Optimizing Polymer-Stabilized Raw Earth Composites with Plant Fibers Reinforcement for Historic Building Rehabilitation
Abstract
:1. Introduction
2. Materials and Experimental Approach
2.1. Materials
2.1.1. Raw Earth
2.1.2. Polymer
2.1.3. Plant Fibers
Jute Fibers
Date Palm Fibers
2.2. Mixture Design
2.3. Experimental Methods
3. Results and Discussion
3.1. Influence of Resin Content on the Physico-Mechanical Characteristics of Composites
3.2. Influence of Fibers Addition
3.2.1. Influence of Fibers Content and Length on Composite Density
3.2.2. Influence of Fiber Content and Length on Compressive Strength
3.2.3. Influence of Fiber Content and Length on Bending Tensile Strength
3.3. Failure Modes
3.3.1. In Compression Test
3.3.2. In Bending Tensile Test
3.3.3. Fracture Facies in Bending Test
3.4. Scanning Electron Microscope (SEM) Observations
3.5. Influence on the Surface Properties of Composites by the Vickers Indentation Test
4. Conclusions
- Variations in fiber mass concentrations and lengths led to alterations in porosity and density;
- Increasing fiber content and length substantially enhanced mechanical properties, particularly strength and flexibility;
- The composite maintains cost-effectiveness and eco-friendliness, with porosity having no adverse impact on its mechanical performance;
- Jute fibers exhibited superior adhesion to the earth–resin matrix;
- The optimal composite formulation comprises 28% polyester resin and 2% fibers with 1 cm, preferably jute, demonstrating ductility and robust mechanical characteristics;
- This innovative composite has the potential to replace cement-based materials across various applications, including structural rehabilitation, decoration, wall cladding, and more;
- These findings contribute to the development of environmentally sustainable and structurally efficient construction practices, heralding a promising future for construction and rehabilitation.
5. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kebaili, B.; Benzerara, M.; Menadi, S.; Kouider, N.; Belouettar, R. Effect of Parent Concrete Strength on Recycled Concrete Performance. Frat. Ed Integrità Strutt. 2022, 16, 14–25. [Google Scholar] [CrossRef]
- Benzerara, M.; Biskri, Y.; Saidani, M.; Slimani, F.; Belouettar, R. High-Temperature Behavior of Polyethylene-Terephthalate-Fiber-Reinforced Sand Concrete: Experimental Investigation. Fibers 2023, 11, 46. [Google Scholar] [CrossRef]
- Žarković, M.; Lakić, S.; Ćetković, J.; Pejović, B.; Redzepagic, S.; Vodenska, I.; Vujadinović, R. Effects of Renewable and Non-Renewable Energy Consumption, GHG, ICT on Sustainable Economic Growth: Evidence from Old and New EU Countries. Sustainability 2022, 14, 9662. [Google Scholar] [CrossRef]
- Kalak, T. Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. Energies 2023, 16, 1783. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of Biodegradable Plastics: New Problem or Solution to Solve the Global Plastic Pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Rahim, O.; Achoura, D.; Benzerara, M.; Bascoulès-Perlot, C. Experimental Contribution to the Study of the Physic-Mechanical Behavior and Durability of High-Performance Concretes Based on Ternary Binder (Cement, Silica Fume and Granulated Blast Furnace Slag). Frat. Ed Integrità Strutt. 2021, 16, 344–358. [Google Scholar] [CrossRef]
- Bourbia, S.; Kazeoui, H.; Belarbi, R. A Review on Recent Research on Bio-Based Building Materials and Their Applications. Mater. Renew. Sustain. Energy 2023, 12, 117–139. [Google Scholar] [CrossRef]
- Marczak, D.; Lejcuś, K.; Kulczycki, G.; Misiewicz, J. Towards Circular Economy: Sustainable Soil Additives from Natural Waste Fibres to Improve Water Retention and Soil Fertility. Sci. Total Environ. 2022, 844, 157169. [Google Scholar] [CrossRef]
- Biskri, Y.; Benzerara, M.; Babouri, L.; Dehas, O.; Belouettar, R. Valorization and Recycling of Packaging Belts and Post-Consumer PET Bottles in the Manufacture of Sand Concrete. Frat. Ed Integrità Strutt. 2022, 16, 225–239. [Google Scholar] [CrossRef]
- Aboutair, W.; Chaid, R.; Perrot, A. Impact of the Nature of Fibers on the Physicomechanical Behavior and Durability of Cement Matrices. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 45, 1467–1482. [Google Scholar] [CrossRef]
- Fattahi, M.; Taban, E.; Soltani, P.; Berardi, U.; Khavanin, A.; Zaroushani, V. Waste Corn Husk Fibers for Sound Absorption and Thermal Insulation Applications: A Step towards Sustainable Buildings. J. Build. Eng. 2023, 77, 107468. [Google Scholar] [CrossRef]
- Erdogmus, E. Use of Fiber-Reinforced Cements in Masonry Construction and Structural Rehabilitation. Fibers 2015, 3, 41–63. [Google Scholar] [CrossRef]
- Medina-Martinez, C.J.; Sandoval Herazo, L.C.; Zamora-Castro, S.A.; Vivar-Ocampo, R.; Reyes-Gonzalez, D. Use of Sawdust Fibers for Soil Reinforcement: A Review. Fibers 2023, 11, 58. [Google Scholar] [CrossRef]
- Lourenço, P.B.; Ciocci, M.P.; Greco, F.; Karanikoloudis, G.; Cancino, C.; Torrealva, D.; Wong, K. Traditional Techniques for the Rehabilitation and Protection of Historic Earthen Structures: The Seismic Retrofitting Project. Int. J. Archit. Herit. 2019, 13, 15–32. [Google Scholar] [CrossRef]
- Costa, C.S.; Rocha, F.; Velosa, A.L. Sustainability in Earthen Heritage Conservation. Geol. Soc. Lond. Spec. Publ. 2016, 416, 91–100. [Google Scholar] [CrossRef]
- Benzerara, M.; Guihéneuf, S.; Belouettar, R.; Perrot, A. Combined and Synergic Effect of Algerian Natural Fibres and Biopolymers on the Reinforcement of Extruded Raw Earth. Constr. Build. Mater. 2021, 289, 123211. [Google Scholar] [CrossRef]
- Sellami, A. Elaboration Des Composites Cimentaires à Base de Fibres Végétales Locales (Le Diss): Caractérisation, Durabilité et Application Au Cas de La Maçonnerie. Ph.D. Thesis, Université Badji Mokhtar Annaba, Annaba, Algeria, 2015. [Google Scholar]
- Terki, Y.; Rakotomamonjy, B.; Hacini, M.; Benhachmi, T.; Henous, M.; Belouaar, A.; Eldjouzi, A.; Moriset, S.; Okbaoui, C.; Almama, A.; et al. Guide de Réhabilitation de l’habitat En Terre à Timimoun. Ph.D. Thesis, CRAterre, Villefontaine, France, 2019. [Google Scholar]
- Ardant, D.; Brumaud, C.; Perrot, A.; Habert, G. Robust Clay Binder for Earth-Based Concrete. Cem. Concr. Res. 2023, 172, 107207. [Google Scholar] [CrossRef]
- Mabrouk, Y.; Benazzouk, A.; Lahmar, A.; Azrour, M.; Mocerino, C.; Lahmar, A. Elaboration and Characterization of Lightweight Rammed Earth Containing Hemp Particles. Mater. Today Proc. 2022, 58, 1389–1396. [Google Scholar] [CrossRef]
- Tarhan, Y.; Perrot, A. Reinforcement of 3D Printable Earth-Based Mortar with Natural Textile Material. Mater. Today Proc. 2023, S2214785323043080. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Aisyah, H.A.; Rafiqah, S.A.; Sabaruddin, F.A.; Kamarudin, S.H.; Norrrahim, M.N.F.; Ilyas, R.A.; et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef]
- Palanikumar, K.; Natarajan, E.; Markandan, K.; Ang, C.K.; Franz, G. Targeted Pre-Treatment of Hemp Fibers and the Effect on Mechanical Properties of Polymer Composites. Fibers 2023, 11, 43. [Google Scholar] [CrossRef]
- Abbass, A.; Paiva, M.C.; Oliveira, D.V.; Lourenço, P.B.; Fangueiro, R. Insight into the Effects of Solvent Treatment of Natural Fibers Prior to Structural Composite Casting: Chemical, Physical and Mechanical Evaluation. Fibers 2021, 9, 54. [Google Scholar] [CrossRef]
- Bahar, A.; Hamami, A.E.A.; Benmahiddine, F.; Belhabib, S.; Belarbi, R.; Guessasma, S. The Thermal and Mechanical Behaviour of Wood-PLA Composites Processed by Additive Manufacturing for Building Insulation. Polymers 2023, 15, 3056. [Google Scholar] [CrossRef] [PubMed]
- Bekkouche, S.R.; Benzerara, M.; Zada, U.; Muhammad, G.; Ali, Z. Use of Eco-Friendly Materials in the Stabilization of Expansive Soils. Buildings 2022, 12, 1770. [Google Scholar] [CrossRef]
- NF EN ISO 17892-4; Reconnaissance et Essais Géotechniques—Essais de Laboratoire Sur Les Sols—Partie 4: Détermination de La Distribution Granulométrie Des Particules. European Standard AFNOR: Paris, French, 2018.
- NF EN ISO 17892-3; Reconnaissance et Essais Géotechniques—Essais de Laboratoire Sur Les Sols—Partie 3: Détermination de La Masse Volumique Des Particules Solides. European Standard AFNOR: Paris, France, 2015.
- NF EN ISO 17892-5; Reconnaissance et Essais Géotechniques—Essais de Laboratoire Sur Les Sols—Partie 5: Essai de Chargement Par Palier à l’œdomètre. European Standard AFNOR: Paris, France, 2017.
- NF EN ISO 17892-1; Reconnaissance et Essais Géotechniques—Essais de Laboratoire Sur Les Sols—Partie 1: Détermination de La Teneur En Eau. European Standard AFNOR: Paris, France, 2014.
- NF EN ISO 17892-10; Reconnaissance et Essais Géotechniques—Essais de Laboratoire Des Sols—Partie 10: Essai de Cisaillement Direct. European Standard AFNOR: Paris, France, 2018.
- NF P94-068; Sols: Reconnaissance et Essais—Mesure de La Capacité d’adsorption de Bleu de Méthylène d’un Sol Ou d’un Matériau Rocheux—Détermination de La Valeur de Bleu de Méthylène d’un Sol Ou d’un Matériau Rocheux Par l’essai à La Tache. European Standard AFNOR: Paris, France, 1998.
- NF EN ISO 17892-12; Reconnaissance et Essais Géotechniques—Essais de Laboratoire Sur Les Sols—Partie 12: Détermination Des Limites de Liquidité et de Plasticité. European Standard AFNOR: Paris, France, 2018.
- NF EN 13925-1; Essais Non Destructifs—Diffraction Des Rayons X Appliquée Aux Matériaux Polycristallins et Amorphes—Partie 1: Principes Généraux. European Standard AFNOR: Paris, France, 2003.
- NF ISO 10390; Qualité Du Sol—Détermination Du pH. European Standard AFNOR: Paris, France, 2005.
- Boutarfa, M.; Belouettar, R.; Makradi, A. Comparative Study of Cement Mortar Reinforced with Vegetable Fibers Alfa, Date Palm and Diss: Mechanical Properties and Shrinkage. J. Mater. Environ. Sci. 2018, 9, 2304–2314. [Google Scholar]
- Derdour, D.; Behim, M.; Benzerara, M. Effect of Date Palm and Polypropylene Fibers on the Characteristics of Self-Compacting Concretes: Comparative Study. Frat. Ed Integrità Strutt. 2023, 17, 31–50. [Google Scholar] [CrossRef]
- Mirouzi, G.; Redjel, B.; Jauberthie, R. Formulation et comportement mécanique de micro-bétons à matrice de résine polyester. Nat. Technol. 2013, 9, 19–27. [Google Scholar]
- NF EN 12390-1; Essai Pour Béton Durci-Partie 1: Forme, Dimensions et Autres Éxigences Relatives Aux Éprouvettes et Aux Moules. European Standard AFNOR: Paris, France, 2001.
- NF EN 12390-5; Essai Pour Béton Durci, Partie5: Résistance à La Flexion Sur Éprouvette. European Standard AFNOR: Paris, France, 2019.
- NF EN 12390-3; Essai Pour Béton Durci, Partie 3: Résistance à La Compression Sur Éprouvette. European Standard AFNOR: Paris, France, 2000.
- Assala, O.; Fellah, M.; Mechachti, S.; Touhami, M.Z.; Khettache, A.; Bouzabata, B.; Weiβ, H.; Jiang, X. Preparation and Characterisation of Diamond-like Carbon Films Prepared by MW ECR/PACVD Process Deposited on 41Cr–Al–Mo7 Nitrided Steel. Trans. IMF 2018, 96, 145–154. [Google Scholar] [CrossRef]
- NF EN ISO 6507-1; Matériaux Métalliques—Essai de Dureté Vickers—Partie 1: Méthode d’essai. European Standard AFNOR: Paris, France, 2018.
- NF EN ISO 14577-1; Matériaux Métalliques—Essai de Pénétration Instrumenté Pour La Détermination de La Dureté et de Paramètres Des Matériaux—Partie 1: Méthode d’essai. European Standard AFNOR: Paris, France, 2015.
Characteristics | Value | Standard | |
---|---|---|---|
Physical | Granulometry of fine elements (%) | 82 | NF EN ISO 17892-4 (2018) [27] |
Max void index | 0.66 | NF EN ISO 17892-3 (2015) [28] | |
Min void index | 0.43 | ||
Geotechnical | Max oedometric pressure (bars) | 1.53 | NF EN ISO 17892-5 (2017) [29] |
Compression index | 0.27 | ||
Swelling index | 0.03 | ||
Wet density (g/cm3) | 2.03 | NF EN ISO 17892-1 (2014) [30] | |
Dry density (g/cm3) | 1.66 | ||
Water content (%) | 18.40 | ||
Friction angle (°) | 11 | NF EN ISO 17892-10 (2018) [31] | |
Cohesion (bars) | 0.21 | ||
Methylene blue value (cm3/g) | 5.16 | NF P94-068 (1998) [32] | |
Total specific surface (related to activity) (m2/kg) | 0.11 | ||
Liquid limit (%) | 37 | NF EN ISO 17892-12 (2018) [33] | |
Plastic limit (%) | 21.5 | ||
Plasticity Index (%) | 15.5 | ||
Chemical | MgO3 (%) | 1 | NF EN ISO 13925-1 (2003) [34] |
Na2O (%) | 4 | ||
CaO (%) | 2 | ||
Fe2O3 (%) | 3 | ||
Al2O3 (%) | 20 | ||
SiO2 (%) | 59 | ||
Other minerals (%) | 11 | ||
pH | 5.03 | NF EN ISO 10390 (2005) [35] |
Characteristics | Values |
---|---|
Apparent density (g/cm3) | 1.61 |
Viscosity (dPa.s) | 20 |
State | Liquid |
Color | Dark red |
State | inflammable |
Characteristics | Details | Jute Fibers | Date Palm Fibers |
---|---|---|---|
physical | Absolute density (g/cm3) | 1.3 | 1.1 |
Width (mm) | 0.90 | 1.40 | |
Cross section (mm2) | 0.65 | 0.35 | |
Water absorption % for 24 h | 141 | 133 | |
Chemicals (% by mass) | Cellulose | 49 | 36 |
Lignin | 22 | 26 | |
Hemicellulose | 19 | 27 | |
Extraction and others | 10 | 11 | |
Mechanical | Modulus of elasticity (GPa) | 70 | 130 |
Tensile stress (MPa) | 345 | 263 | |
Strain at break (%) | 11.27 | 2.11 | |
Elongation at break (%) | 8.55 | 2.27 |
Composites | Elastic Modulus [MPa] | Vickers Hardness |
---|---|---|
C100%R | 904 | 483HV02 |
C28%R | 879 | 312HV02 |
C28%RDP | 735 | 190HV02 |
C28%RJ | 650 | 211HV02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menadi, S.; Hadidane, Y.; Benzerara, M.; Saidani, M.; Khorami, M.; Belouettar, R.; Slimani, F.; Gouider, N.; Rehab-Bekkouche, S. Optimizing Polymer-Stabilized Raw Earth Composites with Plant Fibers Reinforcement for Historic Building Rehabilitation. Buildings 2023, 13, 2681. https://doi.org/10.3390/buildings13112681
Menadi S, Hadidane Y, Benzerara M, Saidani M, Khorami M, Belouettar R, Slimani F, Gouider N, Rehab-Bekkouche S. Optimizing Polymer-Stabilized Raw Earth Composites with Plant Fibers Reinforcement for Historic Building Rehabilitation. Buildings. 2023; 13(11):2681. https://doi.org/10.3390/buildings13112681
Chicago/Turabian StyleMenadi, Souad, Yazid Hadidane, Mohammed Benzerara, Messaoud Saidani, Morteza Khorami, Redjem Belouettar, Fayçal Slimani, Nadia Gouider, and Souhila Rehab-Bekkouche. 2023. "Optimizing Polymer-Stabilized Raw Earth Composites with Plant Fibers Reinforcement for Historic Building Rehabilitation" Buildings 13, no. 11: 2681. https://doi.org/10.3390/buildings13112681
APA StyleMenadi, S., Hadidane, Y., Benzerara, M., Saidani, M., Khorami, M., Belouettar, R., Slimani, F., Gouider, N., & Rehab-Bekkouche, S. (2023). Optimizing Polymer-Stabilized Raw Earth Composites with Plant Fibers Reinforcement for Historic Building Rehabilitation. Buildings, 13(11), 2681. https://doi.org/10.3390/buildings13112681