer, J. BIM-Based Fall Hazard Identification and Prevention in Construction Safety Planning. Saf. Sci. 2015, 72, 31–45. [Google Scholar] [CrossRef]
- Manzoor, B.; Othman, I.; Pomares, J.C.; Chong, H.Y. A Research Framework of Mitigating Construction Accidents in High-Rise Building Projects via Integrating Building Information Modeling with Emerging Digital Technologies. Appl. Sci. 2021, 11, 8359. [Google Scholar] [CrossRef]
- Ziernicki, R.M.; Nguyen, R. Forensic Engineering Analysis of Fatal Overhead Crane Accident. J. Natl. Acad. Forensic Eng. 2020, 37, 123–130. [Google Scholar] [CrossRef]
- Perrier, N.; Bled, A.; Bourgault, M.; Cousin, N.; Danjou, C.; Pellerin, R.; Roland, T. Construction 4.0: A Survey of Research Trends. J. Inf. Technol. Constr. 2020, 25, 416–437. [Google Scholar] [CrossRef]
- Haupt, T.C.; Akinlolu, M.; Raliile, M.T. Applications of Digital Technologies for Health and Safety Management in Construction. In Proceedings of the 8th World Construction Symposium, Colombo, Sri Lanka, 8–10 November 2019; Sandanayake, Y.G., Gunatilake, S., Waidyasekara, A., Eds.; 2019; pp. 88–97. [Google Scholar] [CrossRef]
- Pejoska, J.; Bauters, M.; Purma, J.; Leinonen, T. Social Augmented Reality: Enhancing Context-Dependent Communication and Informal Learning at Work. Br. J. Educ. Technol. 2016, 47, 474–483. [Google Scholar] [CrossRef]
- Womble, J.A.; Wood, R.L.; Smith, D.A.; Louden, E.I.; Mohammadi, M.E. Reality Capture for Tornado Damage to Structures. ASCE Struct. Congr. 2017, 2017, 134–144. [Google Scholar]
- Chalhoub, J.; Ayer, S.K.; McCord, K.H. Augmented Reality to Enable Users to Identify Deviations for Model Reconciliation. Buildings 2021, 11, 77. [Google Scholar] [CrossRef]
- Wang, L.; Huang, M.; Zhang, X.; Jin, R.; Yang, T. Review of BIM Adoption in the Higher Education of AEC Disciplines. J. Civ. Eng. Educ. 2020, 146, 06020001. [Google Scholar] [CrossRef]
- Perera, S.; Nanayakkara, S.; Rodrigo, M.N.N.; Senaratne, S.; Weinand, R. Blockchain Technology: Is It Hype or Real in the Construction Industry? J. Ind. Inf. Integr. 2020, 17, 100125. [Google Scholar] [CrossRef]
- Nguyen, A.C.; Weinand, Y. Displacement Study of a Large-Scale Freeform Timber Plate Structure Using a Total Station and a Terrestrial Laser Scanner. Sensors 2020, 20, 413. [Google Scholar] [CrossRef]
- Rubio, J.M.; Martín, J.J.F.; Alonso, J.I.S.J. Implementation of 3D Scanner Anddigital Photogrammetry in the Documentation Process of La MercedChurch, Panama. EGA Rev. Expr. Graf. Arquit. 2018, 23, 208–219. [Google Scholar] [CrossRef]
- Chacón, R.; Puig-Polo, C.; Real, E. TLS Measurements of Initial Imperfections of Steel Frames for Structural Analysis within BIM-Enabled Platforms. Autom. Constr. 2021, 125, 3168. [Google Scholar] [CrossRef]
- Rashdi, R.; Martínez-Sánchez, J.; Arias, P.; Qiu, Z. Scanning Technologies to Building Information Modelling: A Review. Infrastructures 2022, 7, 49. [Google Scholar] [CrossRef]
- Hergunsel, M.F. Benefits of Building Information Modeling. Master’s Thesis, Faulty of Worcester Polytechnic Institute, Worcester, MA, USA, 2011; pp. 1–95, unpublished. [Google Scholar]
- Machado, R.L.; Vilela, C. Conceptual Framework for Integrating Bim and Augmented Reality in Construction Management. J. Civ. Eng. Manag. 2020, 26, 83–94. [Google Scholar] [CrossRef]
- Hui, S. New Opportunities of Using Building Information Modelling (BIM) for Green Buildings. In Proceedings of the15th Asia Pacific Conference, Kaohsiung, Taiwan, 18–19 October 2019. [Google Scholar]
- Bugler, M.; Borrmann, A.; Ogunmakin, G.; Vela, P.A.; Teizer, J. Fusion of Photogrammetry and Video Analysis for Productivity Assessment of Earthwork Processes. Comput. Civ. Infrastruct. Eng. Fusion 2017, 32, 107–123. [Google Scholar] [CrossRef]
- Lichtenberg, S. Successful Control of Major Project Budgets. Adm. Sci. 2016, 6, 8. [Google Scholar] [CrossRef]
- Bariczová, G.; Erdélyi, J.; Honti, R.; Tomek, L. Wall Structure Geometry Verification Using Tls Data and Bim Model. Appl. Sci. 2021, 11, 1804. [Google Scholar] [CrossRef]
- Wang, M.; Wang, C.C.; Zlatanova, S.; Sepasgozar, S. Onsite Quality Check for Installation of Prefabricated Wall Panels Using Laser Scanning. Buildings 2021, 11, 412. [Google Scholar] [CrossRef]
- Ock, J. Applied Sciences Testing As-Built Quality of Free-Form Panels: Lessons Learned from a Case Study and Mock-up Panel Tests. Appl. Sci. 2021, 11, 1439. [Google Scholar] [CrossRef]
- Rausch, C.; Lu, R.; Talebi, S.; Haas, C. Deploying 3D Scanning Based Geometric Digital Twins during Fabrication and Assembly in Offsite Manufacturing. Int. J. Constr. Manag. 2021, 1–40. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, Z.; You, Y. Application Research of Earth Volume Calculation Based on 3D Laser Point Cloud Data. IOP Conf. Ser. Mater. Sci. Eng. 2020, 780, 1–6. [Google Scholar] [CrossRef]
- Kalyan, T.S.; Zadeh, P.A.; Staub-french, S.; Froese, T.M. Construction Quality Assessment Using 3D As-Built Models Generated with Project Tango. Procedia Eng. 2016, 145, 1416–1423. [Google Scholar] [CrossRef]
- Znobishchev, S.; Shamraeva, V. Practical Use of Bim Modeling for Road Infrastructure Facilities. Archit. Eng. 2019, 4, 49–54. [Google Scholar] [CrossRef]
- Julge, K.; Ellmann, A.; Köök, R. Unmanned Aerial Vehicle Surveying for Monitoring Road Construction Earthworks. Balt. J. Road Bridg. Eng. 2019, 14, 1–17. [Google Scholar] [CrossRef]
- Cacciari, P.P.; Futai, M.M. Modeling a Shallow Rock Tunnel Using Terrestrial Laser Scanning and Discrete Fracture Networks. Rock Mechnical Rock Eng. 2017, 50, 1217–1242. [Google Scholar] [CrossRef]
- Han, Y.; Sun, H.; Zhong, R. Three-Dimensional Linear Restoration of a Tunnel Based on Measured Track and Uncontrolled Mobile Laser Scanning. Sensors 2021, 21, 3851. [Google Scholar] [CrossRef]
- Tsilimantou, E.; Delegou, E.T.; Nikitakos, I.A.; Ioannidis, C.; Moropoulou, A. GIS and BIM as Integrated Digital Environments for Modeling and Monitoring of Historic Buildings. Appl. Sci. 2020, 10, 1078. [Google Scholar] [CrossRef]
- Noruwa, B.I.; Arewa, A.; Merschbrock, C. Effects of Emerging Technologies in Minimising Variations in Construction Projects in the UK. Int. J. Constr. Manag. 2020, 22, 2199–2206. [Google Scholar] [CrossRef]
- Bigham, G.F.; Adamtey, S.; Onsarigo, L.; Jha, N. Artificial Intelligence for Construction Safety: Mitigation of the Risk of Fall. Adv. Intell. Syst. Comput. 2018, 869, 1024–1037. [Google Scholar] [CrossRef]
- Wu, C.; Yuan, Y.; Tang, Y.; Tian, B. Application of Terrestrial Laser Scanning (Tls) in the Architecture, Engineering and Construction (Aec) Industry. Sensors 2022, 22, 265. [Google Scholar] [CrossRef]
- Melo, A.G.; Pinto, M.F.; Honório, L.M.; Dias, F.M.; Masson, J.E.N. 3D Correspondence and Point Projection Method for Structures Deformation Analysis. IEEE Access 2020, 8, 177823–177836. [Google Scholar] [CrossRef]
- Hu, J.; Liu, E.; Yu, J. Application of Structural Deformation Monitoring Based on Close-Range Photogrammetry Technology. Adv. Civ. Eng. 2021, 2021, 1440. [Google Scholar] [CrossRef]
- Raja, D. Virtual Reality Opportunities and Challenges. Int. J. Res. Appl. Sci. Eng. Technol. 2019, 7, 1765–1774. [Google Scholar] [CrossRef]
- Aryan, A.; Bosché, F.; Tang, P. Planning for Terrestrial Laser Scanning in Construction: A Review. Autom. Constr. 2021, 125, 3551. [Google Scholar] [CrossRef]
- Tkáč, M. How and Where to Use Technology of Laser Scanning and Aerial Photogrammetry for Building Purposes—Case Study. IOP Conf. Ser. Mater. Sci. Eng. 2019, 566, 33. [Google Scholar] [CrossRef]
- Adjei, K.O.; Aigbavboa, C.O.; Thwala, W. The Challenges of Cost Control Practice in the Construction Industry: A Literature Review. Int. Conf. Appl. Sci. Technol. 2017, 2020, 14–24. [Google Scholar]
- Nagendra, S.; Rafi, N. Application of Artificial Intelligence in Construction Management. Int. J. Res. Eng. Sci. Manag. 2018, 1, 1–3. [Google Scholar]
- Pan, Y.; Zhang, L. Roles of Artificial Intelligence in Construction Engineering and Management: A Critical Review and Future Trends. Autom. Constr. 2021, 122, 103517. [Google Scholar] [CrossRef]
- Afzal, F.; Yunfei, S.; Nazir, M.; Bhatti, S.M. A Review of Artificial Intelligence-Based Risk Assessment Methods for Capturing Complexity-Risk Interdependencies. Int. J. Manag. Proj. Bus. 2019, 14, 300–328. [Google Scholar] [CrossRef]
- O’Brien, W.J. Fiatech: The Next Generation of the Capital Projects Technology Roadmap. J. Constr. Eng. Manag. 2017, 143, 02517003. [Google Scholar] [CrossRef]
Reality Capture in Construction Project Management | ||
---|---|---|
Stages | Opportunities | References |
Pre-Construction Phase—Planning and Designing | Data accuracy and reliability | [3,4,5,13,44,45,46] |
Effectiveness and Efficiency of AEC Professionals | [3,47,48,49,50,51] | |
Site Condition and Design Visualization | [23,52,53,54,55] | |
Reduction in Project Risk | [56,57,58] | |
Prevent Cost Overruns | [27,41,58,59,60,61,62,63] | |
Construction Phase | Data Accessibility | [3,49,64,65,66,67,68] |
Site layout planning in large-scale construction projects | [15,69,70,71,72] | |
Monitoring of Site Progress | [3,11,15,54,74,75,76,77,78,79] | |
Enhanced Stakeholders Collaboration | [26,55,80,81,82,83] | |
Remote Construction Supervision and Control | [26,54] | |
Health and Safety Assessment | [72,84,85,88,89] | |
Project Team Communication and Data Acquisition | [2,17,26,65,90,91] | |
Enhance Assessment of Work Done and Approval for Payment | [41,50,92,93,94] | |
As-built Model Visualization | [47,52,54,95,96,97] | |
RC Gives Life to Building Information Modeling (BIM) | [3,4,13,59,98,99,100,101,102] | |
Scheduling and Cost Monitoring | [26,54,56] | |
Productivity Measurement | [103] | |
Defect and Quality Assessment | [55,64,92,104,105,106,107,108,109,110] | |
As-built Digital Documentation | [23,107,111,112,113,114,115] | |
Reduction in Variations | [116] | |
Challenges | ||
Pre-Construction and Construction Phase | Higher Initial Investment Costs | [48,54,77,110,112] |
Technical Requirement | [23,92,101,119,120,121] | |
Field operational difficulties | [48,53,100,122,123] | |
Human Capacity Building/Professional Training Requirement | [55,87,110] | |
Cultural Concerns | [51,56,121,122,123] | |
Data Security | [124] | |
Institutional Barriers | [23,87,119] | |
Sharing of Information | [56,125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fobiri, G.; Musonda, I.; Muleya, F. Reality Capture in Construction Project Management: A Review of Opportunities and Challenges. Buildings 2022, 12, 1381. https://doi.org/10.3390/buildings12091381
Fobiri G, Musonda I, Muleya F. Reality Capture in Construction Project Management: A Review of Opportunities and Challenges. Buildings. 2022; 12(9):1381. https://doi.org/10.3390/buildings12091381
Chicago/Turabian StyleFobiri, Godfred, Innocent Musonda, and Franco Muleya. 2022. "Reality Capture in Construction Project Management: A Review of Opportunities and Challenges" Buildings 12, no. 9: 1381. https://doi.org/10.3390/buildings12091381
APA StyleFobiri, G., Musonda, I., & Muleya, F. (2022). Reality Capture in Construction Project Management: A Review of Opportunities and Challenges. Buildings, 12(9), 1381. https://doi.org/10.3390/buildings12091381