Systematic Mix Design Study on Geopolymers—Prediction of Compressive Strength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Raw Materials and Calcination of the Clays
2.2. Chemical and Mineralogical Characterisation of the Materials
2.3. Physical Characterization of the Materials
2.4. Design of Experiments
2.5. Preparation of the Activator Solutions
2.6. Mortar Production and Testing of Compressive Strength
2.7. Statistical Evaluation
3. Results and Discussion
3.1. General Remarks
3.2. Linear Regression
3.3. Calculating the Compressive Strength
4. Conclusions
- No one parameter alone is responsible for the compressive strength, but rather a combination of several parameters. Regarding the precursor, the influencing parameters were the contents of Al2O3, SiO2, and (Na,K)2O. On the side of the activator solution, the SiO2 content, the content of (Na,K)2O, and the alkalinity of the activator solution were decisive. In addition, the ratio of the activator solution to the precursor and the air void content in the mortar play a significant role.
- An empirical formula for predicting the compressive strength could be derived for the 2-, 7- and 28-day compressive strengths.
- The type of cation (Na- or K-based) has little influence on the compressive strength.
- With the formulas, it was possible to identify outliers, which will be controlled by repeated testing.
- The high water demand of calcined clays strongly impairs their workability. As a result, the air void content is, in some cases, significantly higher than in cementitious systems. This problem will remain until suitable, reliable admixtures for AAB have been developed.
- For early strength after 2 days and strength after 28 days, more reliable predictions can be made than at 7 days. Probably, some values are incorrect, and these experiments must be repeated.
5. Outlook
- Optimization and completion of the model;
- Validation of the model through targeted mixture development using new precursor materials;
- Since workability is considered essential in preparing the materials for construction, further studies will investigate the factors influencing processability. The focus will be on the influence of the particle properties of the precursors and of the cation in the activator solution. Furthermore, the influence of the different silicate sources on workability will be studied. A model will then be developed to control the workability.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koenig, A.; Herrmann, A.; Overmann, S.; Dehn, F. Resistance of alkali-activated binders to organic acid attack: Assessment of evaluation criteria and damage mechanisms. Constr. Build. Mater. 2017, 151, 405–413. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer: Chemistry and Applications, 3rd ed.; Institute Geopolymere: Saint-Quentin, France, 2011. [Google Scholar]
- Provis, J.L.; Bernal, S.A. Geopolymers and Related Alkali-Activated Materials. Annu. Rev. Mater. Res. 2014, 44, 299–327. [Google Scholar] [CrossRef]
- Provis, J.L. (Ed.) Geopolymers: Structure, Processing, Properties and Industrial Applications; Woodhead Publishing Limited: Cambridge, UK; CRC Press: Oxford, UK; Boca Raton, FL, USA, 2009. [Google Scholar]
- Herrmann, A.; Koenig, A.; Dehn, F. Structural concrete based on alkali-activated binders: Terminology, reaction mechanisms, mix designs and performance. Struct. Concr. 2018, 19, 918–929. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; van Deventer, J.S. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005, 269, 47–58. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Separovic, F.; van Deventer, J.S.J. 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir ACS J. Surf. Colloids 2005, 21, 3028–3036. [Google Scholar] [CrossRef] [PubMed]
- Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results. Chem. Mater. 2005, 17, 3075–3085. [Google Scholar] [CrossRef]
- Zhong, J.; Zhou, G.-X.; He, P.-G.; Yang, Z.-H.; Jia, D.-C. 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide. Carbon 2017, 117, 421–426. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Li, L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem. Concr. Res. 2010, 40, 1341–1349. [Google Scholar] [CrossRef]
- Rahier, H.; van Mele, B.; Biesemans, M.; Wastiels, J.; Wu, X. Low-temperature synthesised aluminosilicate glasses. J. Mater. Sci. 1996, 31, 71–79. [Google Scholar] [CrossRef]
- Granizo, M.L.; Alonso, S.; Blanco-Varela, M.T.; Palomo, A. Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction. J. Am. Ceram. Soc. 2002, 85, 225–231. [Google Scholar] [CrossRef]
- Brigatti, M.F.; Galán, E.; Theng, B. Structure and Mineralogy of Clay Minerals. In Handbook of Clay Science; Elsevier: Amsterdam, The Netherlands, 2013; pp. 21–81. [Google Scholar]
- Schreiber, U.; Jentzsch, G. Vulkanische Gefährdung in Deutschland: Bewertung Möglicher Vulkanischer Aktivitäten der Nächsten 1 Million Jahre in Deutschland Inklusive Festlegung der Gebiete mit einer Eintrittswahrscheinlichkeit in Diesem Zeitraum; Research Report; Bundesanstalt für Endlagerung: Peine, Germany, 2021; Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwic6pCDvfqBAxWtg_0HHbRGAJEQFnoECA4QAQ&url=https%3A%2F%2Fwww.bge.de%2Ffileadmin%2Fuser_upload%2FStandortsuche%2FForschung%2FBericht_-_Vulkanische_Gefaehrdung_in_Deutschland_barrierefrei.pdf&usg=AOvVaw139fdSsfQbeZd6rUD0chIs&opi=89978449 (accessed on 10 October 2023).
- Benedix, R. Bauchemie: Einführung in Die Chemie für Bauingenieure und Architekten, 6th ed.; Springer: Wiesbaden, Germany, 2015. [Google Scholar]
- Sebastian, U. Gesteinskunde; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Wetzel, A.; Middendorf, B. Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag. Cem. Concr. Compos. 2019, 100, 53–59. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Lothenbach, B.; de Belie, N.; Gruyaert, E.; Skibsted, J.; Snellings, R.; Vollpracht, A. TC 238-SCM: Hydration and microstructure of concrete with SCMs. Mater. Struct. 2015, 48, 835–862. [Google Scholar] [CrossRef]
- Grim, R.E. Applied Clay Mineralogy; McGraw-Hill: New York, NY, USA, 1962. [Google Scholar]
- Markl, G. Minerale und Gesteine: Eigenschaften, Bildung, Untersuchung, 1st ed.; Elsevier: Heidelberg, Germany, 2004. [Google Scholar]
- DIN EN 13263-1:2009-07; Silikastaub für Beton—Teil 1: Definitionen, Anforderungen und Konformitätskriterien. Deutsche Fassung; Beuth: Berlin, Germany, 2009.
- DIN EN 196-2:2013-10; Prüfverfahren für Zement—Teil 2: Chemische Analyse von Zement. Deutsche Fassung; Beuth: Berlin, Germany, 2013.
- DIN EN 196-6:2019-03; Prüfverfahren für Zement—Teil 6: Bestimmung der Mahlfeinheit. Deutsche Fassung; Beuth: Berlin, Germany, 2019.
- DIN EN 196-1:2016-11; Prüfverfahren für Zement—Teil 1: Bestimmung der Festigkeit. Deutsche Fassung; Beuth: Berlin, Germany, 2016.
- DIN 1015-3:2007-05; Prüfverfahren für Mörtel für Mauerwerk—Teil 3: Bestimmung der Konsistenz von Frischmörtel (mit Ausbreittisch). Deutsche Fassung; Beuth: Berlin, Germany, 2007.
- Gluth, G.J.G.; Ke, X.; Vollpracht, A.; Weiler, L.; Bernal, S.A.; Cyr, M.; Dombrowski-Daube, K.; Geddes, D.A.; Grengg, C.; Le Galliard, C.; et al. Carbonation rate of alkali-activated concretes and high-volume SCM concretes: A literature data analysis by RILEM TC 281-CCC. Mater. Struct. 2022, 55, 225. [Google Scholar] [CrossRef]
- Overmann, S.; Vollpracht, A.; Matschei, T. Einflussfaktoren hinsichtlich der Reaktivität von calcinierten Tonen—Eine Literaturrecherche. In Proceedings of the 21st International Conference on Building Materials, Weimar, Germany, 13–15 September 2023. [Google Scholar]
- Avet, F.; Snellings, R.; Diaz, A.A.; Haha, M.B.; Scrivener, K. Development of a new rapid, relevant and reliable (R³) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem. Concr. Res. 2016, 85, 1–11. [Google Scholar] [CrossRef]
- Onoue, K.; Sagawa, Y.; Atarashi, D.; Takayama, Y. Optimization of mix proportions and manufacturing conditions of fly ash-based geopolymer mortar by parameters design with dynamic characteristics. Cem. Concr. Compos. 2022, 133, 104645. [Google Scholar] [CrossRef]
- Tänzer, R.; Jin, Y.; Stephan, D. Alkali activated slag binder: Effect of cations from silicate activators. Mater. Struct. 2017, 50, 91. [Google Scholar] [CrossRef]
Component/Parameter | cK | cI | nP | SF | |
---|---|---|---|---|---|
wt % | wt % | wt % | wt % | ||
LOI | 1.81 | 1.20 | 6.37 | 2.05 | |
Carbon | as C | 0.02 | 0.02 | 0.13 | 0.80 |
as CO2 | 0.07 | 0.07 | 0.48 | 2.93 | |
CaO | 0.34 | 0.30 | 3.89 | 0.34 | |
SiO2 | 62.0 | 61.1 | 54.4 | 95.1 | |
Al2O3 | 31.2 | 22.7 | 17.8 | 0.5 | |
Fe2O3 | 1.16 | 9.53 | 5.16 | 0.18 | |
MnO | 0.01 | 0.09 | 0.10 | 0.02 | |
MgO | 0.80 | 0.67 | 1.48 | 0.55 | |
TiO2 | 0.15 | 1.21 | 0.71 | 0.01 | |
P2O5 | 0.02 | 0.04 | 0.19 | 0.13 | |
K2O | 1.88 | 2.72 | 5.77 | 1.09 | |
Na2O | 0.01 | 0.36 | 3.20 | 0.44 | |
Na2Oeq | 1.24 | 2.14 | 7.00 | 1.16 | |
Cl− | 0.009 | 0 | 0.004 | 0.069 | |
SO3 | 0.04 | 0.04 | 0.13 | 0.44 |
Component | cK | cI | nP | SF |
---|---|---|---|---|
wt % | wt % | wt % | wt % | |
quartz | 22.0 | 35.7 | 12.6 | 0.2 |
orthoclase | 4.7 | - | - | - |
illite/muscovite | 20.1 | 22.3 | - | - |
plagioclase | - | 0.9 | - | - |
rutile | - | 1.8 | - | - |
hematite | - | 5.3 | - | - |
analcime | - | - | 26.6 | - |
sanidine | - | - | 36.6 | - |
phengite | - | - | 10.3 | - |
amorphous | 53.1 | 34.0 | 13.9 | 99.8 |
Component/Parameter | cKam | cIam | nPam | SFam | |
---|---|---|---|---|---|
wt % | wt % | wt % | wt % | ||
LOI | 1.81 | 1.20 | 6.37 | 2.05 | |
Carbon | as C | 0.13 | 0.19 | 2.46 | 0 |
as CO2 | 0.04 | 0.05 | 0.67 | 0.08 | |
CaO | 0.64 | 0.09 | 20.1 | 0.34 | |
SiO2 | 53.7 | 40.9 | 35.2 | 95.4 | |
Al2O3 | 41.4 | 35.1 | 1.39 | 0.47 | |
Fe2O3 | 2.17 | 19.9 | 26.7 | 0.18 | |
MnO | 0.02 | 0.23 | 0.54 | 0.02 | |
MgO | 1.49 | 1.74 | 7.66 | 0.05 | |
TiO2 | 0.28 | 0 | 3.66 | 0.01 | |
P2O5 | 0.04 | 0.10 | 0.97 | 0.13 | |
K2O | 0 | 0 | 0 | 1.09 | |
Na2O | 0.02 | 0.92 | 0 | 0.44 | |
Na2Oeq | 0.02 | 0.92 | 0 | 1.29 | |
Cl− | 0.02 | 0 | 0.02 | 0.69 | |
SO3 | 0.08 | 0.44 | 0.10 | 0.44 |
Parameter | Unit | cK | cI | nP | SF | |
---|---|---|---|---|---|---|
Blaine Value | cm2/g | 6562 | 15,634 1 | 7733 | 40,030 1 | |
BET Value | m2/g | 19.7 | 23.6 | 8.6 | 78.9 | |
Density | kg/m3 | 2661 | 2769 | 2565 | 2358 | |
d10 | µm | 4.41 | 0.92 | 1.33 | 0.73 | |
d50 | 33.08 | 9.73 | 12.31 | 6.32 | ||
d90 | 103.29 | 65.18 | 66.22 | 12.43 | ||
RRSB fitting | d63.3 | µm | 49.57 | 17.60 | 21.37 | 7.55 |
n | - | 1.2 | 0.67 | 0.73 | 1.1 |
Parameter | Variation |
---|---|
Precursor mix | (cI or cK):nP = 75:25 (cI or cK):nP = 50:50 (cI or cK):nP:SF = 72.5:22.5:5 (cI or cK):nP:SF = 47.5:47.5:5 (8 variations) |
Cation in the activator solution | Na, K, Na + K (50:50) (3 variations) |
Hydroxide addition to the activator solution (in the form of NaOH and/or KOH) | 5 mol/L; 6.25 mol/L; 7.5 mol/L (3 variations) |
Molar ratio of SiO2/(Na,K)2O in the activator solution | 1; 1.5; 2 (3 variations) |
Water/binder ratio | 0.35; 0.4; 0.5 (3 variations) |
Slope | Intercept | |
---|---|---|
2-day regression | 0.72 | 2.80 |
7-day regression | 0.60 | 7.45 |
28-day regression | 0.70 | 8.48 |
R² before Correction | R² after Correction | |
---|---|---|
2-day regression | 0.80 | 0.84 |
7-day regression | 0.56 | 0.63 |
28-day regression | 0.60 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruppa, H.; Vollpracht, A. Systematic Mix Design Study on Geopolymers—Prediction of Compressive Strength. Buildings 2023, 13, 2617. https://doi.org/10.3390/buildings13102617
Kruppa H, Vollpracht A. Systematic Mix Design Study on Geopolymers—Prediction of Compressive Strength. Buildings. 2023; 13(10):2617. https://doi.org/10.3390/buildings13102617
Chicago/Turabian StyleKruppa, Henning, and Anya Vollpracht. 2023. "Systematic Mix Design Study on Geopolymers—Prediction of Compressive Strength" Buildings 13, no. 10: 2617. https://doi.org/10.3390/buildings13102617
APA StyleKruppa, H., & Vollpracht, A. (2023). Systematic Mix Design Study on Geopolymers—Prediction of Compressive Strength. Buildings, 13(10), 2617. https://doi.org/10.3390/buildings13102617