Comparative Validation of Light Environment Simulation with Actual Measurements
Abstract
:1. Introduction
2. Materials and Methods
- A comprehensive review of previous studies was performed to clarify the characteristics and effects of artificial lighting and natural daylight, which collectively contribute to the composition of the light environment. Additionally, the underlying causes of natural daylight deficiency within office environments were identified, and the specific challenges that must be addressed to facilitate the integration of natural daylight indoors were highlighted.
- In relation to the glare effect, which makes it difficult to introduce natural daylight indoors, the terminology and measurement methods related to glare were organized. A comparison was then made to assess how luminance (glare) was evaluated in green building certification systems, such as LEED, BREEAM, DGNB, WELL Certification, Fitwel Certification, and G-SEED. By reviewing these evaluation methods, the necessity of simulations to effectively prevent glare was examined. The research also verified the effectiveness of commonly used light environment simulations in optimizing lighting conditions in planning within actual construction environments. Based on the findings of this verification research, the need for further studies on simulation validation was confirmed.
- To validate the simulations, actual measurements in real spaces were essential. Therefore, existing methods used for measuring space glare from previous studies were analyzed and compared with the measurement method employed in this study to identify its unique features and differentiating factors.
- The research methodology for this study involved conducting actual measurements and simulations of luminance in three selected workspaces based on specific criteria. Actual measurements were carried out during two separate time slots, 2:00 PM and 4:00 PM, corresponding to the times when sunlight most significantly enters indoor spaces. Daylight glare probability (DGP) was chosen as the measurement metric for comparison with the actual measurements. This choice was influenced by the widespread use and validation of the DGP for evaluating the probability of daylight-induced glare in spaces, following its proposal by Wienold and Christoffersen in 2006. To perform these simulations, ClimateStudio (Version 1.9) [12] was selected as the simulation program for the study due to its ability to measure glare based on DGP and its effective integration with Rhino, a popular architectural modeling tool.
- Comparisons were made between the previously obtained actual measurement values and those generated from the simulation of the light environment. The results of these comparisons were then analyzed. This analysis aimed to identify the factors required to achieve more accurate predictions by simulations concerning light environments.
3. Previous Reviews
3.1. Characteristics and Effects of Daylight and Artificial Lighting
3.2. Glare-Related Terms and Metrics
3.3. Glare Evaluation Method by Certification System
3.4. Distinction from Previous Studies
4. Experimental Space and Methodology
4.1. Space Selection and Criteria
4.2. Method for Luminance Measurement Using a Luminance Meter
4.3. Method for Glare Measurement Using Simulation
5. Results: Comparison of Simulation and Actual Measurements
5.1. Space A
5.2. Space B
5.3. Space C
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Point | Measurement | Simulation | Point | Measurement | Simulation | Point | Measurement | Simulation | Point | Measurement | Simulation | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2:00 ~ 2:30 PM | P1 | NW | 914 | 0.3 | P21 | NW | 840 | 0.3 | 4:00 ~ 4:30 PM | P1 | NW | 1100 | * 81.8 | P21 | NW | 1518 | * 81.8 |
W | 876 | * 100.0 | W | 1321 | 0.3 | W | 2180 | * 100.0 | W | 1900 | * 100.0 | ||||||
SW | 44 | * 100.0 | SW | 1778 | 0.3 | SW | 5576 | * 100.0 | SW | * 11,150 | * 100.0 | ||||||
P2 | NW | 847 | 0.3 | P22 | NW | 1097 | 0.3 | P2 | NW | 1200 | 0.3 | P22 | NW | 1420 | * 81.8 | ||
W | 686 | * 100.0 | W | 1244 | 0.3 | W | 1900 | 0.3 | W | 3117 | * 100.0 | ||||||
SW | 1120 | * 100.0 | SW | 1594 | 0.3 | SW | 7365 | 0.3 | SW | * 14,390 | * 100.0 | ||||||
P3 | NW | 870 | 0.3 | P23 | NW | 1310 | 0.3 | P3 | NW | 1164 | * 81.8 | P23 | NW | 2001 | 0.3 | ||
W | 561 | * 100.0 | W | 1571 | 0.3 | W | 1427 | * 100.0 | W | 1909 | 0.3 | ||||||
SW | 1761 | * 100.0 | SW | 355 | 0.3 | SW | 5023 | * 100.0 | SW | 565 | 0.3 | ||||||
P4 | NW | 698 | 0.3 | P24 | NW | 974 | 0.3 | P4 | NW | 846 | * 81.8 | P24 | NW | 1114 | 0.3 | ||
W | 1367 | * 100.0 | W | 2275 | 0.3 | W | 2349 | * 100.0 | W | 2309 | 0.3 | ||||||
SW | 1736 | * 100.0 | SW | 71 | 0.3 | SW | 2908 | * 100.0 | SW | 93 | 0.3 | ||||||
P5 | NW | 968 | 0.3 | P25 | NW | 145 | 0.3 | P5 | NW | 1410 | 0.3 | P25 | NW | 264 | * 81.8 | ||
W | 1183 | * 100.0 | W | 1319 | 0.3 | W | 2994 | 0.3 | W | 2659 | * 100.0 | ||||||
SW | 1288 | * 100.0 | SW | 116 | 0.3 | SW | 3933 | 0.3 | SW | 172 | * 100.0 | ||||||
P6 | NW | 1200 | 0.3 | P26 | NW | 1203 | 0.3 | P6 | NW | 1605 | * 81.8 | P26 | NW | 1147 | 0.3 | ||
W | 1380 | * 100.0 | W | 1467 | 0.3 | W | 3115 | * 100.0 | W | 3221 | 0.3 | ||||||
SW | 1350 | * 100.0 | SW | 118 | 0.3 | SW | 2954 | * 100.0 | SW | * 9727 | 0.3 | ||||||
P7 | NW | 896 | 0.3 | P27 | NW | 1266 | 0.3 | P7 | NW | 1490 | * 81.8 | P27 | NW | 1354 | 0.3 | ||
W | 850 | * 100.0 | W | 1839 | 0.3 | W | 1270 | * 100.0 | W | 2357 | 0.3 | ||||||
SW | 1376 | * 100.0 | SW | 2021 | 0.3 | SW | 3590 | * 100.0 | SW | * 7486 | 0.3 | ||||||
P8 | NW | 1192 | 0.3 | P28 | NW | 1257 | 0.3 | P8 | NW | 1546 | * 81.8 | P28 | NW | 2464 | * 81.8 | ||
W | 1294 | 0.3 | W | 1767 | 0.3 | W | 1672 | * 100.0 | W | 2442 | * 100.0 | ||||||
SW | 35 | 0.3 | SW | 2094 | 0.3 | SW | 282 | * 100.0 | SW | * 9290 | * 100.0 | ||||||
P9 | NW | 201 | 0.3 | P29 | NW | 1367 | 0.3 | P9 | NW | 1405 | * 81.8 | P29 | NW | 1051 | 0.3 | ||
W | 1009 | 0.3 | W | 2245 | 0.3 | W | 2605 | * 100.0 | W | 2589 | 0.3 | ||||||
SW | 1047 | 0.3 | SW | 2336 | 0.3 | SW | 3513 | * 100.0 | SW | * 8576 | 0.3 | ||||||
P10 | NW | 785 | 0.3 | P30 | NW | 902 | 0.3 | P10 | NW | 1339 | * 81.8 | P30 | NW | 966 | 0.3 | ||
W | 1172 | 0.3 | W | 1764 | 0.3 | W | * 4035 | * 100.0 | W | 2886 | 0.3 | ||||||
SW | 102 | 0.3 | SW | 1778 | 0.3 | SW | 228 | * 100.0 | SW | 3753 | 0.3 | ||||||
P11 | NW | 114 | 0.3 | P31 | NW | 1712 | 0.3 | P11 | NW | 243 | * 81.8 | P31 | NW | 2566 | 0.3 | ||
W | 1154 | 0.3 | W | 1170 | 0.3 | W | 2440 | * 100.0 | W | 2088 | 0.3 | ||||||
SW | 2015 | 0.3 | SW | 48 | 0.3 | SW | * 9725 | * 100.0 | SW | 52 | 0.3 | ||||||
P12 | NW | 816 | 0.3 | P32 | NW | 1064 | 0.3 | P12 | NW | 1347 | * 81.8 | P32 | NW | 1796 | 0.3 | ||
W | 1175 | 0.3 | W | 1668 | 0.3 | W | 3636 | * 100.0 | W | 2444 | 0.3 | ||||||
SW | 1378 | 0.3 | SW | 39 | 0.3 | SW | * 4815 | * 100.0 | SW | 385 | 0.3 | ||||||
P13 | NW | 837 | 0.3 | P33 | NW | 142 | 0.3 | P13 | NW | 1590 | * 81.8 | P33 | NW | 157 | 0.3 | ||
W | 1648 | 0.3 | W | 1547 | 0.3 | W | 2929 | * 100.0 | W | 1347 | 0.3 | ||||||
SW | 97 | 0.3 | SW | 2289 | 0.3 | SW | 219 | * 100.0 | SW | * 7778 | 0.3 | ||||||
P14 | NW | 102 | 0.3 | P34 | NW | 153 | 0.3 | P14 | NW | 152 | * 81.8 | P34 | NW | 170 | 0.3 | ||
W | 1060 | 0.3 | W | 1122 | 0.3 | W | 2443 | * 100.0 | W | 3007 | 0.3 | ||||||
SW | 1667 | 0.3 | SW | 81 | 0.3 | SW | 2959 | * 100.0 | SW | * 8230 | 0.3 | ||||||
P15 | NW | 1251 | 0.3 | P35 | NW | 1787 | 0.3 | P15 | NW | 1757 | * 81.8 | P35 | NW | 1127 | 0.3 | ||
W | 1104 | 0.3 | W | 1308 | 0.3 | W | 1511 | * 100.0 | W | 1922 | 0.3 | ||||||
SW | 280 | 0.3 | SW | 2244 | 0.3 | SW | 658 | * 100.0 | SW | * 5202 | 0.3 | ||||||
P16 | NW | 847 | 0.3 | P36 | NW | 462 | 0.3 | P16 | NW | 1149 | 0.3 | P36 | NW | 1500 | 0.3 | ||
W | 1403 | 0.3 | W | 1574 | 0.3 | W | 1894 | 0.3 | W | 1800 | 0.3 | ||||||
SW | 115 | 0.3 | SW | 2185 | 0.3 | SW | 140 | 0.3 | SW | * 6517 | 0.3 | ||||||
P17 | NW | 165 | 0.3 | P37 | NW | 1182 | 0.3 | P17 | NW | 421 | * 81.8 | P37 | NW | 1645 | 0.3 | ||
W | 1330 | 0.3 | W | 2046 | 0.3 | W | 1917 | * 100.0 | W | 1939 | 0.3 | ||||||
SW | 63 | 0.3 | SW | 53 | 0.3 | SW | 234 | * 100.0 | SW | 35 | 0.3 | ||||||
P18 | NW | 191 | 0.3 | P38 | NW | 74 | 0.3 | P18 | NW | 1821 | * 81.8 | P38 | NW | 78 | 0.3 | ||
W | 1037 | 0.3 | W | 1400 | 0.3 | W | 1775 | * 100.0 | W | 1726 | 0.3 | ||||||
SW | 44 | 0.3 | SW | 293 | 0.3 | SW | 179 | * 100.0 | SW | 3109 | 0.3 | ||||||
P19 | NW | 882 | 0.3 | P39 | NW | 47 | 0.3 | P19 | NW | 1235 | * 81.8 | P39 | NW | 1295 | 0.3 | ||
W | 1293 | 0.3 | W | 1674 | 0.3 | W | 3443 | * 100.0 | W | 1938 | 0.3 | ||||||
SW | 2069 | 0.3 | SW | 40 | 0.3 | SW | * 5605 | * 100.0 | SW | 324 | 0.3 | ||||||
P20 | NW | 1053 | 0.3 | P40 | NW | 1165 | 0.3 | P20 | NW | 1720 | * 81.8 | P40 | NW | 1614 | 0.3 | ||
W | 1109 | 0.3 | W | 1804 | 0.3 | W | 2501 | * 100.0 | W | 2302 | 0.3 | ||||||
SW | 1802 | 0.3 | SW | 138 | 0.3 | SW | * 8235 | * 100.0 | SW | 351 | 0.3 |
Appendix B
Point | Measurement | Simulation | Point | Measurement | Simulation | Point | Measurement | Simulation | Point | Measurement | Simulation | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2:00 ~ 2:30 PM | P1 | NW | 63 | 0.3 | P15 | NW | 856 | 0.3 | 4:00 ~ 4:30 PM | P1 | NW | 132 | * 82.2 | P15 | NW | 1383 | * 82.2 |
W | 1114 | 0.3 | W | 1115 | 0.3 | W | 1945 | * 100.0 | W | 2285 | * 100.0 | ||||||
SW | 1517 | 0.3 | SW | 1333 | 0.3 | SW | * 4677 | * 100.0 | SW | * 4821 | * 100.0 | ||||||
P2 | NW | 500 | 0.3 | P16 | NW | 250 | 0.3 | P2 | NW | 1176 | * 82.2 | P16 | NW | 959 | * 82.2 | ||
W | 1136 | 0.3 | W | 1327 | 0.3 | W | 2105 | * 100.0 | W | 2348 | * 100.0 | ||||||
SW | 1918 | 0.3 | SW | 1981 | 0.3 | SW | * 5899 | * 100.0 | SW | * 4426 | * 100.0 | ||||||
P3 | NW | 865 | 0.3 | P17 | NW | 830 | 0.3 | P3 | NW | 1408 | 0.3 | P17 | NW | 1213 | * 82.2 | ||
W | 1139 | 0.3 | W | 1182 | 0.3 | W | 2523 | 0.3 | W | 2425 | * 100.0 | ||||||
SW | 1628 | 0.3 | SW | 2058 | 0.3 | SW | 3629 | 0.3 | SW | * 5503 | * 100.0 | ||||||
P4 | NW | 40 | 0.3 | P18 | NW | 1152 | 0.3 | P4 | NW | 172 | * 82.2 | P18 | NW | 1544 | * 79.9 | ||
W | 139 | 0.3 | W | 1576 | * 100.0 | W | 135 | * 100.0 | W | 2309 | * 100.0 | ||||||
SW | 775 | 0.3 | SW | 474 | * 100.0 | SW | * 10,180 | * 100.0 | SW | 340 | * 100.0 | ||||||
P5 | NW | 939 | 0.3 | P19 | NW | 732 | 0.3 | P5 | NW | 1186 | * 82.2 | P19 | NW | 1028 | 0.3 | ||
W | 1176 | 0.3 | W | 1137 | 0.3 | W | 1886 | * 100.0 | W | 1988 | 0.3 | ||||||
SW | 1886 | 0.3 | SW | 1504 | 0.3 | SW | * 6277 | * 100.0 | SW | * 4041 | 0.3 | ||||||
P6 | NW | 777 | 0.3 | P20 | NW | 1127 | 0.3 | P6 | NW | 1345 | 0.3 | P20 | NW | 1544 | 0.3 | ||
W | 1209 | 0.3 | W | 1201 | 0.3 | W | 2481 | 0.3 | W | 1974 | 0.3 | ||||||
SW | 2145 | 0.3 | SW | 1373 | 0.3 | SW | * 7502 | 0.3 | SW | 2912 | 0.3 | ||||||
P7 | NW | 157 | 0.3 | P21 | NW | 938 | 0.3 | P7 | NW | 127 | * 82.2 | P21 | NW | 1278 | 0.3 | ||
W | 1405 | 0.3 | W | 1097 | 0.3 | W | 2290 | * 100.0 | W | 2387 | 0.3 | ||||||
SW | 2079 | 0.3 | SW | 1580 | 0.3 | SW | * 4602 | * 100.0 | SW | * 4581 | 0.3 | ||||||
P8 | NW | 648 | 0.3 | P22 | NW | 727 | 0.3 | P8 | NW | 768 | * 82.2 | P22 | NW | 1235 | 0.3 | ||
W | 1590 | 0.3 | W | 1298 | 0.3 | W | 2349 | * 100.0 | W | 2245 | 0.3 | ||||||
SW | 2889 | 0.3 | SW | 1638 | 0.3 | SW | 3034 | * 100.0 | SW | * 4216 | 0.3 | ||||||
P9 | NW | 976 | 0.3 | P23 | NW | 1023 | 0.3 | P9 | NW | 1474 | 0.3 | P23 | NW | 1271 | 0.3 | ||
W | 1463 | * 100.0 | W | 1288 | 0.3 | W | 2267 | 0.3 | W | 1986 | 0.3 | ||||||
SW | 1983 | * 100.0 | SW | 1620 | 0.3 | SW | * 7274 | 0.3 | SW | 3350 | 0.3 | ||||||
P10 | NW | 200 | 0.3 | P24 | NW | 891 | 0.3 | P10 | NW | 267 | * 82.2 | P24 | NW | 1328 | 0.3 | ||
W | 1082 | 0.3 | W | 1147 | 0.3 | W | 2415 | * 100.0 | W | 2120 | 0.3 | ||||||
SW | 1582 | 0.3 | SW | 1884 | 0.3 | SW | * 5429 | * 100.0 | SW | * 6176 | 0.3 | ||||||
P11 | NW | 800 | 0.3 | P25 | NW | 741 | 0.3 | P11 | NW | 1251 | * 82.2 | P25 | NW | 1280 | 0.3 | ||
W | 1140 | 0.3 | W | 1304 | 0.3 | W | 2062 | * 100.0 | W | 2714 | 0.3 | ||||||
SW | 1458 | 0.3 | SW | 1994 | 0.3 | SW | * 4441 | * 100.0 | SW | * 6492 | 0.3 | ||||||
P12 | NW | 870 | 0.3 | P26 | NW | 982 | 0.3 | P12 | NW | 1451 | * 82.2 | P26 | NW | 1344 | 0.3 | ||
W | 1106 | 0.3 | W | 1377 | 0.3 | W | 2079 | * 100.0 | W | 2237 | 0.3 | ||||||
SW | 124 | 0.3 | SW | 2735 | 0.3 | SW | 186 | * 100.0 | SW | * 5643 | 0.3 | ||||||
P13 | NW | 637 | 0.3 | P27 | NW | 944 | 0.3 | P13 | NW | 1126 | * 82.2 | P27 | NW | 1570 | * 79.9 | ||
W | 1251 | 0.3 | W | 1644 | * 100.0 | W | 3604 | * 100.0 | W | 1622 | * 100.0 | ||||||
SW | 1747 | 0.3 | SW | 3140 | * 100.0 | SW | * 8360 | * 100.0 | SW | * 12,600 | * 100.0 | ||||||
P14 | NW | 884 | 0.3 | P14 | NW | 1060 | * 82.2 | ||||||||||
W | 1175 | 0.3 | W | 2053 | * 100.0 | ||||||||||||
SW | 1723 | 0.3 | SW | * 5195 | * 100.0 |
Appendix C
Point | Measurement | Simulation | Point | Measurement | Simulation | Point | Measurement | Simulation | Point | Measurement | Simulation | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2:00 ~ 2:30 PM | P1 | NW | 632 | 0.3 | P21 | NW | 1366 | 0.3 | 4:00 ~ 4:30 PM | P1 | NW | 412 | 0.3 | P21 | NW | 2509 | * 83.0 |
W | 1282 | * 100.0 | W | * 5502 | 0.3 | W | 3130 | 0.3 | W | * 5564 | * 100.0 | ||||||
SW | 2999 | * 100.0 | SW | * 4182 | 0.3 | SW | * 6086 | 0.3 | SW | * 8490 | * 100.0 | ||||||
P2 | NW | 1439 | 0.3 | P22 | NW | 3106 | 0.3 | P2 | NW | 1449 | * 83.0 | P22 | NW | 3002 | * 83.0 | ||
W | 2421 | * 100.0 | W | * 4252 | 0.3 | W | 3034 | * 100.0 | W | * 5220 | * 100.0 | ||||||
SW | * 4292 | * 100.0 | SW | * 4218 | 0.3 | SW | * 6018 | * 100.0 | SW | * 5241 | * 100.0 | ||||||
P3 | NW | 1865 | 0.3 | P23 | NW | 2750 | 0.3 | P3 | NW | 1709 | * 83.0 | P23 | NW | 3575 | 0.3 | ||
W | 3495 | * 100.0 | W | 2060 | 0.3 | W | * 5227 | * 100.0 | W | 3741 | 0.3 | ||||||
SW | * 4624 | * 100.0 | SW | 3910 | 0.3 | SW | * 6445 | * 100.0 | SW | 1502 | 0.3 | ||||||
P4 | NW | 1242 | 0.3 | P24 | NW | 2058 | 0.3 | P4 | NW | 3331 | 0.3 | P24 | NW | 3141 | 0.3 | ||
W | 3137 | * 100.0 | W | 3047 | 0.3 | W | * 4083 | 0.3 | W | * 5189 | 0.3 | ||||||
SW | 421 | * 100.0 | SW | 25 | 0.3 | SW | 78 | 0.3 | SW | 23 | 0.3 | ||||||
P5 | NW | 104 | 0.3 | P25 | NW | 98 | 0.3 | P5 | NW | 148 | * 83.0 | P25 | NW | 619 | 0.3 | ||
W | 3503 | * 100.0 | W | 2579 | 0.3 | W | * 4130 | * 100.0 | W | 3026 | 0.3 | ||||||
SW | 2372 | * 100.0 | SW | 82 | 0.3 | SW | * 5163 | * 100.0 | SW | * 7865 | 0.3 | ||||||
P6 | NW | 2424 | 0.3 | P26 | NW | 1048 | 0.3 | P6 | NW | 2807 | * 83.0 | P26 | NW | 1958 | 0.3 | ||
W | 3517 | * 100.0 | W | 2075 | 0.3 | W | 1880 | * 100.0 | W | 3351 | 0.3 | ||||||
SW | 2759 | * 100.0 | SW | 3876 | 0.3 | SW | * 7238 | * 100.0 | SW | * 11,750 | 0.3 | ||||||
P7 | NW | 14 | 0.3 | P27 | NW | 2464 | 0.3 | P7 | NW | 27 | 0.3 | P27 | NW | 3504 | 0.3 | ||
W | 10 | * 100.0 | W | 2790 | 0.3 | W | 69 | 0.3 | W | * 6245 | 0.3 | ||||||
SW | 13 | * 100.0 | SW | 2041 | 0.3 | SW | 24 | 0.3 | SW | * 7674 | 0.3 | ||||||
P8 | NW | 2686 | 0.3 | P28 | NW | 1321 | 0.3 | P8 | NW | 2413 | 0.3 | P28 | NW | 2564 | 0.3 | ||
W | 2593 | 0.3 | W | * 4001 | 0.3 | W | * 5005 | 0.3 | W | 2939 | 0.3 | ||||||
SW | 3978 | 0.3 | SW | 2111 | 0.3 | SW | * 4470 | 0.3 | SW | * 6688 | 0.3 | ||||||
P9 | NW | 257 | 0.3 | P29 | NW | 1500 | 0.3 | P9 | NW | 508 | * 83.0 | P29 | NW | 1450 | 0.3 | ||
W | 2343 | 0.3 | W | * 4606 | 0.3 | W | 2577 | * 100.0 | W | * 5959 | 0.3 | ||||||
SW | 2271 | 0.3 | SW | 2026 | 0.3 | SW | * 8941 | * 100.0 | SW | * 5650 | 0.3 | ||||||
P10 | NW | 620 | 0.3 | P30 | NW | 3028 | 0.3 | P10 | NW | 620 | * 83.0 | P30 | NW | 2797 | 0.3 | ||
W | 2701 | 0.3 | W | 3189 | 0.3 | W | 3474 | * 100.0 | W | * 4970 | 0.3 | ||||||
SW | * 4293 | 0.3 | SW | 3540 | 0.3 | SW | * 11,640 | * 100.0 | SW | * 6339 | 0.3 | ||||||
P11 | NW | 1990 | 0.3 | P31 | NW | 125.0 | 0.3 | P11 | NW | 3071 | * 83.0 | P31 | NW | 124 | 0.3 | ||
W | 3311 | 0.3 | W | 89.0 | 0.3 | W | * 6338 | * 100.0 | W | 90 | 0.3 | ||||||
SW | 3268 | 0.3 | SW | 41.0 | 0.3 | SW | * 6101 | * 100.0 | SW | 79 | 0.3 | ||||||
P12 | NW | 2307 | 0.3 | P32 | NW | 2528.0 | 0.3 | P12 | NW | 2093 | * 83.0 | P32 | NW | 2041 | 0.3 | ||
W | 3046 | 0.3 | W | 3348.0 | 0.3 | W | * 5308 | * 100.0 | W | * 5389 | 0.3 | ||||||
SW | 89 | 0.3 | SW | 143.0 | 0.3 | SW | 125 | * 100.0 | SW | 217 | 0.3 | ||||||
P13 | NW | 2708 | 0.3 | P33 | NW | 191.0 | 0.3 | P13 | NW | 2250 | * 83.0 | P33 | NW | 313 | 0.3 | ||
W | * 4914 | 0.3 | W | 1820.0 | 0.3 | W | 3082 | * 100.0 | W | * 4086 | 0.3 | ||||||
SW | 3175 | 0.3 | SW | * 4479.0 | 0.3 | SW | * 8357 | * 100.0 | SW | * 7851 | 0.3 | ||||||
P14 | NW | 3120 | 0.3 | P34 | NW | 31.0 | 0.3 | P14 | NW | 3101 | * 83.0 | P34 | NW | 43 | 0.3 | ||
W | 2269 | 0.3 | W | 1384.0 | 0.3 | W | * 4161 | * 100.0 | W | 1816 | 0.3 | ||||||
SW | 2271 | 0.3 | SW | 3898.0 | 0.3 | SW | * 6421 | * 100.0 | SW | * 9640 | 0.3 | ||||||
P15 | NW | 2220 | 0.3 | P35 | NW | 550.0 | 0.3 | P15 | NW | 2983 | * 83.0 | P35 | NW | 1068 | 0.3 | ||
W | 2651 | 0.3 | W | 2909.0 | 0.3 | W | * 4845 | * 100.0 | W | * 5147 | 0.3 | ||||||
SW | 2851 | 0.3 | SW | 2289.0 | 0.3 | SW | * 6041 | * 100.0 | SW | 3457 | 0.3 | ||||||
P16 | NW | 2103 | 0.3 | P36 | NW | 1188.0 | 0.3 | P16 | NW | 1850 | 0.3 | P36 | NW | 1637 | 0.3 | ||
W | 2826 | 0.3 | W | * 5030.0 | 0.3 | W | 3559 | 0.3 | W | * 4860 | 0.3 | ||||||
SW | 281 | 0.3 | SW | 2199.0 | 0.3 | SW | 310 | 0.3 | SW | * 4238 | 0.3 | ||||||
P17 | NW | 348 | 0.3 | P37 | NW | 1491.0 | 0.3 | P17 | NW | 637 | * 83.0 | P37 | NW | 1419 | 0.3 | ||
W | 3754 | 0.3 | W | 2809.0 | 0.3 | W | 3300 | * 100.0 | W | * 4050 | 0.3 | ||||||
SW | * 5107 | 0.3 | SW | 2220.0 | 0.3 | SW | * 10,860 | * 100.0 | SW | * 4815 | 0.3 | ||||||
P18 | NW | 1274 | 0.3 | P38 | NW | 1249.0 | 0.3 | P18 | NW | 1823 | * 83.0 | P38 | NW | 2283 | 0.3 | ||
W | 3393 | 0.3 | W | 3470.0 | 0.3 | W | * 4144 | * 100.0 | W | 3889 | 0.3 | ||||||
SW | * 4695 | 0.3 | SW | * 4282.0 | 0.3 | SW | * 8703 | * 100.0 | SW | * 4824 | 0.3 | ||||||
P19 | NW | 2950 | 0.3 | P39 | NW | 3005.0 | 0.3 | P19 | NW | 3153 | * 83.0 | P39 | NW | 2887 | 0.3 | ||
W | 3289 | 0.3 | W | 85.0 | 0.3 | W | * 6217 | * 100.0 | W | 131 | 0.3 | ||||||
SW | 1904 | 0.3 | SW | 93.0 | 0.3 | SW | * 5681 | * 100.0 | SW | 249 | 0.3 | ||||||
P20 | NW | 1399 | 0.3 | P40 | NW | 33.0 | 0.3 | P20 | NW | 2565 | * 83.0 | P40 | NW | 54 | 0.3 | ||
W | 3358 | 0.3 | W | 2294.0 | 0.3 | W | * 4323 | * 100.0 | W | * 4645 | 0.3 | ||||||
SW | * 4803 | 0.3 | SW | 38.0 | 0.3 | SW | * 8658 | * 100.0 | SW | 61 | 0.3 |
References
- Brainard, G.C.; Hanifin, J.P.; Rollag, M.D.; Greeson, J.; Byrne, B.; Glickman, G.; Sanford, B. Human melatonin regulation is not mediated by the three cone photopic visual system. J. Clin. Endocrinol. Metab. 2001, 86, 433–436. [Google Scholar]
- Cajochen, C.; Zeitzer, J.M.; Czeisler, C.A.; Dijk, D.J. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav. Brain Res. 2000, 115, 75–83. [Google Scholar] [CrossRef]
- Lockley, S.W.; Brainard, G.C.; Czeisler, C.A. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J. Clin. Endocrinol. Metab. 2003, 88, 4502–4505. [Google Scholar] [CrossRef]
- Rea, M.S.; Figueiro, M.G.; Bullough, J.D.; Bierman, A. A model of phototransduction by the human circadian system. Brain Res. Rev. 2005, 50, 213–228. [Google Scholar] [CrossRef]
- Viola, A.U.; James, L.M.; Schlangen, L.J.; Dijk, D.J. Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. Scand. J. Work Environ. Health 2008, 34, 297–306. [Google Scholar] [CrossRef]
- Vetter, C.; Pattison, P.M.; Houser, K.; Herf, M.; Phillips, A.J.; Wright, K.P.; Glickman, G. A review of human physiological responses to light: Implications for the development of integrative lighting solutions. Leukos 2022, 18, 387–414. [Google Scholar] [CrossRef]
- Lu, M.; Hu, S.; Mao, Z.; Liang, P.; Xin, S.; Guan, H. Research on work efficiency and light comfort based on EEG evaluation method. Build. Environ. 2020, 183, 107122. [Google Scholar] [CrossRef]
- Goodman, T.M. Measurement and specification of lighting: A look at the future. Light. Res. Technol. 2009, 41, 229–243. [Google Scholar] [CrossRef]
- Hassan, M.U.; Angelaki, S.; Alfaro, C.V.L.; Major, P.; Styve, A.; Alaliyat, S.A.A.; da Silva Torres, R. Digital Twins for Lighting Analysis: Literature Review, Challenges, and Research Opportunities. In Proceedings of the 36th International ECMS Conference on Modelling and Simulation, Alesund, Norway, 30 May–3 June 2022; ECMS: Caserta, Italy, 2022; Volume 36, pp. 226–235. [Google Scholar]
- Ricciardi, P.; Buratti, C. Environmental quality of university classrooms: Subjective and objective evaluation of the thermal, acoustic, and lighting comfort conditions. Build. Environ. 2018, 127, 23–36. [Google Scholar] [CrossRef]
- United Nation General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 11 October 2023).
- Solemma. What is ClimateStudio? Available online: https://www.solemma.com/climatestudio (accessed on 5 April 2023).
- Nielsen, M.V.; Svendsen, S.; Jensen, L.B. Quantifying the potential of automated dynamic solar shading in office buildings through integrated simulations of energy and daylight. Sol. Energy 2011, 85, 757–768. [Google Scholar] [CrossRef]
- Boubekri, M.; Lee, J.; MacNaughton, P.; Woo, M.; Schuyler, L.; Tinianov, B.; Satish, U. The impact of optimized daylight and views on the sleep duration and cognitive performance of office workers. Int. J. Environ. Res. Public Health 2020, 17, 3219. [Google Scholar] [CrossRef]
- Konis, K. A novel circadian daylight metric for building design and evaluation. Build. Environ. 2017, 113, 22–38. [Google Scholar] [CrossRef]
- Bellia, L.; Pedace, A.; Barbato, G. Daylighting offices: A first step toward an analysis of photobiological effects for design practice purposes. Build. Environ. 2014, 74, 54–64. [Google Scholar] [CrossRef]
- Lee, J.; Boubekri, M. Impact of daylight exposure on health, well-being and sleep of office workers based on actigraphy, surveys, and computer simulation. J. Green Build. 2020, 15, 19–42. [Google Scholar] [CrossRef]
- Heerwagen, J.H.; Orians, G.H. Adaptations to windowlessness: A study of the use of visual decor in windowed and windowless offices. Environ. Behav. 1986, 18, 623–639. [Google Scholar] [CrossRef]
- Boubekri, M.; Hull, R.B.; Boyer, L.L. Impact of window size and sunlight penetration on office workers’ mood and satisfaction: A novel way of assessing sunlight. Environ. Behav. 1991, 23, 474–493. [Google Scholar] [CrossRef]
- Heschong, L. Daylighting and human performance. ASHRAE J. 2002, 44, 65–67. [Google Scholar]
- Van Den Wymelenberg, K. Patterns of occupant interaction with window blinds: A literature review. Energy Build. 2012, 51, 165–176. [Google Scholar] [CrossRef]
- Wang, N.; Boubekri, M. Design recommendations based on cognitive, mood and preference assessments in a sunlit workspace. Light. Res. Technol. 2011, 43, 55–72. [Google Scholar] [CrossRef]
- Gou, Z.; Lau, S.S.Y.; Qian, F. Comparison of mood and task performance in naturally-lit and artificially-lit environments. Indoor Built Environ. 2015, 24, 27–36. [Google Scholar] [CrossRef]
- Wienold, J.; Christoffersen, J. Towards a New Daylight Glare Rating; Lux Europa: Berlin, Germany, 2005; pp. 157–161. [Google Scholar]
- Suk, J.Y.; Schiler, M.; Kensek, K. Investigation of existing discomfort glare indices using human subject study data. Build. Environ. 2017, 113, 121–130. [Google Scholar] [CrossRef]
- Veitch, J.A.; Newsham, G.R. Preferred luminous conditions in open-plan offices: Research and practice recommendations. Int. J. Light. Res. Technol. 2000, 32, 199–212. [Google Scholar] [CrossRef]
- Schiler, M. Toward a definition of glare: Can qualitative issues be quantified? In Proceedings of the 2nd EAAE–ARCC Conference on Architectural Research, Paris, France, 4 July 2000. [Google Scholar]
- Egan, M.D. Concepts in Architectural Lighting; McGraw-Hill: New York, NY, USA, 1983. [Google Scholar]
- Wienold, J.; Christoffersen, J. Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy Build. 2006, 38, 743–757. [Google Scholar] [CrossRef]
- Solemma. Annual Glare. In ClimateStudio User Guide. Available online: https://climatestudiodocs.com/docs/annualGlare.html (accessed on 5 April 2023).
- Bechthold, M.; King, N.; Kane, A.O.; Niemasz, J.; Reinhart, C. Integrated environmental design and robotic fabrication workflow for ceramic shading systems. Autom. Robot. Build. Constr. 2011, 9, 70–75. [Google Scholar]
- Motevalian, E. Double Skin Facades Performance: Effects on Daylight and Visual Comfort in Office Spaces. Ph.D. Thesis, University of Southern California, Los Angeles, CA, USA, 2014. [Google Scholar]
- Yun, G.; Yoon, K.C.; Kim, K.S. The influence of shading control strategies on the visual comfort and energy demand of office buildings. Energy Build. 2014, 84, 70–85. [Google Scholar] [CrossRef]
- Wagdy, A.; Fathy, F. A parametric approach for achieving optimum daylighting performance through solar screens in desert climates. J. Build. Eng. 2015, 3, 155–170. [Google Scholar] [CrossRef]
- Kong, Z.; Utzinger, M.; Liu, L. Solving glare problems in architecture through integration of HDR image technique and modeling with DIVA. In Proceedings of the 14th Conference of International Building Performance Simulation Association, Hyderabad, India, 7–9 December 2015; pp. 1221–1228. [Google Scholar]
- Arango-Díaz, L. Deslumbramiento en ambientes educativos con muro calado en fachada. Rev. AUS 2016, 20, 62–69. [Google Scholar] [CrossRef]
- Shin, C.; Collins, G. Daylight Glare Analysis for an All Glass Cathedral: Integrating Simulation with Common Sense to Improve Visual Comfort. Proc. SimBuild. 2016, 6, 267–274. [Google Scholar]
- Gao, Y.; Dong, J.; Isabella, O.; Zeman, M.; Zhang, G.Q. Daylighting simulation and analysis of buildings with dynamic photovoltaic window shading elements. In Proceedings of the 2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Beijing, China, 1–3 November 2017; IEEE: New York, NY, USA, 2017; pp. 52–55. [Google Scholar]
- Sherif, A.; Mahmoud, A.; ElSharkawy, M.; Eissa, A. Parametric Configuration of Window Light Shelves for Daylighting of Hospital Patient Rooms under a Desert Clear Sky. Proceeding PLEA 2017, 2, 3380–3387. [Google Scholar]
- Wagdy, A.; Sherif, A.; Sabry, H.; Arafa, R.; Mashaly, I. Daylighting simulation for the configuration of external sun-breakers on south oriented windows of hospital patient rooms under a clear desert sky. Sol. Energy 2017, 149, 164–175. [Google Scholar] [CrossRef]
- Sharma, L.; Kishan Lal, K.; Rakshit, D. Evaluation of impact of passive design measures with energy saving potential through estimation of shading control for visual comfort. J. Build. Phys. 2018, 42, 220–238. [Google Scholar] [CrossRef]
- Bian, Y.; Leng, T.; Ma, Y. A proposed discomfort glare evaluation method based on the concept of ‘adaptive zone’. Build Environ. 2018, 143, 306–317. [Google Scholar] [CrossRef]
- Tabadkani, A.; Banihashemi, S.; Hosseini, M.R. Daylighting and visual comfort of oriental sun responsive skins: A parametric analysis. Build. Simul. 2018, 11, 663–676. [Google Scholar] [CrossRef]
- Sharma, L.; Rakshit, D. Visual comfort based algorithmic control for roller shade and assessment of potential energy savings. In Applications of Solar Energy, 1st ed.; Tyagi, H., Agarwal, A., Chakraborty, P., Powar, S., Eds.; Springer: Singapore, 2018; pp. 295–316. [Google Scholar]
- Ayçam, İ.; Ceylan, Ö. Analysis of Daylight Control in Advanced Façade Systems for Office Module in Ankara. In Proceedings of the 3rd International Sustainable Buildings Symposium (ISBS 2017); Fırat, S., Kinuthia, J., Abu-Tair, A., Eds.; Springer: Cham, Germany, 2018; Volume 13, pp. 359–377. [Google Scholar]
- Lee, S.; Lee, K.S. A Study on the improvement of the evaluation scale of discomfort glare in educational facilities. Energies 2019, 12, 3265. [Google Scholar] [CrossRef]
- Pagliolico, S.L.; Verso, V.R.L.; Zublena, M.; Giovannini, L. Preliminary results on a novel photo-bio-screen as a shading system in a kindergarten: Visible transmittance, visual comfort and energy demand for lighting. Sol. Energy 2019, 185, 41–58. [Google Scholar] [CrossRef]
- Mesloub, A.; Ghosh, A.; Touahmia, M.; Albaqawy, G.A.; Noaime, E.; Alsolami, B.M. Performance analysis of photovoltaic integrated shading devices (PVSDs) and semi-transparent photovoltaic (STPV) devices retrofitted to a prototype office building in a hot desert climate. Sustainability 2020, 12, 10145. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, X.; Qu, W.; Cao, G.; Zou, N. Analysis of daylight glare and optimal lighting design for comfortable office lighting. Optik 2020, 206, 164291. [Google Scholar] [CrossRef]
- Srisamranrungruang, T.; Hiyama, K. Balancing of natural ventilation, daylight, thermal effect for a building with double-skin perforated facade (DSPF). Energy Build. 2020, 210, 109765. [Google Scholar] [CrossRef]
- Triantafyllidou, E.F.; Michael, A.G. The impact of installing a concave curved profile blind to a glass window for visual comfort in office buildings. Procedia. Manuf. 2020, 44, 269–276. [Google Scholar] [CrossRef]
- Kiliç, Z.A.; Yener, A.K. Determining Proper Daylighting Design Solution for Visual Comfort and Lighting Energy Efficiency: A Case Study for High-Rise Residential Building. J. Phys. Conf. Ser. 2021, 2069, 012156. [Google Scholar] [CrossRef]
- Özdemir, H.; Çakmak, B.Y. Evaluation of Daylight and Glare Quality of Office Spaces with Flat and Dynamic Shading System Facades in Hot Arid Climate. J. Daylighting 2022, 9, 197–208. [Google Scholar] [CrossRef]
- Mesloub, A.; Ghosh, A.; Touahmia, M.; Albaqawy, G.A.; Alsolami, B.M.; Ahriz, A. Assessment of the overall energy performance of an SPD smart window in a hot desert climate. Energy 2022, 252, 124073. [Google Scholar] [CrossRef]
- Navabi, D.; Amini, Z.; Rahmati, A.; Tahbaz, M.; Butt, T.E.; Sharifi, S.; Mosavi, A. Developing light transmitting concrete for energy saving in buildings. Case Stud. Constr. Mater. 2023, 18, e01969. [Google Scholar] [CrossRef]
- Sui, G.; Liu, J.; Leng, J.; Yu, F. Daylighting performance assessment of traditional skywell dwellings: A case study in Fujian, China. J. Build. Eng. 2023, 68, 106028. [Google Scholar] [CrossRef]
- Sorooshnia, E.; Rashidi, M.; Rahnamayiezekavat, P.; Rezaei, F.; Samali, B. Optimum external shading system for counterbalancing glare probability and daylight illuminance in Sydney’s residential buildings. Eng. Constr. Archit. Manag. 2023, 30, 296–320. [Google Scholar] [CrossRef]
- Hassan, F.H.; Ali, K.A.; Ahmed, S.A. Biomimicry as an Approach to Improve Daylighting Performance in Office Buildings in Assiut City, Egypt. J. Daylighting. 2023, 10, 1–16. [Google Scholar] [CrossRef]
- Taleb, H.M.; Moarbes, R. Improving illuminance performance by implementing a kinetic façade system: Case study of office building in Dubai. J. Asian Archit. Build. Eng. 2023, 22, 2809–2826. [Google Scholar] [CrossRef]
- Suk, J.Y.; Schiler, M.; Kensek, K. Development of new daylight glare analysis methodology using absolute glare factor and relative glare factor. Energy Build. 2013, 64, 113–122. [Google Scholar] [CrossRef]
- He, S.; Li, H.; Yan, Y.; Cai, H. Calibrating lighting simulation with panoramic high dynamic range imaging. J. Build. Perform. Simul. 2023, 1–20. [Google Scholar] [CrossRef]
- Safranek, S.; Davis, R.G. Sources of error in HDRI for luminance measurement: A review of the literature. Leukos 2021, 17, 187–208. [Google Scholar] [CrossRef]
- Konika Minolta Sensing Americas Inc. CS-150 Luminance and Color Meter. Available online: https://sensing.konicaminolta.us/us/products/cs-150-luminance-and-color-meter/ (accessed on 2 February 2023).
- Korea Meteorological Administration. Observation and Climate. Available online: https://web.kma.go.kr/w/obs-climate/land/past-obs/obs-by-element.do?stn=108&yy=2023&obs=59 (accessed on 1 March 2023).
- Konika Minolta Sensing Americas Inc. CL-500A Illuminance Spectrophotometer. Available online: https://sensing.konicaminolta.us/us/products/cl-500a-illuminance-spectrophotometer/ (accessed on 2 February 2023).
- Suk, J.Y.; Schiler, M.; Kensek, K. Absolute glare factor and relative glare factor based metric: Predicting and quantifying levels of daylight glare in office space. Energy Build. 2016, 130, 8–19. [Google Scholar] [CrossRef]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D. Anatomical distribution of rods and cones. In Neuroscience, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2001. Available online: https://www.ncbi.nlm.nih.gov/books/NBK10848/ (accessed on 15 January 2023).
Certification | Workspace Evaluation | Glare Evaluation Method | Score | |||
---|---|---|---|---|---|---|
LEED | O | Interior Lighting | Glare Control | <7000 cd/m2 or UGR < 19 | 1~2 * | |
Color Rendering | RA ≥ 90 | |||||
Lighting Control | Brightness Control of Lighting (90% of exclusive area) | |||||
Surface Reflectance | Ceiling ≥ 80% | |||||
Wall ≥ 55% | ||||||
BREEAM | O | Control of Glare | Glare Prevention Strategy (There should be no increase in lighting energy usage) | 1 | ||
DGNB | O | Antiglare | Installation of Glare Prevention System | 8 | ||
Glare Prevention System Grade | =Grade 1 | 12 | ||||
≥Grade 2 | 16 | |||||
WELL | O | Electric Light Glare Control | <6000 cd/m2 or UGR ≤ 16 | 2 | ||
Fitwel | O | Operable Shading | Installation of Operable Shading | 0.28 | ||
G-SEED | X | Antiglare | Installation of Shading (Educational Facilities) | 2 |
Space | Characteristics | ||||
---|---|---|---|---|---|
Floor | Altitude | Area | Floor Height | Location | |
A | 1F | 1.05 m | 129 m2 | 4.08 m and 2.3 m | North of MH Building |
B | 8F | 26.6 m | 102 m2 | 2.8 m | Center of MH Building |
C | 1F | 1.05 m | 153 m2 | 4.08 m and 2.3 m | South of MH Building |
Time | Day | ||
---|---|---|---|
21 February 2023 | 22 February 2023 | 23 February 2023 | |
2:00 PM | 70,310 | 68,006 | 60,840 |
4:00 PM | 33,147 | 24,886 | 27,247 |
Actual Measurement | Simulation | |
---|---|---|
2:00 PM to 2:50 PM |
|
|
4:00 PM to 4:50 PM |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Lee, K.; Kim, K. Comparative Validation of Light Environment Simulation with Actual Measurements. Buildings 2023, 13, 2742. https://doi.org/10.3390/buildings13112742
Park J, Lee K, Kim K. Comparative Validation of Light Environment Simulation with Actual Measurements. Buildings. 2023; 13(11):2742. https://doi.org/10.3390/buildings13112742
Chicago/Turabian StylePark, Juhyang, Kyungsun Lee, and Kirim Kim. 2023. "Comparative Validation of Light Environment Simulation with Actual Measurements" Buildings 13, no. 11: 2742. https://doi.org/10.3390/buildings13112742
APA StylePark, J., Lee, K., & Kim, K. (2023). Comparative Validation of Light Environment Simulation with Actual Measurements. Buildings, 13(11), 2742. https://doi.org/10.3390/buildings13112742