A Hybrid Residential Short-Term Load Forecasting Method Using Attention Mechanism and Deep Learning
Abstract
:1. Introduction
- •
- Considering that individual data loss may still occur due to various conditions, we propose the T-nearest neighbors (TNN) algorithm to solve the problem of missing values, which can estimate the missing load according to the load data of adjacent similar days.
- •
- We propose a hybrid short-term residential electricity load forecasting model (DCNN-LSTM-AE-AM). This proposed model focuses on the trend tracking of oscillating data, which can be captured with almost no delay, and provides a technical basis for predicting power failures in advance. Compared with other methods, DCNN-LSTM-AE-AM can capture the valley load data, which improves the prediction accuracy.
- •
- The proposed DCNN-LSTM-AE-AM model is validated on two real-world datasets and compared with the existing methods. Experimental results show that this model improves the prediction results and has a good generalization.
2. Related Work
3. Model Architecture of Residential Short-Term Load Forecasting
3.1. Data Processing
3.2. Dilated Convolutional Neural Network
3.3. LSTM-Based Autoencoder
3.3.1. Long Short-Term Memory Network
3.3.2. Bidirectional Long Short-Term Memory Network
3.3.3. Autoencoder
3.3.4. Attention Mechanism
4. Experiment Results and Analysis
4.1. Experiment Settings
4.1.1. Dataset Selection
4.1.2. Experiment Setup
4.1.3. Evaluation Metric
4.2. Influence of Hyperparameters
4.3. Influence of Time Step
4.4. Performance Evaluation on IHEPC Dataset
4.5. Performance Evaluation on SGSC Dataset
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jacob, M.; Neves, C.; Vukadinović Greetham, D. Forecasting and Assessing Risk of Individual Electricity Peaks; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Hernandez, L.; Baladron, C.; Aguiar, J.M.; Carro, B.; Sanchez-Esguevillas, A.J.; Lloret, J.; Massana, J. A survey on electric power demand forecasting: Future trends in smart grids, microgrids and smart buildings. IEEE Commun. Surv. Tutor. 2014, 16, 1460–1495. [Google Scholar] [CrossRef]
- Ghofrani, M.; Hassanzadeh, M.; Etezadi-Amoli, M.; Fadali, M.S. Smart meter based short-term load forecasting for residential customers. In Proceedings of the 2011 North American Power Symposium, Boston, MA, USA, 4–6 August 2011; pp. 1–5. [Google Scholar]
- Ullah, I.; Ahmad, R.; Kim, D. A prediction mechanism of energy consumption in residential buildings using hidden markov model. Energies 2018, 11, 358. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Tong, L.I. Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming. Knowl.-Based Syst. 2011, 24, 66–72. [Google Scholar] [CrossRef]
- Aguilar Madrid, E.; Antonio, N. Short-term electricity load forecasting with machine learning. Information 2021, 12, 50. [Google Scholar] [CrossRef]
- Fumo, N.; Biswas, M.R. Regression analysis for prediction of residential energy consumption. Renew. Sustain. Energy Rev. 2015, 47, 332–343. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 2017, 10, 841–851. [Google Scholar] [CrossRef]
- Ahmad, A.S.; Hassan, M.Y.; Abdullah, M.P.; Rahman, H.A.; Hussin, F.; Abdullah, H.; Saidur, R. A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energy Rev. 2014, 33, 102–109. [Google Scholar] [CrossRef]
- Arik, S.Ö.; Pfister, T. Tabnet: Attentive interpretable tabular learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 2–9 February 2021; Volume 35, pp. 6679–6687. [Google Scholar]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Taylor, J.W. Short-term load forecasting with exponentially weighted methods. IEEE Trans. Power Syst. 2011, 27, 458–464. [Google Scholar] [CrossRef]
- Hammad, M.A.; Jereb, B.; Rosi, B.; Dragan, D. Methods and models for electric load forecasting: A comprehensive review. Logist. Supply Chain Sustain. Glob. Chall. 2020, 11, 51–76. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Song, Z. A comparative study of the data-driven day-ahead hourly provincial load forecasting methods: From classical data mining to deep learning. Renew. Sustain. Energy Rev. 2020, 119, 109632. [Google Scholar] [CrossRef]
- Panda, S.K.; Ray, P.; Salkuti, S.R. A Review on Short-Term Load Forecasting Using Different Techniques. In Recent Advances in Power Systems; Springer: Singapore, 2022; pp. 433–454. [Google Scholar]
- Vanting, N.B.; Ma, Z.; Jørgensen, B.N. A scoping review of deep neural networks for electric load forecasting. Energy Inform. 2021, 4, 49. [Google Scholar] [CrossRef]
- Haben, S.; Arora, S.; Giasemidis, G.; Voss, M.; Greetham, D.V. Review of low voltage load forecasting: Methods, applications, and recommendations. Appl. Energy 2021, 304, 117798. [Google Scholar] [CrossRef]
- He, H.; Liu, T.; Chen, R.; Xiao, Y.; Yang, J. High frequency short-term demand forecasting model for distribution power grid based on ARIMA. In Proceedings of the 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), Zhangjiajie, China, 25–27 May 2012; Volume 3, pp. 293–297. [Google Scholar]
- Cao, X.; Dong, S.; Wu, Z.; Jing, Y. A data-driven hybrid optimization model for short-term residential load forecasting. In Proceedings of the 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, UK, 26–28 October 2015; pp. 283–287. [Google Scholar]
- Cai, H.; Shen, S.; Lin, Q.; Li, X.; Xiao, H. Predicting the energy consumption of residential buildings for regional electricity supply-side and demand-side management. IEEE Access 2019, 7, 30386–30397. [Google Scholar] [CrossRef]
- Mohammadi, M.; Talebpour, F.; Safaee, E.; Ghadimi, N.; Abedinia, O. Small-scale building load forecast based on hybrid forecast engine. Neural Process. Lett. 2018, 48, 329–351. [Google Scholar] [CrossRef]
- Chauhan, M.; Gupta, S.; Sandhu, M. Short-Term Electric Load Forecasting Using Support Vector Machines. ECS Trans. 2022, 107, 9731. [Google Scholar] [CrossRef]
- Massaoudi, M.; Refaat, S.S.; Chihi, I.; Trabelsi, M.; Oueslati, F.S.; Abu-Rub, H. A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for short-term load forecasting. Energy 2021, 214, 118874. [Google Scholar] [CrossRef]
- Lee, K.; Cha, Y.; Park, J. Short-term load forecasting using an artificial neural network. IEEE Trans. Power Syst. 1992, 7, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Bisht, B.S.; Holmukhe, R.M. Electricity load forecasting by artificial neural network model using weather data. IJEET Trans. Power Syst. 2013, 4, 91–99. [Google Scholar]
- Kuo, P.H.; Huang, C.J. A high precision artificial neural networks model for short-term energy load forecasting. Energies 2018, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 60, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Chen, K.; Wang, Q.; He, Z.; Hu, J.; He, J. Short-term load forecasting with deep residual networks. IEEE Trans. Smart Grid 2018, 10, 3943–3952. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Li, C.; Zheng, F.; Wang, C. Improved deep belief network for short-term load forecasting considering demand-side management. IEEE Trans. Power Syst. 2019, 35, 1531–1538. [Google Scholar] [CrossRef]
- Dong, Y.; Dong, Z.; Zhao, T.; Li, Z.; Ding, Z. Short term load forecasting with markovian switching distributed deep belief networks. Int. J. Electr. Power Energy Syst. 2021, 130, 106942. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, B.; Xu, Y.; Xu, T.; Liu, C.; Zhu, Z. Multi-scale convolutional neural network with time-cognition for multi-step short-term load forecasting. IEEE Access 2019, 7, 88058–88071. [Google Scholar] [CrossRef]
- Aouad, M.; Hajj, H.; Shaban, K.; Jabr, R.A.; El-Hajj, W. A CNN-Sequence-to-Sequence network with attention for residential short-term load forecasting. Electr. Power Syst. Res. 2022, 211, 108152. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, X.; Wang, Y. Short-time multi-energy load forecasting method based on CNN-Seq2Seq model with attention mechanism. Mach. Learn. Appl. 2021, 5, 100064. [Google Scholar] [CrossRef]
- Amarasinghe, K.; Marino, D.L.; Manic, M. Deep neural networks for energy load forecasting. In Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 1483–1488. [Google Scholar]
- UCI. Individual Household Electric Power Consumption Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption (accessed on 4 March 2020).
- Sadaei, H.J.; e Silva, P.C.d.L.; Guimarães, F.G.; Lee, M.H. Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series. Energy 2019, 175, 365–377. [Google Scholar] [CrossRef]
- Rahman, A.; Srikumar, V.; Smith, A.D. Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks. Appl. Energy 2018, 212, 372–385. [Google Scholar] [CrossRef]
- Li, D.; Sun, G.; Miao, S.; Gu, Y.; Zhang, Y.; He, S. A short-term electric load forecast method based on improved sequence-to-sequence GRU with adaptive temporal dependence. Int. J. Electr. Power Energy Syst. 2022, 137, 107627. [Google Scholar] [CrossRef]
- Shi, H.; Xu, M.; Li, R. Deep learning for household load forecasting—A novel pooling deep RNN. IEEE Trans. Smart Grid 2017, 9, 5271–5280. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, X.; Li, W.; Wang, L.; Yin, X.; Jia, L. Hybrid multitask multi-information fusion deep learning for household short-term load forecasting. IEEE Trans. Smart Grid 2021, 12, 5362–5372. [Google Scholar] [CrossRef]
- Yue, W.; Liu, Q.; Ruan, Y.; Qian, F.; Meng, H. A prediction approach with mode decomposition-recombination technique for short-term load forecasting. Sustain. Cities Soc. 2022, 85, 104034. [Google Scholar] [CrossRef]
- Lin, J.; Ma, J.; Zhu, J.; Cui, Y. Short-term load forecasting based on LSTM networks considering attention mechanism. Int. J. Electr. Power Energy Syst. 2022, 137, 107818. [Google Scholar] [CrossRef]
- Wei, N.; Yin, L.; Li, C.; Wang, W.; Qiao, W.; Li, C.; Zeng, F.; Fu, L. Short-term load forecasting using detrend singular spectrum fluctuation analysis. Energy 2022, 256, 124722. [Google Scholar] [CrossRef]
- Laouafi, A.; Laouafi, F.; Boukelia, T.E. An adaptive hybrid ensemble with pattern similarity analysis and error correction for short-term load forecasting. Appl. Energy 2022, 322, 119525. [Google Scholar] [CrossRef]
- Khan, N.; Haq, I.U.; Khan, S.U.; Rho, S.; Lee, M.Y.; Baik, S.W. DB-Net: A novel dilated CNN based multi-step forecasting model for power consumption in integrated local energy systems. Int. J. Electr. Power Energy Syst. 2021, 133, 107023. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Bai, S.; Kolter, J.Z.; Koltun, V. Convolutional sequence modeling revisited. In Proceedings of the 2018 International Conference of Learning Representation Workshop, Vancouver, BC, Canada, 30 April–3 May 2018; Available online: https://openreview.net/forum?id=BJEX-H1Pf (accessed on 26 June 2022).
- Graves, A.; Fernández, S.; Schmidhuber, J. Bidirectional LSTM networks for improved phoneme classification and recognition. In Proceedings of the International Conference on Artificial Neural Networks, Warsaw, Poland, 11–15 September 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 799–804. [Google Scholar]
- Jia, M.; Huang, J.; Pang, L.; Zhao, Q. Analysis and research on stock price of LSTM and bidirectional LSTM neural network. In Proceedings of the 3rd International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2019), Chongqing, China, 30–31 May 2019; Atlantis Press: Paris, France, 2019; pp. 467–473. [Google Scholar]
- Wang, T.; Lai, C.S.; Ng, W.W.; Pan, K.; Zhang, M.; Vaccaro, A.; Lai, L.L. Deep autoencoder with localized stochastic sensitivity for short-term load forecasting. Int. J. Electr. Power Energy Syst. 2021, 130, 106954. [Google Scholar] [CrossRef]
- Smart-Grid Smart-City Customer Trial Data. Available online: https://data.gov.au/data/dataset/smart-grid-smart-city-customer-trial-data (accessed on 26 June 2022).
- Khan, Z.A.; Hussain, T.; Ullah, A.; Rho, S.; Lee, M.; Baik, S.W. Towards efficient electricity forecasting in residential and commercial buildings: A novel hybrid CNN with a LSTM-AE based framework. Sensors 2020, 20, 1399. [Google Scholar] [CrossRef] [PubMed]
Variable | Description |
---|---|
Data | Recorded date |
Time | Current moment |
Global active power | Sum of active power per minute |
Global reactive power | Sum of reactive power per minute |
Voltage | Voltage per minute |
Global intensity | Sum of current per minute |
Sub metering1 | Power used by kitchen per minute |
Sub metering2 | Power used by room per minute |
Sub metering3 | Power used by bathroom per minute |
Network | Hyperparameters |
---|---|
1D-Conv | The convolution kernel size is 3, the number of filters is 12, the dilation rate is 2, and the activation function is ReLU |
1D-Conv | The convolution kernel size is 3, the number of filters is 24, the dilation rate is 2, and the activation function is ReLU |
1D-SpatialDropout | 0.1 |
BiLSTM | 32 units |
BiLSTM | 32 units |
LSTM | 32 units |
LSTM | 32 units |
1D-SpatialDropout | 0.2 |
Attention | 32 units |
Dense | 96 units |
Dense | 32 units |
Dense | 1 unit |
Length | MSE | RMSE | MAE | MAPE |
---|---|---|---|---|
6 | 0.00434 | 0.0659 | 0.0351 | 0.7599 |
8 | 0.00420 | 0.0648 | 0.0332 | 0.8521 |
10 | 0.00418 | 0.0647 | 0.0344 | 0.7662 |
12 | 0.00411 | 0.0641 | 0.0331 | 0.6175 |
14 | 0.00415 | 0.0644 | 0.0334 | 0.6757 |
16 | 0.00426 | 0.0653 | 0.0338 | 0.7421 |
18 | 0.00444 | 0.0666 | 0.0348 | 0.7952 |
20 | 0.00450 | 0.0671 | 0.0357 | 0.7853 |
22 | 0.00458 | 0.0677 | 0.0366 | 0.8322 |
24 | 0.00446 | 0.0668 | 0.0370 | 0.8964 |
Method | Resolution | MSE | RMSE | MAE | MAPE |
---|---|---|---|---|---|
XGBoost | 15 min | 0.0463 | 0.2152 | 0.1541 | 0.8683 |
1 h | 0.0410 | 0.2025 | 0.1120 | 0.7268 | |
DCNN | 15 min | 0.0403 | 0.2007 | 0.1192 | 0.6869 |
1 h | 0.0412 | 0.2030 | 0.1132 | 0.7284 | |
LSTM | 15 min | 0.0491 | 0.2216 | 0.1263 | 1.0384 |
1 h | 0.0548 | 0.2341 | 0.1356 | 1.4831 | |
AM | 15 min | 0.0663 | 0.2575 | 0.1228 | 1.4286 |
1 h | 0.0687 | 0.2621 | 0.1346 | 1.3788 | |
LSTM-AE | 15 min | 0.0179 | 0.1338 | 0.0855 | 0.7863 |
1 h | 0.0232 | 0.1523 | 0.0878 | 0.8265 | |
CNN-LSTM | 15 min | 0.0158 | 0.1257 | 0.0712 | 0.6930 |
1 h | 0.0197 | 0.1403 | 0.0997 | 0.7556 | |
DCNN-AM | 15 min | 0.0081 | 0.0900 | 0.0452 | 0.6938 |
1 h | 0.0091 | 0.0954 | 0.0466 | 0.7028 | |
DCNN-LSTM-AE | 15 min | 0.0222 | 0.1490 | 0.0709 | 0.7380 |
1 h | 0.0295 | 0.1718 | 0.0823 | 0.7428 | |
LSTM-AE-AM | 15 min | 0.0043 | 0.0656 | 0.0378 | 0.6854 |
1 h | 0.0095 | 0.0975 | 0.0682 | 0.7530 | |
DCNN-LSTM-AE-AM | 15 min | 0.0041 | 0.0640 | 0.0333 | 0.6757 |
1 h | 0.0086 | 0.0927 | 0.0667 | 0.7257 |
Method | Resolution | MSE | RMSE | MAE | MAPE |
---|---|---|---|---|---|
XGBoost | 30 min | 0.0456 | 0.2135 | 0.1203 | 0.9298 |
1 h | 0.0403 | 0.2007 | 0.0980 | 0.8296 | |
DCNN | 30 min | 0.0433 | 0.2081 | 0.1329 | 0.6796 |
1 h | 0.0465 | 0.2156 | 0.1366 | 0.7862 | |
LSTM | 30 min | 0.0483 | 0.2198 | 0.1298 | 1.1001 |
1 h | 0.0522 | 0.2285 | 0.1401 | 1.5131 | |
AM | 30 min | 0.0652 | 0.2553 | 0.1893 | 1.6235 |
1 h | 0.0689 | 0.2625 | 0.2006 | 1.7692 | |
LSTM-AE | 30 min | 0.0166 | 0.1288 | 0.0799 | 0.7567 |
1 h | 0.0218 | 0.1476 | 0.0762 | 0.7992 | |
CNN-LSTM | 30 min | 0.0142 | 0.1192 | 0.0804 | 0.6728 |
1 h | 0.0182 | 0.1349 | 0.0991 | 0.7256 | |
DCNN-AM | 30 min | 0.0083 | 0.0911 | 0.0489 | 0.6118 |
1 h | 0.0089 | 0.0943 | 0.0496 | 0.6412 | |
DCNN-LSTM-AE | 30 min | 0.0242 | 0.1556 | 0.0756 | 0.7128 |
1 h | 0.0289 | 0.1700 | 0.0862 | 0.7196 | |
LSTM-AE-AM | 30 min | 0.0048 | 0.0693 | 0.0384 | 0.6203 |
1 h | 0.0056 | 0.0748 | 0.0696 | 0.6495 | |
DCNN-LSTM-AE-AM | 30 min | 0.0041 | 0.0640 | 0.0329 | 0.5901 |
1 h | 0.0081 | 0.0900 | 0.0657 | 0.6336 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, X.; Huang, H.; Chen, D.; Yin, K.; Zuo, Y.; Chen, Z.; Bai, R. A Hybrid Residential Short-Term Load Forecasting Method Using Attention Mechanism and Deep Learning. Buildings 2023, 13, 72. https://doi.org/10.3390/buildings13010072
Ji X, Huang H, Chen D, Yin K, Zuo Y, Chen Z, Bai R. A Hybrid Residential Short-Term Load Forecasting Method Using Attention Mechanism and Deep Learning. Buildings. 2023; 13(1):72. https://doi.org/10.3390/buildings13010072
Chicago/Turabian StyleJi, Xinhui, Huijie Huang, Dongsheng Chen, Kangning Yin, Yi Zuo, Zhenping Chen, and Rui Bai. 2023. "A Hybrid Residential Short-Term Load Forecasting Method Using Attention Mechanism and Deep Learning" Buildings 13, no. 1: 72. https://doi.org/10.3390/buildings13010072
APA StyleJi, X., Huang, H., Chen, D., Yin, K., Zuo, Y., Chen, Z., & Bai, R. (2023). A Hybrid Residential Short-Term Load Forecasting Method Using Attention Mechanism and Deep Learning. Buildings, 13(1), 72. https://doi.org/10.3390/buildings13010072