Urban Building Energy Modeling with Parameterized Geometry and Detailed Thermal Zones for Complex Building Types
Abstract
:1. Introduction
2. Methods
2.1. Model Establishment via AutoBPS-Param
2.2. Energy Simulation Description
2.3. Case City Data Collection and Processing
2.4. The EnergyPlus Mathematic Model
- (1)
- Chiller: The chiller model used in this study is the Electric Chiller Model Based on Condenser Entering Temperature (object name: Chiller:Electric: EIR). The model utilizes performance data provided by the user for design conditions, along with three performance curves (curve objects) for cooling capacity and efficiency, to determine the operation of the chiller under off-design conditions [39].
- (2)
- Mini-split heat pump: the heat pump model used in this study is the air-to-air heat pump (object name: AirLoopHVAC:UnitaryHeatPump: AirToAir).
3. Results
3.1. Simulation Results of a Single Case HotelOffice Building
3.1.1. Brief Description of the Case HotelOffice Building
3.1.2. Simulation Results of the Case Building
3.2. Simulation Results of 119 HotelOffice Buildings
3.2.1. Geometry Parameters Distribution of the 119 HotelOffice Buildings
3.2.2. Simulation Results of Scenarios 1, 3 and 4 for the 119 HotelOffice Buildings
3.3. Simulation Results of the 768 Hotel-Related Buildings in Changsha
3.3.1. EUI Results of Six Hotel-Related Building Types
3.3.2. EUI Validation
3.3.3. Total Energy Consumption of the 768 Hotel-Related Buildings
4. Conclusions
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, S.; Zhang, Y.; Yang, Z.; Yan, D.; Jiang, Y. Challenges and opportunities for carbon neutrality in China’s building sector—Modelling and data. Build. Simul. 2022, 15, 1899–1921. [Google Scholar] [CrossRef]
- Huo, T.; Cai, W.; Ren, H.; Feng, W.; Zhu, M.; Lang, N.; Gao, J. China’s building stock estimation and energy intensity analysis. J. Clean. Prod. 2019, 207, 801–813. [Google Scholar] [CrossRef]
- Wei, C.; Chen, J.; Cong, M.; Wu, Y.; Huang, S.; Zhou, Z.; Yang, D.; Liu, J. Analysis of carbon emissions in urban building sector using multi-influence model. J. Clean. Prod. 2023, 426, 139130. [Google Scholar] [CrossRef]
- Zhu, W.; Feng, W.; Li, X.; Zhang, Z. Analysis of the embodied carbon dioxide in the building sector: A case of China. J. Clean. Prod. 2020, 269, 122438. [Google Scholar] [CrossRef]
- Reinhart, C.F.; Davila, C.C. Urban building energy modeling—A review of a nascent field. Build. Environ. 2016, 97, 196–202. [Google Scholar] [CrossRef]
- Wong, C.H.H.; Cai, M.; Ren, C.; Huang, Y.; Liao, C.; Yin, S. Modelling building energy use at urban scale: A review on their account for the urban environment. J. Affect. Disord. 2021, 205, 108235. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, L.; Zheng, L.; Bi, G. A rapid evaluation method for design strategies of high-rise office buildings achieving nearly zero energy in Guangzhou. J. Build. Eng. 2021, 44, 103297. [Google Scholar] [CrossRef]
- Ang, Y.Q.; Berzolla, Z.M.; Reinhart, C.F. From concept to application: A review of use cases in urban building energy modeling. Appl. Energy 2020, 279, 115738. [Google Scholar] [CrossRef]
- Hong, T.; Chen, Y.; Luo, X.; Luo, N.; Lee, S.H. Ten questions on urban building energy modeling. J. Affect. Disord. 2020, 168, 106508. [Google Scholar] [CrossRef]
- Mastrucci, A.; Marvuglia, A.; Leopold, U.; Benetto, E. Life Cycle Assessment of building stocks from urban to transnational scales: A review. Renew. Sustain. Energy Rev. 2017, 74, 316–332. [Google Scholar] [CrossRef]
- Heeren, N.; Jakob, M.; Martius, G.; Gross, N.; Wallbaum, H. A component based bottom-up building stock model for comprehensive environmental impact assessment and target control. Renew. Sustain. Energy Rev. 2013, 20, 45–56. [Google Scholar] [CrossRef]
- Yang, X.; Hu, M.; Heeren, N.; Zhang, C.; Verhagen, T.; Tukker, A.; Steubing, B. A combined GIS-archetype approach to model residential space heating energy: A case study for the Netherlands including validation. Appl. Energy 2020, 280, 115953. [Google Scholar] [CrossRef]
- An, J.; Wu, Y.; Gui, C.; Yan, D. Chinese prototype building models for simulating the energy performance of the nationwide building stock. Build. Simul. 2023, 16, 1559–1582. [Google Scholar] [CrossRef]
- Carnieletto, L.; Ferrando, M.; Teso, L.; Sun, K.; Zhang, W.; Causone, F.; Romagnoni, P.; Zarrella, A.; Hong, T. Italian prototype building models for urban scale building performance simulation. J. Affect. Disord. 2021, 192, 107590. [Google Scholar] [CrossRef]
- Buckley, N.; Mills, G.; Reinhart, C.; Berzolla, Z.M. Using urban building energy modelling (UBEM) to support the new European Union’s Green Deal: Case study of Dublin Ireland. Energy Build. 2021, 247, 111115. [Google Scholar] [CrossRef]
- Deng, Z.; Chen, Y.; Yang, J.; Chen, Z. Archetype identification and urban building energy modeling for city-scale buildings based on GIS datasets. Build. Simul. 2022, 15, 1547–1559. [Google Scholar] [CrossRef]
- Li, X.; Yao, R.; Yu, W.; Meng, X.; Liu, M.; Short, A.; Li, B. Low carbon heating and cooling of residential buildings in cities in the hot summer and cold winter zone—A bottom-up engineering stock modeling approach. J. Clean. Prod. 2019, 220, 271–288. [Google Scholar] [CrossRef]
- Ye, Y.; Hinkelman, K.; Zhang, J.; Zuo, W.; Wang, G. A methodology to create prototypical building energy models for existing buildings: A case study on U.S. religious worship buildings. Energy Build. 2019, 194, 351–365. [Google Scholar] [CrossRef]
- Prototype Building Models|Building Energy Codes Program. Available online: https://www.energycodes.gov/prototype-building-models (accessed on 30 June 2023).
- Nejadshamsi, S.; Eicker, U.; Wang, C.; Bentahar, J. Data sources and approaches for building occupancy profiles at the urban scale—A review. Build. Environ. 2023, 238, 110375. [Google Scholar] [CrossRef]
- Bass, B.; New, J.; Clinton, N.; Adams, M.; Copeland, B.; Amoo, C. How close are urban scale building simulations to measured data? Examining bias derived from building metadata in urban building energy modeling. Appl. Energy 2022, 327, 120049. [Google Scholar] [CrossRef]
- Deng, Z.; Chen, Y.; Yang, J.; Causone, F. AutoBPS: A tool for urban building energy modeling to support energy efficiency improvement at city-scale. Energy Build. 2023, 282, 112794. [Google Scholar] [CrossRef]
- Johari, F.; Shadram, F.; Widén, J. Urban building energy modeling from geo-referenced energy performance certificate data: Development, calibration, and validation. Sustain. Cities Soc. 2023, 96, 104664. [Google Scholar] [CrossRef]
- Wen, J.; Yang, S.; Xie, Y.; Yu, J.; Lin, B. A fast calculation tool for assessing the shading effect of surrounding buildings on window transmitted solar radiation energy. Sustain. Cities Soc. 2022, 81, 103834. [Google Scholar] [CrossRef]
- García-Pérez, S.; Sierra-Pérez, J.; Boschmonart-Rives, J.; Morales, G.L.; Calix, A.R. A Characterisation and Evaluation of Urban Areas from an Energy Efficiency Approach, using Geographic Information Systems in Combination with Life Cycle Assessment Methodology. Int. J. Sustain. Dev. Plan. 2017, 12, 294–303. [Google Scholar] [CrossRef]
- Saner, D.; Vadenbo, C.; Steubing, B.; Hellweg, S. Regionalized LCA-Based Optimization of Building Energy Supply: Method and Case Study for a Swiss Municipality. Environ. Sci. Technol. 2014, 48, 7651–7659. [Google Scholar] [CrossRef] [PubMed]
- Garreau, E.; Abdelouadoud, Y.; Herrera, E.; Keilholz, W.; Kyriakodis, G.-E.; Partenay, V.; Riederer, P. District MOdeller and SIMulator (DIMOSIM)—A dynamic simulation platform based on a bottom-up approach for district and territory energetic assessment. Energy Build. 2021, 251, 111354. [Google Scholar] [CrossRef]
- Prataviera, E.; Romano, P.; Carnieletto, L.; Pirotti, F.; Vivian, J.; Zarrella, A. EUReCA: An open-source urban building energy modelling tool for the efficient evaluation of cities energy demand. Renew. Energy 2021, 173, 544–560. [Google Scholar] [CrossRef]
- Ali, U.; Shamsi, M.H.; Hoare, C.; Mangina, E.; O’donnell, J. Review of urban building energy modeling (UBEM) approaches, methods and tools using qualitative and quantitative analysis. Energy Build. 2021, 246, 111073. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, W.; Song, C.; Ren, Z.; Deng, Z. Rapid Building Energy Modeling Using Prototype Model and Automatic Model Calibration for Retrofit Analysis with Uncertainty. Buildings 2023, 13, 1427. [Google Scholar] [CrossRef]
- Martin, M.; Wong, N.H.; Hii, D.J.C.; Ignatius, M. Comparison between simplified and detailed EnergyPlus models coupled with an urban canopy model. Energy Build. 2017, 157, 116–125. [Google Scholar] [CrossRef]
- GB 50189-2005; Design Standard for Energy Efficiency of Public Buildings. China Architecture & Building Press: Beijing, China, 2005.
- GB 50189-2015; Design Standard for Energy Efficiency of Public Buildings. China Architecture & Building Press: Beijing, China, 2015.
- climatewebsite\WMO_Region_2_Asia\CHN_China. Available online: https://climate.onebuilding.org/WMO_Region_2_Asia/CHN_China/index.html (accessed on 26 August 2023).
- GB 50176-2016; Code for Thermal Design of Civil Building. Ministry of Housing and Urban-Rural Development of China: Beijing, China, 2016.
- GeoJSON. Available online: https://geojson.org/ (accessed on 17 July 2023).
- Chen, Y.; Hong, T.; Piette, M.A. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis. Appl. Energy 2017, 205, 323–335. [Google Scholar] [CrossRef]
- OpenStudio. Available online: https://openstudio.net/ (accessed on 26 August 2023).
- EnergyPlus Simulation Software. Available online: https://energyplus.net (accessed on 28 November 2022).
- GB 51161-2016; Standard for energy consumption of building. Ministry of Housing and Urban-Rural Development of China: Beijing, China, 2016.
- GB 2589-2020; General Rules for Calculation of the Comprehensive Energy Consumption. Standards Press of China: Beijing, China, 2020.
- Sheng, Y.; Miao, Z.; Zhang, J.; Lin, X.; Ma, H. Energy consumption model and energy benchmarks of five-star hotels in China. Energy Build. 2018, 165, 286–292. [Google Scholar] [CrossRef]
- Wang, D.; Meng, J.; Zhang, T. Post-evaluation on energy saving reconstruction for hotel buildings, a case study in Jiangsu, China. Energy Build. 2021, 251, 111316. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, X. A comparative analysis of data-driven methods in building energy benchmarking. Energy Build. 2020, 209, 109711. [Google Scholar] [CrossRef]
- Yao, Z.; Zhuang, Z.; Gu, W. Study on Energy Use Characteristics of Hotel Buildings in Shanghai. Procedia Eng. 2015, 121, 1977–1982. [Google Scholar] [CrossRef]
- Wei, X.; Li, N.; Zhang, W. Statistical Analyses of Energy Consumption Data in Urban Office Buildings of Changsha, China. Procedia Eng. 2015, 121, 1158–1163. [Google Scholar] [CrossRef]
- Jing, L.; Wang, J. A Study on the Characteristics of Energy Consumption Index of Office Buildings Hot-summer and Cold-Winter Zone. In Refrigeration and Air Conditioning; Butterworth-Heinemann: Oxford, UK, 1981; Volume 36. [Google Scholar]
Prototype Building | Actual Building | |||
---|---|---|---|---|
Story Number; Composition | Story Number | Story Number; Composition | Minimal Story Number | |
SmallHotel | First story + standard story * 2 + top story; [1 + 2 + 1] | 4 | First story + standard story * (n − 2) + top story; [1 + (n − 2) + 1] | 3 |
LargeHotel | Basement + first story + standard story * 7 + top story; [1 + 1 + 7 + 1] | 10 | Basement + first story + standard story * (n − 3) + top story; [1 + 1 + (n − 3) + 1] | 4 |
SmallHotelStore | First story + standard story * 4 + top story; [1 + 4 + 1] | 6 | First story + standard story * (n − 2) + top story; [1 + (n − 2) + 1] | 3 |
HotelMall | Five shopping mall stories + first hotel story + standard hotel story * 4 + top hotel story; [5 + 1 + 4 + 1] | 11 | Five shopping mall + first hotel story + standard hotel story * (n − 7) + top story [5 + 1 + (n − 7) + 1]; | 8 |
HotelOffice | Six hotel stories + first office story + standard office story * 4 + top office story; [6 + 1 + 4 + 1] | 12 | Six hotel stories + first office story + standard office stories * (n − 8) + top office story; [6 + 1 + (n − 8) + 1] | 9 |
HotelOfficeMall | Five shopping mall stories + six hotel stories + first office story + standard office story * 4 + top office story; [5 + 6 + 1 + 4 + 1] | 17 | Five shopping mall stories + six hotel stories + first office story + standard office story * (n − 13) + top office story; [5 + 6 + 1 + (n − 13) + 1] | 14 |
Raw Number/After Filtering | ||||
---|---|---|---|---|
Pre-2005 | 2006–2014 | Post-2015 | Total | |
SmallHotel | 426/300 | 178/109 | 71/32 | 675/441 |
LargeHotel | 25/22 | 14/11 | 3/3 | 42/36 |
SmallHotelStore | 164/118 | 46/33 | 5/3 | 215/154 |
HotelMall | 35/7 | 16/7 | 4/2 | 55/16 |
HotelOffice | 195/71 | 104/42 | 17/6 | 316/119 |
HotelOfficeMall | 10/0 | 6/2 | 0/0 | 16/2 |
1319/768 |
Standard Story’s Length (m) | Standard Story’s Width (m) | Standard Story’s Height (m) | Number of Stories | |
---|---|---|---|---|
SmallHotel | 53.86 | 18.29 | 2.74 | 4 |
LargeHotel | 75.87 | 23.53 | 3.05 | 10 |
SmallHotelStore | 53.86 | 18.29 | 2.74 | 6 |
HotelMall | 75.87 | 23.53 | 3.05 | 11 |
HotelOffice | 75.87 | 23.53 | 3.05 | 12 |
HotelOfficeMall | 75.87 | 23.53 | 3.05 | 17 |
Scenarios | Scenario Description |
---|---|
Scenario 1 (Prototype scenario) | Prototype model |
Scenario 2 | Modify building length and width based on Scenario 1 |
Scenario 3 | Modify story number and orientation based on Scenario 2 |
Scenario 4 (AutoBPS-Param scenario) | Add shading buildings based on Scenario 3 |
HVAC System | Building Types Using the System | Built Year | Cooling COP/Heating COP of Heat Pump | Chiller COP/Boiler Efficiency |
---|---|---|---|---|
Mini-split heat pump | SmallHotel, SmallHotelStore | Pre-2005 | 2.2/1.9 | - |
2006–2014 | 2.3/1.9 | - | ||
Post-2015 | 2.9/2.2 | - | ||
Chiller + boiler | LargeHotel, HotelMall, HotelOffice, HotelOfficeMall | Pre-2005 | - | 4.2/0.8 |
2006–2014 | - | 5.1/0.89 | ||
Post-2015 | - | 5.6/0.9 |
Building Description | Value |
---|---|
Type | HotelOffice |
Year built | Pre-2005 |
HVAC system | Chiller + boiler |
Thermal zone types | Banquet, Basement, Café, Corridor, Guest room, Kitchen, Laundry, Lobby, Mechanical, Retail, Storage, Office |
Scenario | Length (m) | Width (m) | Number of Stories | Orientation (°) | Modeling Shading Buildings? |
---|---|---|---|---|---|
Scenario 1 | 75.87 | 23.53 | 12 | 0 | No |
Scenario 2 | 61.87 | 20.72 | 12 | 0 | No |
Scenario 3 | 61.87 | 20.72 | 17 | 11.2 | No |
Scenario 4 | 61.87 | 20.72 | 17 | 11.2 | Yes |
HotelOfficeMall Buildings | Year Built | Prototype Building Electricity EUI (kWh/m2) | Actual Building Electricity EUI (kWh/m2) | Prototype Natural Gas EUI (kWh/m2) | Actual Building Natural Gas EUI (kWh/m2) |
---|---|---|---|---|---|
Building 1 | 2006–2014 | 113.51 | 112.68 | 48.02 | 41.35 |
Building 2 | 2006–2014 | 113.51 | 110.39 | 48.02 | 38.76 |
Location | Hotel Numbers | Electricity EUI [kWh/m2] | Natural Gas EUI [kWh/m2] | Calculated Total EUI [kWh/m2] | Measured Total EUI [kWh/m2] | ||
---|---|---|---|---|---|---|---|
Simulated EUI | Changsha | 768 | 55–215 | 8–240 | 62–373 | - | |
Measured hotel EUI | Wang et al. [43] | Wujiang | 7 | 80–119 | 10–23 | 87–134 | - |
Ding et al. [44] | Chongqing | 48 | - | - | - | 40–319 | |
Sheng et al. [42] | HSCW | 127 | - | - | - | 140–245 | |
Yao et al. [45] | Shanghai | 45 | - | - | - | 84–360 | |
Standard [40] | HSCW | - | 90–240 | - | 90–240 | - | |
Measured office EUI | Standard [40] | HSCW | - | 55–110 | - | 55–110 | - |
Wei et al. [46] | Changsha | 45 | 12–160 | - | - | 12–160 | |
Jing et al. [47] | HSCW | 15 | 50–108 | - | - | - | |
Measured shopping mall EUI | Standard [40] | HSCW | - | 70–225 | - | 70–225 | - |
Year Built | Total Floor Area (km2) | Prototype Electricity EUI (kWh/m2) | Total Electricity Usage (GWh) | Prototype Natural Gas EUI (kWh/m2) | Total Natural Gas Usage (GWh) | |
---|---|---|---|---|---|---|
mallHotel | Pre-2005 | 3.99 | 125.34 | 500.64 | 52.95 | 211.49 |
2006–2014 | 0.76 | 107.45 | 81.65 | 52.94 | 40.23 | |
Post-2015 | 0.21 | 73.69 | 15.52 | 51.55 | 10.86 | |
All vintages | 597.80 | 262.58 | ||||
LargeHotel | Pre-2005 | 0.72 | 149.69 | 107.24 | 183.51 | 131.47 |
2006–2014 | 0.37 | 114.93 | 42.21 | 84.77 | 31.14 | |
Post-2015 | 0.13 | 88.94 | 11.73 | 97.53 | 12.86 | |
All vintages | 161.18 | 175.46 | ||||
SmallHotelStore | Pre-2005 | 1.02 | 149.74 | 152.79 | 44.24 | 45.14 |
2006–2014 | 0.29 | 131.01 | 38.47 | 44.23 | 12.99 | |
Post-2015 | 0.02 | 90.26 | 1.74 | 43.09 | 0.83 | |
All vintages | 193.00 | 58.96 | ||||
HotelMall | Pre-2005 | 0.53 | 149.74 | 79.02 | 138.25 | 72.96 |
2006–2014 | 0.42 | 131.01 | 55.37 | 59.30 | 25.06 | |
Post-2015 | 0.08 | 90.26 | 7.49 | 52.34 | 4.34 | |
All vintages | 141.87 | 102.36 | ||||
HotelOffice | Pre-2005 | 2.20 | 172.25 | 379.79 | 140.44 | 309.65 |
2006–2014 | 1.39 | 120.52 | 167.46 | 67.11 | 93.25 | |
Post-2015 | 0.17 | 96.72 | 16.88 | 77.76 | 13.57 | |
All vintages | 564.13 | 416.47 | ||||
HotelOfficeMall | 2006–2014 | 0.13 | 113.51 | 14.58 | 48.02 | 6.17 |
All vintages | 14.58 | 6.17 | ||||
The sum of six building types | 1672.56 | 1021.99 |
Year Built | Total Electricity Energy (GWh) | (%) | Total Natural Gas Energy (GWh) | (%) | |||
---|---|---|---|---|---|---|---|
AutoBPS-Param | Prototype | AutoBPS-Param | Prototype | ||||
SmallHotel | Pre-2005 | 253.02 | 500.64 | 49.46% | 75.56 | 211.49 | 64.27% |
2006–2014 | 85.98 | 81.65 | 5.30% | 27.26 | 40.23 | 32.24% | |
Post-2015 | 16.43 | 15.52 | 5.86% | 7.57 | 10.86 | 30.29% | |
All vintages | 355.43 | 597.80 | 40.54% | 110.39 | 262.58 | 57.96% | |
LargeHotel | Pre-2005 | 95.27 | 107.24 | 11.16% | 102.36 | 131.47 | 22.14% |
2006–2014 | 38.34 | 42.21 | 9.17% | 24.25 | 31.14 | 22.13% | |
Post-2015 | 10.18 | 11.73 | 13.21% | 10.44 | 12.86 | 18.82% | |
All vintages | 143.79 | 161.18 | 10.79% | 137.05 | 175.46 | 21.89% | |
SmallHotelStore | Pre-2005 | 148.04 | 152.79 | 3.11% | 35.96 | 45.14 | 20.34% |
2006–2014 | 37.77 | 38.47 | 1.82% | 10.19 | 12.99 | 21.56% | |
Post-2015 | 1.75 | 1.74 | 0.57% | 0.90 | 0.83 | 8.43% | |
All vintages | 187.56 | 193.00 | 2.82% | 47.05 | 58.96 | 20.20% | |
HotelMall | Pre-2005 | 79.51 | 79.02 | 0.62% | 70.28 | 72.96 | 3.67% |
2006–2014 | 45.17 | 55.37 | 18.42% | 20.37 | 25.06 | 18.72% | |
Post-2015 | 7.82 | 7.49 | 4.41% | 4.24 | 4.34 | 2.30% | |
All vintages | 132.5 | 141.87 | 6.60% | 94.89 | 102.36 | 7.30% | |
HotelOffice | Pre-2005 | 381.75 | 379.79 | 0.52% | 240.10 | 309.65 | 22.46% |
2006–2014 | 163.60 | 167.46 | 2.31% | 71.03 | 93.25 | 23.83% | |
Post-2015 | 16.61 | 16.88 | 1.60% | 9.97 | 13.57 | 26.53% | |
All vintages | 561.96 | 564.13 | 0.38 | 321.1 | 416.47 | 22.90% | |
HotelOfficeMall | 2006–2014 | 14.31 | 14.58 | 1.85% | 5.13 | 6.17 | 16.86% |
All vintages | 14.31 | 14.58 | 1.85% | 5.13 | 6.17 | 16.86% | |
The sum of all building types | 1395.55 | 1672.56 | 16.56% | 715.61 | 1021.9 | 29.97% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, H.; Zhang, Q.; Ren, Z.; Li, G.; Chen, Y. Urban Building Energy Modeling with Parameterized Geometry and Detailed Thermal Zones for Complex Building Types. Buildings 2023, 13, 2675. https://doi.org/10.3390/buildings13112675
Xi H, Zhang Q, Ren Z, Li G, Chen Y. Urban Building Energy Modeling with Parameterized Geometry and Detailed Thermal Zones for Complex Building Types. Buildings. 2023; 13(11):2675. https://doi.org/10.3390/buildings13112675
Chicago/Turabian StyleXi, Hongyan, Qilin Zhang, Zhiyi Ren, Guangchen Li, and Yixing Chen. 2023. "Urban Building Energy Modeling with Parameterized Geometry and Detailed Thermal Zones for Complex Building Types" Buildings 13, no. 11: 2675. https://doi.org/10.3390/buildings13112675
APA StyleXi, H., Zhang, Q., Ren, Z., Li, G., & Chen, Y. (2023). Urban Building Energy Modeling with Parameterized Geometry and Detailed Thermal Zones for Complex Building Types. Buildings, 13(11), 2675. https://doi.org/10.3390/buildings13112675