Experimental Investigation on Interfacial Defect Detection for SCCS with Different Contact NDT Technical
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Influence of the Air Content Entrained into the Properties of Fresh Concrete
3.1.1. Density
3.1.2. Consistency (Slump Test)
3.2. Microstructural Analysis—Micro-CT
4. Conclusions
- The air content of concrete with entrained air was directly proportional to the admixture ratios used.
- The density and consistency of the concrete with entrained air in the fresh state were directly proportional to the air entrained in the concrete.
- Computerized X-ray microtomography, Micro-CT, allowed for the three-dimensional microstructural analysis of the concrete and opened the possibility for the precise dimensioning and quantification of all pores, as well as the distribution and relationship that exists between these in the structure of the different concrete analyzed.
- The entraining of air in the concretes by means of admixtures is provided through spherical pores.
- The increase in air content in the concrete caused an increase in the equivalent diameters of the pores and a reduction in the occurrence of spherical pores due to the coalescence caused by the air-entraining admixtures.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Nie, X.; Gan, S.; Zhao, Y.; Qiu, H. Interfacial Imperfection Detection for Steel-Concrete Composite Structures Using NDT Techniques: A State-of-the-Art Review. Eng. Struct. 2021, 245, 112778. [Google Scholar] [CrossRef]
- Getachew, E.M.; Yifru, B.W.; Taffese, W.Z.; Yehualaw, M.D. Enhancing Mortar Properties through Thermoactivated Recycled Concrete Cement. Buildings 2023, 13, 2209. [Google Scholar] [CrossRef]
- Hosseinnezhad, H.; Sürmelioğlu, S.; Çakır, Ö.A.; Ramyar, K. A Novel Method for Characterization of Recycled Concrete Aggregates: Computerized Microtomography. J. Build. Eng. 2023, 76, 107321. [Google Scholar] [CrossRef]
- da Silva Fernandes, F.A.; Arcaro, S.; Tochtrop Junior, E.F.; Valdés Serra, J.C.; Bergmann, C.P. Glass Foams Produced from Soda-Lime Glass Waste and Rice Husk Ash Applied as Partial Substitutes for Concrete Aggregates. Process Saf. Environ. Prot. 2019, 128, 77–84. [Google Scholar] [CrossRef]
- Mohamad, A.; Khadraoui, F.; Chateigner, D.; Boutouil, M. Influence of Porous Structure of Non-Autoclaved Bio-Based Foamed Concrete on Mechanical Strength. Buildings 2023, 13, 2261. [Google Scholar] [CrossRef]
- da Silva Fernandes, F.A.; de Oliveira Costa, D.D.S.; Rossignolo, J.A. Influence of Sintering on Thermal, Mechanical and Technological Properties of Glass Foams Produced from Agro-Industrial Residues. Materials 2022, 15, 6669. [Google Scholar] [CrossRef]
- Vieira, A.P.; Toledo Filho, R.D.; Tavares, L.M.; Cordeiro, G.C. Effect of Particle Size, Porous Structure and Content of Rice Husk Ash on the Hydration Process and Compressive Strength Evolution of Concrete. Constr. Build. Mater. 2020, 236, 117553. [Google Scholar] [CrossRef]
- da Silva Fernandes, F.A.; de Oliveira Costa, D.D.S.; Martin, C.A.G.; Rossignolo, J.A. Vitreous Foam with Thermal Insulating Property Produced with the Addition of Waste Glass Powder and Rice Husk Ash. Sustainability 2023, 15, 796. [Google Scholar] [CrossRef]
- Ferreira, G.M.; Cavalcante, H.P.; Teixeira, M.B.; da Silva Fernandes, F.A. Characterization of the Mechanical Properties of Concrete with Addition of Bamboo Fiber—Porto Nacional/TO. Int. J. Adv. Eng. Res. Sci. 2019, 6, 209–216. [Google Scholar] [CrossRef]
- Pereira, A.P.; Ferreira, G.M.; Teixeira, M.B.; da Silva Fernandes, F.A. Production of Non-Structural Concrete with Addition of Polyethylene Terephthalate Fiber (PET) in Porto Nacional—TO. Int. J. Adv. Eng. Res. Sci. 2019, 6, 372–378. [Google Scholar] [CrossRef]
- Stochero, N.P.; de Souza Chami, J.O.R.; Souza, M.T.; de Moraes, E.G.; de Oliveira, A.P.N. Green Glass Foams from Wastes Designed for Thermal Insulation. Waste Biomass Valorization 2021, 12, 1609–1620. [Google Scholar] [CrossRef]
- Tunstall, L.E.; Ley, M.T.; Scherer, G.W. Air Entraining Admixtures: Mechanisms, Evaluations, and Interactions. Cem. Concr. Res. 2021, 150, 106557. [Google Scholar] [CrossRef]
- Dolch, W.L. Air-Entraining Admixtures. In Concrete Admixtures Handbook; Elsevier: Amsterdam, The Netherlands, 1996; pp. 518–557. [Google Scholar]
- Abd Elrahman, M.; Sikora, P.; Chung, S.-Y.; Stephan, D. The Performance of Ultra-Lightweight Foamed Concrete Incorporating Nanosilica. Arch. Civ. Mech. Eng. 2021, 21, 79. [Google Scholar] [CrossRef]
- Akçaözoğlu, S.; Atiş, C.D.; Akçaözoğlu, K. An Investigation on the Use of Shredded Waste PET Bottles as Aggregate in Lightweight Concrete. Waste Manag. 2010, 30, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.Y.; Elrahman, M.A.; Stephan, D.; Kamm, P.H. Investigation of Characteristics and Responses of Insulating Cement Paste Specimens with Aer Solids Using X-ray Micro-Computed Tomography. Constr. Build. Mater. 2016, 118, 204–215. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Farzadnia, N.; Abang Ali, A.A. Properties and Applications of Foamed Concrete; a Review. Constr. Build. Mater. 2015, 101, 990–1005. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Sun, B.; Yin, J. Experimental Investigation on Freeze–Thaw Durability of Portland Cement Pervious Concrete (PCPC). Constr. Build. Mater. 2016, 117, 63–71. [Google Scholar] [CrossRef]
- Choi, P.; Yeon, J.H.; Yun, K.-K. Air-Void Structure, Strength, and Permeability of Wet-Mix Shotcrete before and after Shotcreting Operation: The Influences of Silica Fume and Air-Entraining Agent. Cem. Concr. Compos. 2016, 70, 69–77. [Google Scholar] [CrossRef]
- Franus, M.; Panek, R.; Madej, J.; Franus, W. The Properties of Fly Ash Derived Lightweight Aggregates Obtained Using Microwave Radiation. Constr. Build. Mater. 2019, 227, 116677. [Google Scholar] [CrossRef]
- Lai, M.H.; Binhowimal, S.A.M.; Griffith, A.M.; Hanzic, L.; Chen, Z.; Wang, Q.; Ho, J.C.M. Shrinkage, Cementitious Paste Volume, and Wet Packing Density of Concrete. Struct. Concr. 2022, 23, 488–504. [Google Scholar] [CrossRef]
- Medvedev, V.; Pustovgar, A. A Review of Concrete Carbonation and Approaches to Its Research under Irradiation. Buildings 2023, 13, 1998. [Google Scholar] [CrossRef]
- Zannerni, G.M.; Fattah, K.P.; Al-Tamimi, A.K. Ambient-Cured Geopolymer Concrete with Single Alkali Activator. Sustain. Mater. Technol. 2020, 23, e00131. [Google Scholar] [CrossRef]
- Abbas, S.; Hussain, I.; Aslam, F.; Ahmed, A.; Gillani, S.A.A.; Shabbir, A.; Deifalla, A.F. Potential of Alkali–Silica Reactivity of Unexplored Local Aggregates as per ASTM C1260. Materials 2022, 15, 6627. [Google Scholar] [CrossRef] [PubMed]
- Zunino, F.; Lopez, M. A Methodology for Assessing the Chemical and Physical Potential of Industrially Sourced Rice Husk Ash on Strength Development and Early-Age Hydration of Cement Paste. Constr. Build. Mater. 2017, 149, 869–881. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Y.; Zhao, F.; Huo, T.; Chen, E.; Tang, S. Comparison between the Influence of Finely Ground Phosphorous Slag and Fly Ash on Frost Resistance, Pore Structures and Fractal Features of Hydraulic Concrete. Fractal Fract. 2022, 6, 598. [Google Scholar] [CrossRef]
- Liu, D.; Yu, F.; Zhong, L.; Zhang, T.; Xu, Y.; Qin, Y.; Ma, J.; Wang, W. Armor-Structured Interconnected-Porous Membranes for Corrosion-Resistant and Highly Permeable Waste Ammonium Resource Recycling. Environ. Sci. Technol. 2022, 56, 6658–6667. [Google Scholar] [CrossRef]
- Gorospe, K.; Booya, E.; Ghaednia, H.; Das, S. Effect of Various Glass Aggregates on the Shrinkage and Expansion of Cement Mortar. Constr. Build. Mater. 2019, 210, 301–311. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Chernil’nik, A.; Özkılıç, Y.O.; Aksoylu, C. Normal-Weight Concrete with Improved Stress–Strain Characteristics Reinforced with Dispersed Coconut Fibers. Appl. Sci. 2022, 12, 11734. [Google Scholar] [CrossRef]
- Jolly, M.; Prabhakar, A.; Sturzu, B.; Hollstein, K.; Singh, R.; Thomas, S.; Foote, P.; Shaw, A. Review of Non-Destructive Testing (NDT) Techniques and Their Applicability to Thick Walled Composites. Procedia CIRP 2015, 38, 129–136. [Google Scholar] [CrossRef]
- 3 Bola Pra Frente.
- Bonse, U.; Busch, F. X-ray Computed Microtomography (ΜCT) Using Synchrotron Radiation (SR). Prog. Biophys. Mol. Biol. 1996, 65, 133–169. [Google Scholar] [CrossRef]
- Lu, H.; Peterson, K.; Chernoloz, O. Measurement of Entrained Air-Void Parameters in Portland Cement Concrete Using Micro X-ray Computed Tomography. Int. J. Pavement Eng. 2018, 19, 109–121. [Google Scholar] [CrossRef]
- Thomas, C.; de Brito, J.; Cimentada, A.; Sainz-Aja, J.A. Macro- and Micro-Properties of Multi-Recycled Aggregate Concrete. J. Clean. Prod. 2020, 245, 118843. [Google Scholar] [CrossRef]
- C150/C150M-15; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2015; pp. 1–9.
- Prusty, J.K.; Patro, S.K.; Basarkar, S.S. Concrete Using Agro-Waste as Fine Aggregate for Sustainable Built Environment—A Review. Int. J. Sustain. Built Environ. 2016, 5, 312–333. [Google Scholar] [CrossRef]
- Kontić, A.; Vasconcelos, G.; Briceño Melendez, C.; Azenha, M.; Sokolović, N. Influence of Air Entrainers on the Properties of Hydrated Lime Mortars. SSRN Electron. J. 2023, 403, 132968. [Google Scholar] [CrossRef]
- Siddique, R.; de Schutter, G.; Noumowe, A. Effect of Used-Foundry Sand on the Mechanical Properties of Concrete. Constr. Build. Mater. 2009, 23, 976–980. [Google Scholar] [CrossRef]
- Ferreira, C.R.; Tavares, S.S.; Ferreira, B.H.M.; Fernandes, A.M.; Fonseca, S.J.G.; Oliveira, C.A.D.S.; Teixeira, R.L.P.; Gouveia, L.L.D.A. Comparative Study About Mechanical Properties of Strutural Standard Concrete and Concrete with Addition of Vegetable Fibers. Mater. Res. 2017, 20, 102–107. [Google Scholar] [CrossRef]
- Bruere, G.M. Air Entrainment in Cement and Silica Pastes. ACI J. Proc. 1955, 51, 905–919. [Google Scholar] [CrossRef]
- Bruere, G.M. Air-Entraining Actions of Anionic Surfactants in Portland Cement Pastes. J. Appl. Chem. Biotechnol. 2007, 21, 61–64. [Google Scholar] [CrossRef]
- Du, L.; Folliard, K.J. Mechanisms of Air Entrainment in Concrete. Cem. Concr. Res. 2005, 35, 1463–1471. [Google Scholar] [CrossRef]
- Backstrom, J.E.; Burrows, R.W.; Mielenz, R.C.; Wolkodoff, V.E. Origin, Evolution, and Effects of the Air Void System in Concrete. Part 3—Influence of Water-Cement Ratio and Compaction. ACI J. Proc. 1958, 55, 359–375. [Google Scholar] [CrossRef]
- Nowak-Michta, A. Impact Analysis of Air-Entraining and Superplasticizing Admixtures on Concrete Compressive Strength. Procedia Struct. Integr. 2019, 23, 77–82. [Google Scholar] [CrossRef]
- Skarżyński, Ł.; Tejchman, J. Experimental Investigations of Damage Evolution in Concrete during Bending by Continuous Micro-CT Scanning. Mater. Charact. 2019, 154, 40–52. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Kim, J.-S.; Stephan, D.; Han, T.-S. Overview of the Use of Micro-Computed Tomography (Micro-CT) to Investigate the Relation between the Material Characteristics and Properties of Cement-Based Materials. Constr. Build. Mater. 2019, 229, 116843. [Google Scholar] [CrossRef]
Air-Entrained Admixture | ||||
---|---|---|---|---|
Composition | Appearance | Density (g/cm3) | Dosage (%) | |
Synthetic resins | Red colored liquid | 1.01 to 1.05 | 0.05 to 1.0 | |
Portland Cement—CPV—High early strength | ||||
Density (g/m3) | Specific surface (m2/kg) | Mechanical resistance (MPa—28 days) | Start and end of setting time (min) | |
3.12 | 545.00 | 50.00 | 130–220 | |
Large aggregate—Basalt crushed stone | ||||
Density (g/cm3) | Unit mass (kg/m3) | Absorption (%) | Maximum diameter characteristic(mm) | Fineness module |
2.84 | 1635.10 | 0.80 | 19.00 | 6.75 |
Fine aggregates—Natural quartz sand | ||||
Density (g/cm3) | Maximum diameter characteristic (mm) | Fineness module | ||
2.65 | 2.40 | 2.07 |
Parameter | Value (Unit) |
---|---|
Concrete dosage strength—fck | 40.00 MPa |
Standard deviation—Sd | 4.00 MPa |
Desired consistency in fresh state—slump | 50 ± 10 mm |
Water to cement relationship—w/c | 0.42 |
Minimum strength of cement (7 days)—fck | 34.00 MPa |
Water consumption—Cwater | 195.00 l/m3 |
Cement consumption—Cc | 454.72 kg/m3 |
Maximum diameter of large aggregate—Dmax | 19.00 mm |
Sand fineness modulus—FMs | 2.07 |
Dry aggregate volume per m3 of concrete—Vb | 0.743 |
Compacted unit mass of large aggregate—One | 1635.10 kg/m3 |
Cement density—ρc | 3120.00 kg/m3 |
Gravel density—ρg | 2840.00 kg/m3 |
Sand density—ρs | 2650.00 kg/m3 |
Water density—γwater | 1000.00 kg/m3 |
Consumption of gravel—Cg | 1214.88 kg/m3 |
Consumption of fine aggregate—Ca | 605.29 kg/m3 |
Mix ratio of bulk concrete—cement:sand:gravel:w/c | 1–1.31:2.62:0.42 |
Ratio | Cement | Sand | Gravel | W/C | Admixture |
---|---|---|---|---|---|
0 | 1.00 | 1.31 | 2.62 | 0.42 | 0.00 |
I | 1.00 | 1.31 | 2.62 | 0.42 | 0.01 |
II | 1.00 | 1.31 | 2.62 | 0.42 | 0.03 |
III | 1.00 | 1.31 | 2.62 | 0.42 | 0.07 |
M | 1.00 | 1.08 | 2.17 | 0.42 | 0.01 |
II M | 1.00 | 0.90 | 1.80 | 0.42 | 0.03 |
III M | 1.00 | 0.51 | 1.02 | 0.42 | 0.07 |
Ratio | Cement |
---|---|
Volume analyzed—diameter × height | 16 × 20 mm |
Acquisition time | 00 h 45 m |
Objective lens | 0.39X |
Conditions of the source | 120 kV–10 W |
Resolution—voxel size | 20 μm |
Nº of projections | 1000 |
Exposition time | 2 s |
Resol. Detector | 1024 × 1024 px |
Field of vision—FOV | 21 × 21 mm |
Transmission | 23% |
Filter | Without filter |
Concrete | Tests | |||
---|---|---|---|---|
Mix Ratio | Admixture (%) | Air content (%) | Density (kg/m3) | Slump Test (mm) |
0 | 0 | 1.9 | 2490.20 | 36 |
I | 1 | 10.2 | 2300.65 | 40 |
II | 3 | 17.0 | 2150.33 | 133 |
III | 7 | 28.5 | 1915.03 | 133 |
I M | 1 | 12.5 | 2196.08 | 49 |
II M | 3 | 19.0 | 2039.22 | 150 |
III M | 7 | 28.0 | 1836.60 | >200 |
Sample/Mix Ratio | Quantity of Pores | |
---|---|---|
Reference | 0 | 1640 |
Standards | I | 16,970 |
II | 4535 | |
III | 6176 | |
Modified | I M | 14,560 |
II M | 5216 | |
III M | 7922 |
MIX RATIO | Equivalent Diameter * (EqDiameter) of the Pores (μm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 to 50 | 50 to 100 | 100 to 200 | 200 to 300 | 300 to 400 | 400 to 500 | 500 to 600 | 600 to 700 | 700 to 800 | 800 to 900 | 900 to 1000 | > 1000 | |
Ref.-0 | 0 | 205.00 | 435.00 | 234.00 | 112.00 | 55.00 | 51.00 | 21.00 | 8.00 | 8.00 | 5.00 | 6.00 |
I | 5 | 2648.00 | 9160.00 | 3224.00 | 1116.00 | 421.00 | 207.00 | 87.00 | 55.00 | 22.00 | 13.00 | 12.00 |
II | 0 | 852.00 | 2135.00 | 560.00 | 236.00 | 163.00 | 161.00 | 108.00 | 85.00 | 62.00 | 51.00 | 122.00 |
III | 5 | 1605.00 | 2307.00 | 436.00 | 294.00 | 343.00 | 370.00 | 290.00 | 212.00 | 132.00 | 79.00 | 103.00 |
I M | 10 | 2415.00 | 8063.00 | 2741.00 | 803.00 | 293.00 | 124.00 | 54.00 | 30.00 | 9.00 | 6.00 | 12.00 |
II M | 6 | 1329.00 | 2315.00 | 565.00 | 229.00 | 186.00 | 134.00 | 128.00 | 90.00 | 67.00 | 48.00 | 119.00 |
III M | 11 | 1150.00 | 936.00 | 512.00 | 1204.00 | 1453.00 | 1193.00 | 778.00 | 426.00 | 178.00 | 49.00 | 32.00 |
MIX RATIO | SPHERICITY * (Φ) | QUANTITY | VOLUME (cm3) | % TOTAL VOL ** |
---|---|---|---|---|
MIX RATIO 0-Reference | 0.95 to 1 | 693.00 | 0.009 | 32.45 |
0.9 to 0.95 | 134.00 | 0.004 | 15.10 | |
0.8 to 0.9 | 139.00 | 0.003 | 11.54 | |
0.7 to 0.8 | 114.00 | 0.005 | 17.17 | |
0.6 to 0.7 | 30.00 | 0.001 | 3.99 | |
0.5 to 0.6 | 19.00 | 0.003 | 10.38 | |
0 to 0.5 | 11.00 | 0.003 | 9.38 | |
Total | 1140.00 | 0.027 | 100.00 | |
MIX RATIO I | 0.95 to 1 | 6738.00 | 0.012 | 8.27 |
0.9 to 0.95 | 2485.00 | 0.009 | 5.96 | |
0.8 to 0.9 | 4255.00 | 0.024 | 15.82 | |
0.7 to 0.8 | 2188.00 | 0.028 | 18.66 | |
0.6 to 0.7 | 912.00 | 0.033 | 21.78 | |
0.5 to 0.6 | 322.00 | 0.031 | 20.38 | |
0 to 0.5 | 70.00 | 0.014 | 9.13 | |
Total | 16,970.00 | 0.150 | 100.00 | |
MIX RATIO II | 0.95 to 1 | 1675.00 | 0.002 | 0.82 |
0.9 to 0.95 | 645.00 | 0.002 | 0.67 | |
0.8 to 0.9 | 902.00 | 0.006 | 2.28 | |
0.7 to 0.8 | 535.00 | 0.013 | 4.78 | |
0.6 to 0.7 | 335.00 | 0.029 | 10.70 | |
0.5 to 0.6 | 250.00 | 0.065 | 24.00 | |
0 to 0.5 | 193.00 | 0.154 | 56.74 | |
Total | 4535.00 | 0.271 | 100.00 | |
MIX RATIO III | 0.95 to 1 | 1752.00 | 0.001 | 0.41 |
0.9 to 0.95 | 843.00 | 0.001 | 0.30 | |
0.8 to 0.9 | 1106.00 | 0.003 | 0.86 | |
0.7 to 0.8 | 571.00 | 0.004 | 1.30 | |
0.6 to 0.7 | 454.00 | 0.014 | 4.29 | |
0.5 to 0.6 | 502.00 | 0.044 | 13.33 | |
0 to 0.5 | 948.00 | 0.261 | 7951 | |
Total | 6176.00 | 0.328 | 100.00 | |
MIX RATIO IM | 0.95 to 1 | 6150.00 | 0.015 | 13.51 |
0.9 to 0.95 | 2297.00 | 0.010 | 8.77 | |
0.8 to 0.9 | 3861.00 | 0.026 | 22.68 | |
0.7 to 0.8 | 1661.00 | 0.029 | 25.41 | |
0.6 to 0.7 | 480.00 | 0.021 | 18.65 | |
0.5 to 0.6 | 98.00 | 0.009 | 7.70 | |
0 to 0.5 | 13.00 | 0.004 | 3.29 | |
Total | 14,560.00 | 0.114 | 100.00 | |
MIX RATIO IIM | 0.95 to 1 | 1774.00 | 0.002 | 0.85 |
0.9 to 0.95 | 736.00 | 0.002 | 0.54 | |
0.8 to 0.9 | 1105.00 | 0.004 | 1.41 | |
0.7 to 0.8 | 668.00 | 0.009 | 3.25 | |
0.6 to 0.7 | 320.00 | 0.017 | 5.91 | |
0.5 to 0.6 | 256.00 | 0.043 | 15.17 | |
0 to 0.5 | 357.00 | 0.206 | 72.86 | |
Total | 5216.00 | 0.282 | 100.00 | |
MIX RATIO IIIM | 0.95 to 1 | 732.00 | 0.000 | 0.08 |
0.9 to 0.95 | 474.00 | 0.000 | 0.08 | |
0.8 to 0.9 | 728.00 | 0.001 | 0.25 | |
0.7 to 0.8 | 522.00 | 0.005 | 0.88 | |
0.6 to 0.7 | 775.00 | 0.017 | 3.23 | |
0.5 to 0.6 | 1369.00 | 0.060 | 11.61 | |
0 to 0.5 | 3322.00 | 0.436 | 83.88 | |
Total | 7922.00 | 0.519 | 100.00 |
MIX RATIO | Diameters of Bubbles (μm) | TOTAL | |||||
---|---|---|---|---|---|---|---|
0 to 50 | 50 to 100 | 100 to 200 | 200 to 300 | 300 to 400 | >400 | ||
Ref.-0 | 0 | 123 | 256 | 175 | 74 | 65 | 693 |
I | 5 | 1566 | 4533 | 598 | 35 | 1 | 6738 |
II | 0 | 542 | 1063 | 67 | 4 | 0 | 1675 |
III | 5 | 955 | 764 | 27 | 1 | 0 | 1752 |
I M | 10 | 1341 | 3880 | 783 | 121 | 15 | 6150 |
II M | 6 | 732 | 928 | 98 | 8 | 2 | 1774 |
III M | 11 | 475 | 238 | 8 | 0 | 0 | 732 |
MIX RATIO | Air Content (%) | Volume of Pores(cm3) | ||||
---|---|---|---|---|---|---|
Non Spherical (Φ < 0.95) | % | Spherical (0.95 ≤ Φ ≤ 1) | % | TOTAL | ||
Ref.-0 | 1.9 | 0.018 | 67.6 | 0.009 | 32.4 | 0.027 |
I | 10.2 | 0.138 | 91.7 | 0.012 | 83 | 0.150 |
II | 17.0 | 0.269 | 99.2 | 0.002 | 0.8 | 0.271 |
III | 28.5 | 0.327 | 99.6 | 0.001 | 0.4 | 0.328 |
I M | 12.5 | 0.099 | 86.5 | 0.015 | 13.5 | 0.114 |
II M | 19.0 | 0.280 | 99.1 | 0.002 | 0.9 | 0.282 |
III M | 28.0 | 0.519 | 99.9 | 0.000 | 0.1 | 0.519 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, F.A.d.S.; Barbar, J.S.; Costa, D.d.S.d.O.; Rossignolo, J.A. Experimental Investigation on Interfacial Defect Detection for SCCS with Different Contact NDT Technical. Buildings 2023, 13, 2549. https://doi.org/10.3390/buildings13102549
Fernandes FAdS, Barbar JS, Costa DdSdO, Rossignolo JA. Experimental Investigation on Interfacial Defect Detection for SCCS with Different Contact NDT Technical. Buildings. 2023; 13(10):2549. https://doi.org/10.3390/buildings13102549
Chicago/Turabian StyleFernandes, Fernando Antonio da Silva, Joseph Salem Barbar, Dayriane do Socorro de Oliveira Costa, and João Adriano Rossignolo. 2023. "Experimental Investigation on Interfacial Defect Detection for SCCS with Different Contact NDT Technical" Buildings 13, no. 10: 2549. https://doi.org/10.3390/buildings13102549
APA StyleFernandes, F. A. d. S., Barbar, J. S., Costa, D. d. S. d. O., & Rossignolo, J. A. (2023). Experimental Investigation on Interfacial Defect Detection for SCCS with Different Contact NDT Technical. Buildings, 13(10), 2549. https://doi.org/10.3390/buildings13102549