Confined Spaces in Buildings with High Indoor Radon Concentration: A Case Study Analysis with the Application of Constructive Remediation Measures
Abstract
:1. Introduction
2. Materials and methods
2.1. Framework
2.2. Monitoring and Data Acquisition
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2008—Report to the General Assembly with Scientific Annexes: Sources and Effects of Ionizing Radiation; United Nations Scientific Committee on the Effects of Atomic Radiation: New York, NY, USA, 2010. [Google Scholar]
- Stoulos, S.; Manolopoulou, M.; Papastefanou, C. Assessment of Natural Radiation Exposure and Radon Exhalation from Building Materials in Greece. J. Environ. Radioact. 2003, 69, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Protection against Radon-222 at Home and at Work. A Report of a Task Group of the International Commission on Radiological Protection. Ann. ICRP 1993, 23, 1–45.
- Nazaroff, W.W. Radon Transport from Soil to Air. Rev. Geophys. 1992, 30, 137–160. [Google Scholar] [CrossRef]
- Samet, J.M.; Eradze, G.R. Radon and Lung Cancer Risk: Taking Stock at the Millenium. Environ. Health Perspect. 2000, 108, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Al-Zoughool, M.; Krewski, D. Health Effects of Radon: A Review of the Literature. Int. J. Radiat. Biol. 2009, 85, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Darby, S.; Hill, D.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; et al. Radon in Homes and Risk of Lung Cancer: Collaborative Analysis of Individual Data from 13 European Case-Control Studies. BMJ 2005, 330, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, E.J.; Rademacher, K.; Wiggins, A.; Rayens, M.K. Personalized Report-Back to Renters on Radon and Tobacco Smoke Exposure. J. Environ. Health 2018, 80, 8–14. [Google Scholar]
- Lemjabbar-Alaoui, H.; Hassan, O.U.I.; Yang, Y.W.; Buchanan, P. Lung Cancer: Biology and Treatment Options. Biochim. Biophys. Acta Rev. Cancer 2015, 1856, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Krewski, D.; Lubin, J.H.; Zielinski, J.M.; Alavanja, M.; Catalan, V.S.; Field, R.W.; Klotz, J.B.; Létourneau, E.G.; Lynch, C.F.; Lyon, J.I.; et al. Residential Radon and Risk of Lung Cancer: A Combined Analysis of 7 North American Case-Control Studies. Epidemiology 2005, 16, 137–145. [Google Scholar] [CrossRef]
- Alberg, A.J.; Ford, J.G.; Samet, J.M. Epidemiology of Lung Cancer: ACCP Evidence-Based Clinical Practice Guidelines (2nd Edition). Chest 2007, 132, 29S–55S. [Google Scholar] [CrossRef]
- Subramanian, J.; Govindan, R. Lung Cancer in Never Smokers: A Review. J. Clin. Oncol. 2007, 25, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Baltrenas, P.; Grubliauskas, R.; Danila, V. Seasonal Variation of Indoor Radon Concentration Levels in Different Premises of a University Building. Sustainability 2020, 12, 6174. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, J.; Kaur, B. Performance Study of Some Reverse Osmosis Systems for Removal of Uranium and Total Dissolved Solids in Underground Waters of Punjab State, India. J. Adv. Phys. 2014, 4, 123–132. [Google Scholar] [CrossRef]
- Yang, S.; Pernot, J.G.; Jörin, C.H.; Niculita-Hirzel, H.; Perret, V.; Licina, D. Energy, Indoor Air Quality, Occupant Behavior, Self-Reported Symptoms and Satisfaction in Energy-Efficient Dwellings in Switzerland. Build. Environ. 2020, 171, 106618. [Google Scholar] [CrossRef]
- WHO. WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009.
- Bossew, P.; Cinelli, G.; Ciotoli, G.; Crowley, Q.G.; de Cort, M.; Medina, J.E.; Gruber, V.; Petermann, E.; Tollefsen, T. Development of a Geogenic Radon Hazard Index—Concept, History, Experiences. Int. J. Environ. Res. Public Health 2020, 17, 4134. [Google Scholar] [CrossRef]
- Tracy, B.L.; Krewski, D.; Chen, J.; Zielinski, J.M.; Brand, K.P.; Meyerhof, D. Assessment and management of residential radon health risks: A report from the health Canada radon workshop. J. Toxicol. Environ. Health Part A 2006, 69, 735–758. [Google Scholar] [CrossRef]
- Figueiredo, A.; Ferreira, C.; Ulisses, P.; Márquez-Medina, D. Lung Cancer Overview. In Fighting Lung Cancer with Conventional Therapies; Nova Science Publishers, Inc.: New York, NY, USA, 2015. [Google Scholar]
- Lugg, A.; Probert, D. Indoor Radon Gas: A Potential Health Hazard Resulting from Implementing Energy-Efficiency Measures. Appl. Energy 1997, 56, 93–196. [Google Scholar] [CrossRef]
- Ahmad, N.; Uddin, Z.; Rehman, J.U.; Bakhsh, M.; Ullah, H. Evaluation of Radon Concentration and Heavy Metals in Drinking Water and Their Health Implications to the Population of Quetta, Balochistan, Pakistan. Int. J. Environ. Anal. Chem. 2020, 100, 32–41. [Google Scholar] [CrossRef]
- Royse, K.R. The Handling of Hazard Data on a National Scale: A Case Study from the British Geological Survey. Surv. Geophys. 2011, 32, 753–776. [Google Scholar] [CrossRef]
- Fisk, W.J.; Singer, B.C.; Chan, W.R. Association of Residential Energy Efficiency Retrofits with Indoor Environmental Quality, Comfort, and Health: A Review of Empirical Data. Build. Environ. 2020, 180, 107067. [Google Scholar] [CrossRef]
- Moore, W.S. Fifteen Years Experience in Measuring 224Ra and 223Ra by Delayed-Coincidence Counting. Mar. Chem. 2008, 109, 188–197. [Google Scholar] [CrossRef]
- Adelikhah, M.; Shahrokhi, A.; Imani, M.; Chalupnik, S.; Kovács, T. Radiological Assessment of Indoor Radon and Thoron Concentrations and Indoor Radon Map of Dwellings in Mashhad, Iran. Int. J. Environ. Res. Public Health 2021, 18, 141. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, C. Retrospective Determination of Radon in Houses. Nature 1988, 334, 338–340. [Google Scholar] [CrossRef] [PubMed]
- Sabbarese, C.; Ambrosino, F.; D’Onofrio, A. Development of Radon Transport Model in Different Types of Dwellings to Assess Indoor Activity Concentration. J. Environ. Radioact. 2021, 227, 106501. [Google Scholar] [CrossRef] [PubMed]
- Paridaens, J.; de Saint-Georges, L.; Vanmarcke, H. Mitigation of a Radon-Rich Belgian Dwelling Using Active Subslab Depressurization. J. Environ. Radioact. 2005, 79, 25–37. [Google Scholar] [CrossRef]
- Géczi, G.; Benécs, J.; Kristóf, K.; Horváth, M. High Concentrations of Radon and Carbon Dioxide in Energy-Efficient Family Houses without Heat Recovery Ventilation. J. Environ. Eng. Landsc. Manag. 2018, 26, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Yuan, H.; Kearfott, K. A Model Comparison of Diffusion-Controlled Radon Exhalation from Solid and Cavity Walls with Application to High Background Radiation Areas. Environ. Sci. Pollut. Res. 2020, 27, 43389–43395. [Google Scholar] [CrossRef]
- Frutos-Puerto, S.; Pinilla-Gil, E.; Andrade, E.; Reis, M.; Madruga, M.J.; Rodríguez, C.M. Radon and Thoron Exhalation Rate, Emanation Factor and Radioactivity Risks of Building Materials of the Iberian Peninsula. PeerJ 2020, 8, e10331. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, C.M.; Kang, D.R. A Deterministic Model for Estimating Indoor Radon Concentrations in South Korea. Int. J. Environ. Res. Public Health 2019, 16, 3424. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Ward, I.C. Modelling Multiple Radon Entry and Transport in a Domestic Dwelling. Build. Environ. 1997, 32, 341–350. [Google Scholar] [CrossRef]
- Wang, F.; Ward, I.C. Multiple Radon Entry Modeling in a House with a Cellar. J. Air Waste Manag. Assoc. 1999, 49, 682–693. [Google Scholar] [CrossRef] [Green Version]
- Mehdipour, L.A.; Mortazavi, S.M.J.; Saion, E.B.; Mozdarani, H.; Aziz, S.A.; Kamari, H.M.; Faghihi, R.; Mehdizadeh, S.; Kardan, M.R.; Mortazavi, A.; et al. Natural Ventilation Considerations for Radon Prone Areas of Ramsar. Int. J. Radiat. Res. 2014, 12, 69–74. [Google Scholar]
- Henschel, D.B. Analysis of Radon Mitigation Techniques Used in Existing Us Houses. Radiat. Prot. Dosim. 1994, 56, 21–27. [Google Scholar] [CrossRef]
- Groves-Kirkby, C.J.; Denman, A.R.; Phillips, P.S.; Crockett, R.G.M.; Woolridge, A.C.; Tornberg, R. Radon Mitigation in Domestic Properties and Its Health Implications-a Comparison between during-Construction and Post-Construction Radon Reduction. Environ. Int. 2006, 32, 435–443. [Google Scholar] [CrossRef]
- Khan, S.M.; Gomes, J.; Krewski, D.R. Radon Interventions around the Globe: A Systematic Review. Heliyon 2019, 5, e01737. [Google Scholar] [CrossRef] [Green Version]
- Valin, I.; Rodrigues, A.C.; Brito, L. Miguel De Mosteiro a Escola: ESA IPVC 35o Aniversário; Oficina das Edições: Ponte de Lima, Portugal, 2021. [Google Scholar]
- Carta Geológica De Portugal, Escala 1/200000—Notícia Explicativa Da Folha 1; Pereira, E. (Ed.) Serviços Geológicos de Portugal: Lisbon, Portugal, 1993. [Google Scholar]
- Valdbjørn Rasmussen, T.; Cornelius, T. Use of Radon Barriers to Reach an Acceptable Radon Level. In Proceedings of the E3S Web of Conferences, Tallinn, Estonia, 6–9 September 2020; Volume 172. [Google Scholar]
- Jelle, B.P.; Noreng, K.; Erichsen, T.H.; Strand, T. Implementation of Radon Barriers, Model Development and Calculation of Radon Concentration in Indoor Air. J. Build. Phys. 2011, 34, 195–222. [Google Scholar] [CrossRef]
Rn sampling | Passive diffusion chamber |
Detection method | Alpha spectrometry |
Detector | 1 silicon photodiode |
Diffusion time constant | 25 min |
Measurement range | 0–50,000 Bq.m−3 |
Sampling rate | 1 h |
Operation environment | 4 °C to 40 °C 5% RH to 85% RH non-condensing 50 kPa to 110 kPa |
Temperature | 0.336 °C resolution, ±1 °C accuracy |
Humidity | 0.5% RH resolution, ±4.5% accuracy |
Barometric pressure | 0.01 kPa resolution, ±1 kPa accuracy |
Monitoring Period | 13 March 2019–13 June 2019 |
No. of measurements | 2181 |
Average value | 6479.6 Bq·m−3 |
Standard deviation | 3900.8 Bq·m−3 |
Max. value | 18,737.7 Bq·m−3 |
Min. value | 134.2 Bq·m−3 |
Elongation | 19% |
Tear resistance | 405 N |
Water vapor transmission | 0.03 g·m−2·d−1 |
Color tone | Red (top side) and black (underside) |
Thickness | 0.35 mm |
Monitoring Period | 3 September 2019–3 September 2019 |
No. of measurements | 2181 |
Average value | 634.4 Bq·m−3 |
Standard deviation | 475.0 Bq·m−3 |
Max. value | 3407.4 Bq·m−3 |
Min. value | 21.7 Bq·m−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, L.J.R.; Curado, A. Confined Spaces in Buildings with High Indoor Radon Concentration: A Case Study Analysis with the Application of Constructive Remediation Measures. Buildings 2023, 13, 49. https://doi.org/10.3390/buildings13010049
Nunes LJR, Curado A. Confined Spaces in Buildings with High Indoor Radon Concentration: A Case Study Analysis with the Application of Constructive Remediation Measures. Buildings. 2023; 13(1):49. https://doi.org/10.3390/buildings13010049
Chicago/Turabian StyleNunes, Leonel J. R., and António Curado. 2023. "Confined Spaces in Buildings with High Indoor Radon Concentration: A Case Study Analysis with the Application of Constructive Remediation Measures" Buildings 13, no. 1: 49. https://doi.org/10.3390/buildings13010049
APA StyleNunes, L. J. R., & Curado, A. (2023). Confined Spaces in Buildings with High Indoor Radon Concentration: A Case Study Analysis with the Application of Constructive Remediation Measures. Buildings, 13(1), 49. https://doi.org/10.3390/buildings13010049