Study on the Synergistic Effect of Superabsorbent Polymer and Crystalline Admixture on Self-Healing Performance of Mortar Based on Image Binarization Method
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Materials
2.2. Mix Proportions and Specimen Preparation
2.3. Experimental Methods
2.3.1. Crack Healing Index
2.3.2. Compressive Strength
2.3.3. Compressive Strength Recovery
2.3.4. Water Absorption Test
2.3.5. Microstructure Analysis
3. Results and Discussion
3.1. Crack Observation
3.2. Compressive Strength
3.3. Compressive Strength Recovery
3.4. Water Absorption Rate
3.5. Micro-Analysis
3.5.1. SEM-EDS Test
3.5.2. X-ray Diffraction
4. Conclusions
5. Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chindasiriphan, P.; Yokota, H.; Pimpakan, P. Effect of fly ash and superabsorbent polymer on concrete self-healing ability. Constr. Build. Mater. 2020, 233, 116975. [Google Scholar] [CrossRef]
- Reddy, C.; Ramesh, B.M.K.; Macrin, D. Effect of crystalline admixtures, polymers and fibers on self-healing concrete—A review. Mater. Today Proc. 2020, 33, 763–770. [Google Scholar] [CrossRef]
- Tang, Q.; Hu, J.; Yu, T. Electromagnetic evaluation of brick specimens using synthetic aperture radar imaging. NDT E Int. 2019, 104, 98–107. [Google Scholar] [CrossRef]
- Snoeck, D.; Debo, J.; De Belie, N. Translucent self-healing cementitious materials using glass fibers and superabsorbent polymers. Dev. Built Environ. 2020, 3, 100012. [Google Scholar] [CrossRef]
- Du, W.; Lin, R.; Liu, Q. Investigation of isophorone diisocyanate microcapsules to improve self-healing properties and sulfate resistance of concrete. Constr. Build. Mater. 2021, 300, 124438. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J.; Cao, Z.; He, P.; Liu, Q.; Han, X.; Wan, Y. Preparation and application of novel microcapsules ruptured by microwave for self-healing concrete. Constr. Build. Mater. 2021, 304, 124616. [Google Scholar] [CrossRef]
- Feng, J.; Chen, B.; Sun, W.; Wang, Y. Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization. Constr. Build. Mater. 2021, 280, 122460. [Google Scholar] [CrossRef]
- Algaifi, H.A.; Bakar, S.A.; Sam, A.R.M.; Abidin, A.R.Z.; Shahir, S.; Al-Towayti, W.A.H. Numerical modeling for crack self-healing concrete by microbial calcium carbonate. Constr. Build. Mater. 2018, 189, 816–824. [Google Scholar] [CrossRef]
- Tan, L.; Ke, X.; Li, Q.; Gebhard, S.; Ferrandiz-Mas, V.; Paine, K.; Chen, W. The effects of biomineralization on the localised phase and microstructure evolutions of bacteria-based self-healing cementitious composites. Cem. Concr. Compos. 2022, 128, 104421. [Google Scholar] [CrossRef]
- Chen, W.; Feng, K.; Wang, Y.; Lin, Y.; Qian, H. Evaluation of self-healing performance of a smart composite material (SMA-ECC). Constr. Build. Mater. 2021, 290, 123216. [Google Scholar] [CrossRef]
- Chen, W.; Lin, B.; Feng, K.; Cui, S.; Zhang, D. Effect of shape memory alloy fiber content and preloading level on the self-healing properties of smart cementitious composite (SMA-ECC). Constr. Build. Mater. 2022, 341, 127797. [Google Scholar] [CrossRef]
- Al-Kheetan, M.J.; Rahman, M.M.; Chamberlain, D.A. A novel approach of introducing crystalline protection material and curing agent in fresh concrete for enhancing hydrophobicity. Constr. Build. Mater. 2018, 160, 644–652. [Google Scholar] [CrossRef]
- Azarsa, P.; Gupta, R.; Biparva, A. Assessment of self-healing and durability parameters of concretes incorporating crystalline admixtures and Portland Limestone Cement. Cem. Concr. Compos. 2019, 99, 17–31. [Google Scholar] [CrossRef]
- Sisomphon, K.; Copuroglu, O.; Koenders, E.A.B. Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem. Concr. Compos. 2012, 34, 566–574. [Google Scholar] [CrossRef]
- Hu, X.; Xiao, J.; Zhang, Z.; Wang, C.; Long, C.; Dai, L. Effects of CCCW on properties of cement-based materials. A review. J. Build. Eng. 2022, 50, 104184. [Google Scholar] [CrossRef]
- Park, B.; Choi, Y.C. Self-healing capability of cementitious materials with crystalline admixtures and super absorbent polymers (SAPs). Constr. Build. Mater. 2018, 189, 1054–1066. [Google Scholar] [CrossRef]
- Roig-Flores, M.; Moscato, S.; Serna, P.; Ferrara, L. Self-healing capability of concrete with crystalline admixtures in different environments. Constr. Build. Mater. 2015, 86, 1–11. [Google Scholar] [CrossRef]
- Kazemian, M.; Shafei, B. Internal curing capabilities of natural zeolite to improve the hydration of ultra-high performance concrete. Constr. Build. Mater. 2022, 340, 127452. [Google Scholar] [CrossRef]
- Liu, J.; Liu, G.; Zhang, W.; Li, Z.; Xing, F.; Tang, L. Application potential analysis of biochar as a carbon capture material in cementitious composites. A review. Constr. Build. Mater. 2022, 350, 128715. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Y.; Shen, A.; Chen, Z.; Qin, X.; Zhao, M. Research on drying shrinkage deformation and cracking risk of pavement concrete internally cured by SAPs. Constr. Build. Mater. 2019, 227, 116705. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, Y.; Yang, Y. Incorporation superabsorbent polymer (SAP) particles as controlling pre-existing flaws to improve the performance of engineered cementitious composites (ECC). Constr. Build. Mater. 2012, 28, 139–145. [Google Scholar] [CrossRef]
- Assmann, A.; Reinhardt, H.W. Tensile creep and shrinkage of SAP modified concrete. Cem. Concr. Res. 2014, 58, 179–185. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Secrieru, E.; Schröfl, C. Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars—Development of yield stress and plastic viscosity over time. Cem. Concr. Res. 2015, 67, 52–65. [Google Scholar] [CrossRef]
- Craeye, B.; Geirnaert, M.; Schutter, G.D. Super absorbing polymers as an internal curing agent for mitigation of early-age cracking of high-performance concrete bridge decks. Constr. Build. Mater. 2011, 25, 1–13. [Google Scholar] [CrossRef]
- Kanellopoulou, I.; Karaxi, E.K.; Karatza, A.; Kartsonakis, I.A.; Charitidis, C.A. Effect of submicron admixtures on mechanical and self-healing properties of cement-based composites. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1494–1509. [Google Scholar] [CrossRef]
- Lee, H.X.D.; Wong, H.S.; Buenfeld, N.R. Self-sealing of cracks in concrete using superabsorbent polymers. Cem. Concr. Res. 2016, 79, 194–208. [Google Scholar] [CrossRef]
- Snoeck, D.; Dewanckele, J.; Cnudde, V.; De Belie, N. X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers. Cem. Concr. Compos. 2016, 65, 83–93. [Google Scholar] [CrossRef]
- Snoeck, D.; Steuperaert, S.; Van Tittelboom, K.; Dubruel, P.; De Belie, N. Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography. Cem. Concr. Res. 2012, 42, 1113–1121. [Google Scholar] [CrossRef]
- Al-Kheetan Mazen, J.; Rahman Mujib, M.; Chamberlain Denis, A. Optimum Mix Design for Internally Integrated Concrete with Crystallizing Protective Material. J. Mater. Civ. Eng. 2019, 31, 04019101. [Google Scholar] [CrossRef]
- Shang, X.; Jing, D. The present research and application of cement based permeated crystalline materials. J. Water Resour. Arch. Eng. 2015, 13, 131–135. [Google Scholar]
- Zhang, C.; Lu, R.; Li, Y.; Guan, X. Effect of crystalline admixtures on mechanical, self-healing and transport properties of engineered cementitious composite. Cem. Concr. Compos. 2021, 124, 104256. [Google Scholar] [CrossRef]
- Gruyaert, E.; Debbaut, B.; Snoeck, D.; Díaz, P.; Arizo, A.; Tziviloglou, E.; Schlangen, E.; De Belie, N. Self-healing mortar with pH-sensitive superabsorbent polymers. Testing of the sealing efficiency by water flow tests. Smart Mater. Struct. 2016, 25, 084007. [Google Scholar] [CrossRef]
- Hong, G.; Song, C.; Park, J.; Choi, S. Hysteretic behavior of rapid self-sealing of cracks in cementitious materials incorporating superabsorbent polymers. Constr. Build. Mater. 2019, 195, 187–197. [Google Scholar] [CrossRef]
- Snoeck, D.; Schaubroeck, D.; Dubruel, P.; De Belie, N. Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50. Constr. Build. Mater. 2014, 72, 148–157. [Google Scholar] [CrossRef]
- Wang, X.; Chen, S.; Ren, J.; Huang, R.; Yang, Z.; Wang, W.; Liu, J. Effect of super absorbent polymer and mineral additives on mechanical, shrinkage and healing properties of self-healing lightweight aggregate concrete under different curing regimes. Constr. Build. Mater. 2022, 357, 129377. [Google Scholar] [CrossRef]
- De Souza Oliveira, A.; Filho, R.D.T.; de Moraes Rego Fairbairn, E.; de Oliveira, L.F.C.; da Fonseca Martins Gomes, O. Microstructural characterization of self-healing products in cementitious systems containing crystalline admixture in the short- and long-term. Cem. Concr. Compos. 2022, 126, 104369. [Google Scholar] [CrossRef]
- Cuenca, E.; Tejedor, A.; Ferrara, L. A methodology to assess crack-sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles. Constr. Build. Mater. 2018, 179, 619–632. [Google Scholar] [CrossRef]
- C109/C109M-21; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). ASTM: West Conshohocken, PA, USA, 2021.
- Wang, R.; Yu, J.; Gu, S.; He, P.; Han, X.; Liu, Q. Investigation of self-healing capability on surface and internal cracks of cement mortar with ion chelator. Constr. Build. Mater. 2020, 236, 117598. [Google Scholar] [CrossRef]
- C1585-20; Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic Cement Concretes. ASTM: West Conshohocken, PA, USA, 2020.
- Snoeck, D.; Van den Heede, P.; Van Mullem, T.; De Belie, N. Water penetration through cracks in self-healing cementitious materials with superabsorbent polymers studied by neutron radiography. Cem. Concr. Res. 2018, 113, 86–98. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, X.; Hu, Y.; Li, J.; Zhou, F.; Liu, K.; Zhang, J.; Wang, J.; Shui, Z. Development of a rapid hardening ultra-high performance concrete (R-UHPC): From macro properties to micro structure. Constr. Build. Mater. 2022, 329, 127188. [Google Scholar] [CrossRef]
- Aspiotis, K.; Sotiriadis, K.; Ntaska, A.; Mácová, P.; Badogiannis, E.; Tsivilis, S. Durability assessment of self-healing in ordinary Portland cement concrete containing chemical additives. Constr. Build. Mater. 2021, 305, 124754. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, W.; Yuan, Z. Influence of mineral additives and environmental conditions on the self-healing capabilities of cementitious materials. Cem. Concr. Compos. 2015, 57, 116–127. [Google Scholar] [CrossRef]
- Huang, H.; Ye, G.; Damidot, D. Characterization and quantification of self-healing behaviors of microcracks due to further hydration in cement paste. Cem. Concr. Res. 2013, 52, 71–81. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, D.; Yang, K.; Zhang, Z.; Li, Q.; Pan, Q.; Yang, C. Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete. Constr. Build. Mater. 2018, 175, 467–482. [Google Scholar] [CrossRef]
- Zhang, Z.; Scherer, G.W.; Bauer, A. Morphology of cementitious material during early hydration. Cem. Concr. Res. 2018, 107, 85–100. [Google Scholar] [CrossRef]
- Richardson, I.G. Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem. Concr. Res. 2004, 34, 1733–1777. [Google Scholar]
- Mehta, P.K.; Monteiro, P.J. Concrete: Microstructure, Properties, and Materials; McGraw-Hill Education: Singapore, 2014. [Google Scholar]
- Peng, L.; Jiang, Y.; Ban, J.; Shen, Y.; Ma, Z.; Zhao, Y.; Shen, P.; Poon, C.-S. Mechanism underlying early hydration kinetics of carbonated recycled concrete fines-ordinary portland cement (CRCF-OPC) paste. Cem. Concr. Compos. 2023, 144, 105275. [Google Scholar] [CrossRef]
- Long, W.-J.; Xie, J.; Zhang, X.; Fang, Y.; Khayat, K.H. Hydration and microstructure of calcined hydrotalcite activated high-volume fly ash cementitious composite. Cem. Concr. Compos. 2021, 123, 104213. [Google Scholar] [CrossRef]
- De Souza Oliveira, A.; Dweck, J.; de Moraes Rego Fairbairn, E.; da Fonseca Martins Gomes, O.; Toledo Filho, R.D. Crystalline admixture effects on crystal formation phenomena during cement pastes’ hydration. J. Therm. Anal. Calorim. 2020, 139, 3361–3375. [Google Scholar] [CrossRef]
- Wehbe, Y.; Ghahremaninezhad, A. Combined effect of shrinkage reducing admixtures (SRA) and superabsorbent polymers (SAP) on the autogenous shrinkage, hydration and properties of cementitious materials. Constr. Build. Mater. 2017, 138, 151–162. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Lee, H.-S.; Lin, R.-S.; Wang, X.-Y. Effect of silicate-modified calcium oxide-based expansive agent on engineering properties and self-healing of ultra-high-strength concrete. J. Build. Eng. 2022, 50, 104230. [Google Scholar] [CrossRef]
- De Souza Oliveira, A.; da Fonseca Martins Gomes, O.; Ferrara, L.; de Moraes Rego Fairbairn, E.; Toledo Filho, R.D. An overview of a twofold effect of crystalline admixtures in cement-based materials: From permeability-reducers to self-healing stimulators. J. Build. Eng. 2021, 41, 102400. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Ding, Z. Influence of Crystalline Admixtures and Their Synergetic Combinations with Other Constituents on Autonomous Healing in Cracked Concrete—A Review. Materials 2022, 15, 440. [Google Scholar] [CrossRef]
Material | Chemical Composition (Mass %) | |||||||
---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | MgO | Others | Loss on Ignition | |
OPC | 64.14 | 18.55 | 4.41 | 3.23 | 3.03 | 2.04 | 2.07 | 2.53 |
CA | 65.84 | 19.84 | 4.47 | 3.33 | 3.12 | 1.24 | 2.12 | 0.04 |
Mixture ID | Water (g) | Binders | W/B | Sand (g) | Superplasticizer (g) | ||
---|---|---|---|---|---|---|---|
Cement (g) | SAP (g) | CA (g) | |||||
Control | 500 | 1000 | - | - | 0.5 | 2000 | - |
0.5SAP | 995 | 5 | - | 0.7 | |||
4CA | 960 | - | 40 | - | |||
0.5SAP4CA | 955 | 5 | 40 | 0.7 |
Group | Healing Index (%) | |||
---|---|---|---|---|
0 d | 7 d | 28 d | 90 d | |
Control | 0 | 4.0 | 7.0 | 11 |
0.5SAP | 0 | 58.2 | 64.6 | 68.1 |
4CA | 0 | 31.9 | 76.5 | 93.6 |
0.5SAP4CA | 0 | 78.2 | 93.2 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.-Z.; Ma, X.; Liu, Y. Study on the Synergistic Effect of Superabsorbent Polymer and Crystalline Admixture on Self-Healing Performance of Mortar Based on Image Binarization Method. Buildings 2023, 13, 2953. https://doi.org/10.3390/buildings13122953
Zhang G-Z, Ma X, Liu Y. Study on the Synergistic Effect of Superabsorbent Polymer and Crystalline Admixture on Self-Healing Performance of Mortar Based on Image Binarization Method. Buildings. 2023; 13(12):2953. https://doi.org/10.3390/buildings13122953
Chicago/Turabian StyleZhang, Guang-Zhu, Xiang Ma, and Yao Liu. 2023. "Study on the Synergistic Effect of Superabsorbent Polymer and Crystalline Admixture on Self-Healing Performance of Mortar Based on Image Binarization Method" Buildings 13, no. 12: 2953. https://doi.org/10.3390/buildings13122953
APA StyleZhang, G. -Z., Ma, X., & Liu, Y. (2023). Study on the Synergistic Effect of Superabsorbent Polymer and Crystalline Admixture on Self-Healing Performance of Mortar Based on Image Binarization Method. Buildings, 13(12), 2953. https://doi.org/10.3390/buildings13122953