Monitoring Axial Force Development in a Super-Long Pile during Construction Using BOFDA and Data Interpretation Approaches: A Case Study
Abstract
:1. Introduction
2. Monitoring of Pile Axial Force during Construction
2.1. Engineering Project
2.2. Sensors and Installation
2.3. Measurement Results
3. The Approach for the Interpretation of Measured Data
3.1. Methodology
3.2. Interpretation of Measured Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoang, L.T.; Matsumoto, T. Long-term behavior of piled raft foundation models supported by jacked-in piles on saturated clay. Soils Found. 2020, 60, 198–217. [Google Scholar] [CrossRef]
- Mohanty, P.; Dutta, S.; Bhattacharya, S. Proposed mechanism for mid-span failure of pile supported river bridges during seismic liquefaction. Soil Dynam. Earthq. Eng. 2017, 102, 41–45. [Google Scholar] [CrossRef]
- McVay, M.; Casper, R.; Shang, T. Lateral response of three-row groups in loose to dense sands at 3D and 5D pile spacing. J. Geotech. Eng. 1995, 121, 436–441. [Google Scholar] [CrossRef]
- McVay, M.; Shang, T.; Casper, R. Centrifuge testing of fixed head laterally loaded battered and plumb pile groups in sand. Geotech. Test. J. 1996, 19, 41–50. [Google Scholar]
- McVay, M.; Zhang, L.; Molnit, T.; Lai, P. Centrifuge testing of large laterally loaded pile groups in sands. J. Geotech. Geoenviron. Eng. 1998, 124, 1019–1026. [Google Scholar] [CrossRef]
- Patra, N.R.; Pise, P.J. Ultimate lateral resistance of pile groups in sand. J. Geotech. Geoenviron. Eng. 2001, 127, 481–487. [Google Scholar] [CrossRef]
- Chandrasekaran, S.S.; Boominathan, A.; Dodagoudar, G.R. Group interaction effects on laterally loaded piles in clay. J. Geotech. Geoenviron. Eng. 2010, 136, 573–582. [Google Scholar] [CrossRef]
- Zhuang, X.; Zong, Z.; Huang, Y.; Wang, P. Analysis of the Installation Effect on the Axial Performance of Pressure-Grouted Helical Piles in Clay by Small-Scale Model Tests. Buildings 2022, 12, 992. [Google Scholar] [CrossRef]
- McVay, M.; Bloomquist, D.; Vanderlaine, D.; Clausen, J. Centrifuge modeling of laterally loaded pile group in sand. Geotech. Test. J. 1994, 17, 29–137. [Google Scholar]
- Rao, S.N.; Ramakrishna VG, S.T.; Rao, M.B. Influence of rigidity on laterally loaded pile groups in marine clay. J. Geotech. Geoenviron. Eng. 1998, 124, 542–549. [Google Scholar] [CrossRef]
- Su, D. Resistance of Short, Stiff Piles to Multidirectional Lateral Loadings. Geotech. Test. J. 2012, 35, 313–329. [Google Scholar]
- Cooke, R.W. Piled raft foundations on stiff clays—A contribution to design philosophy. Geotechnique 1986, 36, 169–203. [Google Scholar] [CrossRef]
- Mandal, S.; Sengupta, S. Experimental investigation of eccentrically loaded piled raft resting on soft cohesive soil. Indian Geotech. J. 2017, 47, 314–325. [Google Scholar] [CrossRef]
- Rodrıguez, E.; Cunha, R.P.; Caicedo, B. Behaviour of piled raft foundation systems in soft soil with consolidation process. Proc. of the 9th Int. Conf. Phys. Model. Geotech. 2018, 2, 1407–1411. [Google Scholar]
- Matlock, H.; Ingmar, W.B.; Kelley, A.E.; Bogard, D. Field Tests of Lateral Load Behavior of Pile Groups in Soft Clay. Proc. Twelfth Annu. Offshore Technol. Conf. OTC 3871 Houst. Tex. 1980, 1204, 577–594. [Google Scholar]
- Brown, D.A.; Reese, L.C. Lateral load behavior of pile group in sand. J. Geotech. Eng. ASCE 1988, 114, 1261–1276. [Google Scholar] [CrossRef]
- Brown, D.A.; Reese, L.C.; O’Neill, M.W. Cyclic lateral loading of a large-scale pile group. J. Geotech. Eng. ASCE 1987, 103, 1326–1343. [Google Scholar] [CrossRef]
- Rollins, K.M.; Peterson, K.T.; Weaver, T.J. Lateral load behavior of full-scale pile group in clay. J. Geotech. Eng. ASCE 1998, 124, 468–478. [Google Scholar] [CrossRef]
- Rollins, K.M.; Olsen, R.J.; Elbert, J.J.; Jensen, D.H.; Olsen, K.G.; Garrett, B.H. Pile spacing effects on lateral pile group behavior: Load tests. J. Geotech. Geoenviron. Eng. 2006, 132, 1262–1271. [Google Scholar] [CrossRef]
- Sales, M.M.; Small, J.C.; Poulos, H.G. Compensated piled rafts in clayey soils: Behaviour, measurements, and predictions. Can. Geotech. J. 2010, 47, 327–345. [Google Scholar] [CrossRef]
- Tang, Y.J.; Pei, J.; Zhao, X.H. Design and measurement of piled-raft foundations. Proc. Inst. Civ. Eng. Geotech. Eng. 2014, 167, 461–475. [Google Scholar] [CrossRef]
- Zou, X.; Zhao, M. Axial bearing behavior of super-long piles in deep soft clay over stiff layers. J. Cent. South Univ. 2013, 20, 2008–2016. [Google Scholar] [CrossRef]
- Wang, X.; Que, Y.; Wang, K.; Diao, H.; Cui, Y.; Li, Q. A field test scrutiny on bearing mechanism of super-long bored piles in deep fine silty sand layers. Mar. Georesour. Geotec. 2021. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q.; Zhang, Q.; Li, L. Field and Theoretical study of the response of super-long bored pile subjected to compressive Load. Mar. Georesour. Geotec. 2016, 34, 71–78. [Google Scholar] [CrossRef]
- Feng, S.; Lu, S.; Shi, Z. Field Investigations of Two Super-long Steel Pipe Piles in Offshore Areas. Mar. Georesour. Geotec. 2016, 34, 559–570. [Google Scholar] [CrossRef]
- Randolph, M.F. The responses of flexible piles to lateral loading. Géotechnique 1981, 31, 247–259. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, H. Seismic response of clay-pile-raft-superstructure systems subjected to far-field ground motions. Soil Dynam. Earthq. Eng. 2017, 101, 209–224. [Google Scholar] [CrossRef]
- Banerjee, S.; Goh, S.; Lee, F. Earthquake-induced bending moment in fixed-head piles in soft clay. Geotechnique 2014, 64, 431–446. [Google Scholar] [CrossRef]
- Su, D.; Li, J.H. Three-dimensional finite element study of a single pile response to multidirectional lateral loadings incorporating the simplified state-dependent dilatancy model. Comput. Geotech. 2013, 50, 129–142. [Google Scholar] [CrossRef]
- Matlock, H. Correlations for design of laterally loaded piles in soft clay. In Proceedings of the 2nd Offshore Technology Conference, Houston, TX, USA, 22–24 April 1970; pp. 577–594. [Google Scholar]
- Su, D.; Yan, W.M. Relationship between p-multiplier and force ratio at pile head considering nonlinear soil-pile interaction. Géotechnique 2019, 69, 1019–1025. [Google Scholar] [CrossRef]
- Roy, J.; Kumar, A.; Choudhury, D. Natural frequencies of piled raft foundation including superstructure effect. Soil Dynam. Earthq. Eng. 2018, 112, 69–75. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, L.; Guo, Z.; Liu, J.; Rui, S. A novel t-z model to predict the pile responses under axial cyclic loadings. Comput. Geotech. 2019, 112, 120–134. [Google Scholar] [CrossRef]
- Zhou, W.; Guo, Z.; Wang, L.; Li, J.; Rui, S. Simplified t-z models for estimating the frequency and inclination of jacket supported offshore wind turbines. Comput. Geotech. 2021, 132, 103959. [Google Scholar] [CrossRef]
- Bao, X.; Chen, L. Recent progress in distributed fiber optic sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef]
- Gao, L.; Shi, B.; Zhu, Y.; Wang, K.; Sun, Y.; Tang, C. A distributed soil temperature measurement system with high spatial resolution based on BOTDR. Opt. Appl. 2011, 3, 607–616. [Google Scholar]
- Pei, H.F.; Yin, J.H.; Zhu, H.H.; Hong, C.Y.; Jin, W.; Xu, D.S. Monitoring of lateral displacements of a slope using a series of special fiber Bragg grating-based in-place inclinometers. Meas. Sci. Technol. 2012, 23, 025007. [Google Scholar] [CrossRef]
- Zhu, H.H.; Shi, B.; Yan, J.F.; Zhang, J.; Wang, J. Investigation of the evolutionary process of a reinforced model slope using a fiber-optic monitoring network. Eng. Geol. 2015, 186, 34–43. [Google Scholar] [CrossRef]
- Lei, G.; Kai, Y.; Chen, X.; Yu, X. Study on the deformation measurement of the cast-in-place large-diameter pile using fiber bragg grating sensors. Sensors 2017, 17, 505. [Google Scholar]
- Liu, Y.; Li, H.; Wang, Y.L.; Men, W.Q.; Xu, Q.E. Damage detection of tunnel based on the high-density cross-sectional curvature obtained using strain data from BOTDA sensors. Mech. Syst. Signal. Process. 2021, 158, 1077281-10. [Google Scholar]
- Gao, L.; Cao, Y.; Liu, H.L.; Zhao, Z.X.; Ye, Y.F.; Fan, C.J.; Tu, W.J. Experiment and numerical study on the monitoring of super long cast-in-place pile temperature based on BOTDR technology. Measurement 2021, 179, 109481. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Xiong, Z.M. Crack detection of reinforced concrete structures based on BOFDA and FBG sensors. Shock. Vib. 2018, 2018, 6563537. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, A.A.; Cao, B.L.; Yang, J.; Hu, L.C.; Li, Y.L. An experimental study on monitoring the phreatic line of an embankment dam based on temperature detection by OFDR. Opt. Fiber. Technol. 2021, 63, 102510. [Google Scholar] [CrossRef]
- Zhang, D.; Cui, H.; Shi, B. Spatial resolution of DOFS and its calibration methods. Opt. Lasers Eng. 2013, 51, 335–340. [Google Scholar] [CrossRef]
- Gao, L.; Gong, Y.H.; Liu, H.L.; Ji, B.Q.; Xuan, Y.N.; Ma, Y. Experiment and Numerical Study on Deformation Measurement of Cast-in-Place Concrete Large-Diameter Pipe Pile Using Optical Frequency Domain Reflectometer Technology. Appl. Sci. 2018, 8, 1450. [Google Scholar] [CrossRef]
- Liu, Q.S.; Wang, J.T.; Xiao, L.G.; Li, J.C.; Liu, B.; Zhang, X.L. The application of OFDR optical fiber sensing technology in the physical model test of cross rock pillar excavation method. J. Rock Mech. Eng. 2017, 36, 1063–1075. [Google Scholar] [CrossRef]
- Wei, C.; Deng, Q.; Yin, Y.; Yan, M.; Lu, M.; Deng, K. A Machine Learning Study on Internal Force Characteristics of the Anti-Slide Pile Based on the DOFS-BOTDA Monitoring Technology. Sensors 2022, 22, 2085. [Google Scholar] [CrossRef]
Soil | Unit Weight, γ (kN/m3) | Compression Modulus, Es (MPa) | Friction Angle, φ (°) | Cohesion, c (kPa) |
---|---|---|---|---|
Gravelly clayey soil | 19.0 | 8 | 25 | 22 |
Completely weathered granite | 20.0 | 12 | 28 | 25 |
Earthy strongly weathered granite | 21.0 | 16 | 30 | 28 |
Fragmentary strongly weathered granite | 22.0 | / | 33 | 28 |
Moderately weathered granite | 23.0 | / | / | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Ma, D.; Su, D.; Rao, S.; Wang, W.; Hong, C. Monitoring Axial Force Development in a Super-Long Pile during Construction Using BOFDA and Data Interpretation Approaches: A Case Study. Buildings 2022, 12, 1462. https://doi.org/10.3390/buildings12091462
Li D, Ma D, Su D, Rao S, Wang W, Hong C. Monitoring Axial Force Development in a Super-Long Pile during Construction Using BOFDA and Data Interpretation Approaches: A Case Study. Buildings. 2022; 12(9):1462. https://doi.org/10.3390/buildings12091462
Chicago/Turabian StyleLi, Dongning, Deshan Ma, Dong Su, Shaohua Rao, Wenbin Wang, and Chengyu Hong. 2022. "Monitoring Axial Force Development in a Super-Long Pile during Construction Using BOFDA and Data Interpretation Approaches: A Case Study" Buildings 12, no. 9: 1462. https://doi.org/10.3390/buildings12091462
APA StyleLi, D., Ma, D., Su, D., Rao, S., Wang, W., & Hong, C. (2022). Monitoring Axial Force Development in a Super-Long Pile during Construction Using BOFDA and Data Interpretation Approaches: A Case Study. Buildings, 12(9), 1462. https://doi.org/10.3390/buildings12091462