Rewelding Residual Stress of Fatigue Crack at U-Rib-to-Deck of an Orthotropic Steel Deck
Abstract
:1. Introduction
2. Rewelding Repair Method
3. Finite Element Analysis of Rewelding Residual Stress
3.1. Geometric Model and Material Parameters
3.2. Finite Element Heat Source Model
3.3. Initial Welding Stress Field
3.4. Boundary Conditions of Rewelding
4. Results and Discussion
4.1. Rewelding Temperature Field
4.2. Rewelding Residual Stress
4.3. Influence of Boundary Constraints
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.D.; Ji, B.H.; Fu, Z.Q.; Ye, Z. Effect of crack-closure treatment on fatigue durability of cracked rib-to-deck welded joints in steel bridge decks. J. Cent. South Univ. 2019, 26, 2554–2568. [Google Scholar] [CrossRef]
- Liu, L.; Sun, J.; Chen, W.; Sun, P. Modified Layer-Removal Method for Measurement of Residual Stress in Pre-stretched Aluminium Alloy Plate. J. Harbin Inst. Technol. 2015, 22, 34–40. [Google Scholar]
- Krebs, J.; Kassner, M. Influence of welding residual stresses on fatigue design of welded joints and components. Weld. World 2007, 51, 54–68. [Google Scholar] [CrossRef]
- Zhang, Z.N.; Zhang, Y.C. Effects of welding residual stresses on the stability capacity of the monosymmetric I-beams. J. Harbin Inst. Technol. 2007, 39, 1864–1868. [Google Scholar]
- Wang, Q.; Ji, B.; Li, C.; Zhongqiu, F. Fatigue evaluation of rib-deck welds: Crack-propagation-life predictive model and parametric analysis. J. Constr. Steel Res. 2020, 173, 106248. [Google Scholar] [CrossRef]
- Yong, Z.; Yu, Q.; Anbang, G. Large sectional fatigue experiment of the orthotropic steel deck from a box-girder suspension bridge. J. Harbin Inst. Technol. 2016, 48, 95–100. [Google Scholar]
- Aljabar, N.J.; Zhao, X.L.; Al-Mahaidi, R.; Ghafoori, E.; Motavalli, M.; Powers, N. Effect of crack orientation on fatigue behavior of CFRP-strengthened steel plates. Compos. Struct. 2016, 152, 295–305. [Google Scholar] [CrossRef]
- Zhong-Qiu, F.U.; Bo-Hai, J.I.; Shu-Hui, X.; Liu, T.-J. Crack stop holes in steel bridge decks: Drilling method and effects. J. Cent. South Univ. 2017, 24, 2372–2381. [Google Scholar]
- Yuan, Y.; Wu, C.; Jiang, X. Experimental study on the fatigue behavior of the orthotropic steel deck rehabilitated by UHPC overlay. J. Constr. Steel Res. 2019, 157, 1–9. [Google Scholar] [CrossRef]
- Kim, Y.J.; Harries, K.A. Fatigue behavior of damaged steel beams repaired with CFRP strips. Eng. Struct. 2011, 33, 1491–1502. [Google Scholar] [CrossRef]
- Ishikawa, T.; Shimizu, M.; Tomo, H.; Kawano, H.; Yamada, K. Effect of compression overload on fatigue strength improvedby ICR treatment. Int. J. Steel Struct. 2013, 13, 175–181. [Google Scholar] [CrossRef]
- Kuhlmann, U.; Bove, S.; Hubmann, M. Instandsetzung und Verstärkung von Stahlbrücken mit Kategorie-2-Schäden. Stahlbau 2017, 86, 574–586. [Google Scholar] [CrossRef]
- Stranghöner, N.; Lorenz, C.; Friedrich, H. Instandsetzung und Verstärkung von Stahlbrücken mit Kategorie-1-Schäden. Stahlbau 2017, 86, 562–573. [Google Scholar] [CrossRef]
- Freitas, S.T.; Kolstein, H.; Bijlaard, F. Fatigue behavior of bonded and sandwich systems for strengthening orthotropic bridge decks. Compos. Struct. 2013, 97, 117–128. [Google Scholar] [CrossRef]
- Puymbroeck, E.V.; Staen, G.V.; Iqbal, N.; De Backer, H. Residual weld stresses in stiffener-to-deck plate weld of an orthotropic steel deck. J. Constr. Steel Res. 2019, 159, 534–547. [Google Scholar] [CrossRef]
- Chen, S.J.; Yang, K.C. Inelastic behavior of orthotropic steel deck stiffened by U-shaped stiffeners. Thin-Walled Struct. 2002, 40, 537–553. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, Z.; Shen, X.; Briseghella, B. Test study on residual stress distribution of hybrid steel u-rib stiffened plates. J. Constr. Steel Res. 2016, 121, 261–267. [Google Scholar] [CrossRef]
- Kainuma, S.; Jeong, Y.S.; Yang, M.; Inokuchi, S. Welding residual stress in roots between deck plate and U-rib in orthotropic steel decks. Measurement 2016, 92, 475–482. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, C.; Chen, Z.Y.; He, J.; Xin, H. The Evolution of Residual Stress in Rib-Diaphragm Joints of Orthotropic Steel Decks Subjected to Thermal Cutting and Welding. Materials 2020, 13, 3804. [Google Scholar] [CrossRef]
- Gu, Y.; Li, Y.; Zhou, Z.; Ren, S.; Kong, C. Numerical Simulation and Measurement of Welding Residual Stresses in Orthotropic Steel Decks Stiffened with U-Shaped Ribs. Int. J. Steel Struct. 2020, 20, 856–869. [Google Scholar] [CrossRef]
- Dong, P.; Hong, J.K.; Bouchard, P.J. Analysis of residual stresses at weld repairs. Int. J. Press. Vessel. Pip. 2005, 82, 258–269. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, Y.; Wang, P.; Qian, H. Residual Stress Redistribution Analysis in the Repair Welding of AA6082-T6 Aluminum Alloy Joints: Experiment and Simulation. Materials 2022, 15, 6399. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Luo, Y.; Zeng, Q.; Wang, J.; Tu, S.T. Residual stresses evolution during strip clad welding, post welding heat treatment and repair welding for a large pressure vessel. Int. J. Press. Vessel. Pip. 2021, 189, 104259. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, Q.; Ji, B.; Yuanzhou, Z. Rewelding repair effects on fatigue cracks in steel bridge deck welds. J. Perform. Constr. Facil. 2017, 31, 04017094. [Google Scholar] [CrossRef]
- Edwards, L.; Bouchard, P.J.; Dutta, M.; Wang, D.Q.; Santisteban, J.R.; Hiller, S.; Fitzpatrick, M.E. Direct measurement of the residual stresses near a ‘boat-shaped’ repair in a 20 mm thick stainless steel tube butt weld. Int. J. Press. Vessel. Pip. 2005, 82, 288–298. [Google Scholar] [CrossRef]
- Leggatt, R.H. Residual stresses in welded structures. Int. J. Press. Vessel. Pip. 2008, 85, 144–151. [Google Scholar] [CrossRef]
- Bouchard, P.J.; George, D.; Santisteban, J.R.; Bruno, G.; Dutta, M.; Edwards, L.; Kingston, E.; Smith, D.J. Measurement of the residual stresses in a stainless steel pipe girth weld containing long and short repairs. Int. J. Press. Vessel. Pip. 2005, 82, 299–310. [Google Scholar] [CrossRef]
- CEN, DAFT ENV 1993; Eurocode 3: Design of Steel Structure. European Committee for Standardization: Brussels, Belgium, 1995.
- Goldak, J.; Chakravarti, A.; Bibby, M. A new finite element model for welding heat sources. Metall. Trans. B 1984, 15, 299–305. [Google Scholar] [CrossRef]
- Glickstein, S.S.; Friedman, E. Characterization and modeling of the heat source. In ASM Handbook; ASM International: Almere, The Netherlands, 1994; pp. 6710–6736. [Google Scholar]
- Shahani, A.R.; Shakeri, I.; Rans, C.D. Effect of residual stress redistribution and weld reinforcement geometry on fatigue crack growth of butt welded joints. Int. J. Fatigue 2020, 139, 105780. [Google Scholar] [CrossRef]
- Wang, F.; Lyu, Z.D.; Zhao, Z.; Chen, Q.-K.; Mei, H.-L. Experimental and numerical study on welding residual stress of U-rib stiffened plates. J. Constr. Steel Res. 2020, 175, 106362. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Ma, Y.; Cui, C.; Chai, X.Y.; Han, S.H. Experimental investigation and numerical simulation on welding residual stress of innovative double-side welded rib-to-deck joints of orthotropic steel decks. J. Constr. Steel Res. 2021, 179, 106544. [Google Scholar] [CrossRef]
T/°C | Mechanical Properties of Q345D Steel | |||
---|---|---|---|---|
Yield Stress f/MPa | Elastic Modulus E/GPa | Poisson’s Ratio ν | Coefficient of Thermal Expansion α | |
0 | 345.0 | 202 | 0.28 | 11.0 |
400 | 224.3 | 202 | 0.30 | 13.38 |
500 | 182.9 | 258 | 0.31 | -- |
600 | 103.5 | 95 | 0.32 | 13.39 |
700 | 44.9 | 46 | 0.35 | -- |
800 | 24.2 | 22 | 0.36 | -- |
900 | 17.3 | 23 | 0.37 | -- |
1000 | 10.4 | 8 | 0.38 | -- |
1100 | 6.9 | 4 | 0.39 | -- |
1200 | 0.0 | 0 | 0.40 | 20.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Song, S.-J.; Zhou, L.-Q.; Zhang, P.-Y.; Xu, Z.-B. Rewelding Residual Stress of Fatigue Crack at U-Rib-to-Deck of an Orthotropic Steel Deck. Buildings 2023, 13, 2515. https://doi.org/10.3390/buildings13102515
Qian J, Song S-J, Zhou L-Q, Zhang P-Y, Xu Z-B. Rewelding Residual Stress of Fatigue Crack at U-Rib-to-Deck of an Orthotropic Steel Deck. Buildings. 2023; 13(10):2515. https://doi.org/10.3390/buildings13102515
Chicago/Turabian StyleQian, Ji, Shi-Jie Song, Lin-Qiang Zhou, Pei-Yun Zhang, and Zhen-Bo Xu. 2023. "Rewelding Residual Stress of Fatigue Crack at U-Rib-to-Deck of an Orthotropic Steel Deck" Buildings 13, no. 10: 2515. https://doi.org/10.3390/buildings13102515
APA StyleQian, J., Song, S. -J., Zhou, L. -Q., Zhang, P. -Y., & Xu, Z. -B. (2023). Rewelding Residual Stress of Fatigue Crack at U-Rib-to-Deck of an Orthotropic Steel Deck. Buildings, 13(10), 2515. https://doi.org/10.3390/buildings13102515