Model Predictive Control for Energy Optimization of HVAC Systems Using EnergyPlus and ACO Algorithm
Abstract
:1. Introduction
MPC Paradigms
2. Methodology
2.1. Model Predictive Control
- (i)
- the current states of the building, which is denoted as xn, and
- (ii)
- the prediction of disturbance variables (i.e., )
2.1.1. Cost Function and Constraints
2.1.2. Ant Colony Optimization
2.1.3. EnergyPlus-Matlab Co-Simulation-Optimization Platform
2.2. Case Study: Building Description
2.3. Temperature Reset Energy Saving Strategies
3. Results
3.1. Energy Analysis
3.2. Indoor Temperature Conditions
3.3. Optimality of Solutions
3.4. Convergence Speed
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilberforce, T.; Olabi, A.G.; Sayed, E.T.; Elsaid, K.; Maghrabie, H.M.; Abdelkareem, M.A. A review on zero energy buildings—Pros and cons. Energy Built Environ. 2023, 4, 25–38. [Google Scholar] [CrossRef]
- IEA. Is Cooling the Future of Heating? IEA: Paris, France, 2020. Available online: https://www.iea.org/commentaries/is-cooling-the-future-of-heating (accessed on 29 November 2023).
- IEA. Heating; IEA: Paris, France, 2021. Available online: https://www.iea.org/reports/heating (accessed on 29 November 2023).
- IEA. Space Cooling; IEA: Paris, France, 2023. Available online: https://www.iea.org/energy-system/buildings/space-cooling (accessed on 29 November 2023).
- Bamdad, K.; Matour, S.; Izadyar, N.; Law, T. Introducing extended natural ventilation index for buildings under the present and future changing climates. Build. Environ. 2022, 226, 109688. [Google Scholar] [CrossRef]
- Bamdad, K. Cool roofs: A climate change mitigation and adaptation strategy for residential buildings. Build. Environ. 2023, 236, 110271. [Google Scholar] [CrossRef]
- Memiş, S.; Karakoç, Ö. An Application of Soft Decision-Making Methods to Energy Planning of Turkey. In Proceedings of the 2nd Rumelİ Energy and Design Symposium for Sustainable Environment, İstanbul, Türkiye, 17–18 February 2022; pp. 146–157. [Google Scholar]
- Lin, Y.; Yang, W. Building Energy-Saving Technology. Buildings 2023, 13, 2161. [Google Scholar] [CrossRef]
- Hilal, N.A.; Haggag, M.; Saleh, A.D. Optimizing Energy Efficiency in High-Rise Residential Buildings in Abu Dhabi’s Hot Climate: Exploring the Potential of Double Skin Façades. Buildings 2023, 13, 2148. [Google Scholar] [CrossRef]
- Australian Government, Department of Climate Change, Energy, the Environment and Water. Building Management Systems. Available online: https://www.energy.gov.au/business/equipment-and-technology-guides/building-management-systems (accessed on 29 November 2023).
- Zhang, K.; Blum, D.; Cheng, H.; Paliaga, G.; Wetter, M.; Granderson, J. Estimating ASHRAE Guideline 36 energy savings for multi-zone variable air volume systems using Spawn of EnergyPlus. J. Build. Perform. Simul. 2022, 15, 215–236. [Google Scholar] [CrossRef]
- Wetter, M.; Benne, K.; Gautier, A.; Nouidui, T.S.; Ramle, A.; Roth, A.; Tummescheit, H.; Mentzer, S.; Winther, C. Lifting the Garage Door on Spawn, an Open-Source Bemcontrols Engine; ASHRAE: Peachtree Corners, GA, USA, 2021. [Google Scholar]
- Bannister, P.; Zhang, H. Optimisation of Supply Air Temperature Controls for VAV Systems in Temperate Australia. In Proceedings of the International Building Performance Simulation Association, Hyderabad, India, 7–9 December 2015. [Google Scholar]
- Bannister, P.; Zhang, H. What Simulation Can Tell Us about Building Tuning. Ecolibrium 2014. Available online: https://www.academia.edu/84173102/What_simulation_can_tell_us_about_building_tuning (accessed on 29 November 2023).
- Daixin, T.; Hongwei, X.; Huijuan, Y.; Hao, Y.; Wen, H. Optimization of group control strategy and analysis of energy saving in refrigeration plant. Energy Built Environ. 2022, 3, 525–535. [Google Scholar] [CrossRef]
- Bamdad, K.; Matour, S.; Izadyar, N.; Omrani, S. Impact of climate change on energy saving potentials of natural ventilation and ceiling fans in mixed-mode buildings. Build. Environ. 2022, 209, 108662. [Google Scholar] [CrossRef]
- Rockett, P.; Hathway, E.A. Model-predictive control for non-domestic buildings: A critical review and prospects. Build. Res. Inf. 2017, 45, 556–571. [Google Scholar] [CrossRef]
- Ul Haq, A.A.; Cholette, M.E.; Djurdjanovic, D. A Dual-Mode Model Predictive Control Algorithm Trajectory Tracking in Discrete-Time Nonlinear Dynamic Systems. J. Dyn. Syst. Meas. Control 2017, 139, 044501. [Google Scholar] [CrossRef]
- Cai, Z.; Ul Haq, A.A.; Cholette, M.E.; Djurdjanovic, D. Energy Efficiency and Tracking Performance Evaluation for Dual-Mode Model Predictive Control of HVAC Systems. J. Therm. Sci. Eng. Appl. 2018, 10, 041023. [Google Scholar] [CrossRef]
- Killian, M.; Kozek, M. Ten questions concerning model predictive control for energy efficient buildings. Build. Environ. 2016, 105, 403–412. [Google Scholar] [CrossRef]
- Zhan, S.; Chong, A. Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective. Renew. Sustain. Energy Rev. 2021, 142, 110835. [Google Scholar] [CrossRef]
- Drgoňa, J.; Picard, D.; Helsen, L. Cloud-based implementation of white-box model predictive control for a GEOTABS office building: A field test demonstration. J. Process Control 2020, 88, 63–77. [Google Scholar] [CrossRef]
- Oldewurtel, F.; Parisio, A.; Jones, C.N.; Gyalistras, D.; Gwerder, M.; Stauch, V.; Lehmann, B.; Morari, M. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 2012, 45, 15–27. [Google Scholar] [CrossRef]
- Hilliard, T.; Kavgic, M.; Swan, L. Model predictive control for commercial buildings: Trends and opportunities. Adv. Build. Energy Res. 2016, 10, 172–190. [Google Scholar] [CrossRef]
- Drgoňa, J.; Arroyo, J.; Cupeiro Figueroa, I.; Blum, D.; Arendt, K.; Kim, D.; Ollé, E.P.; Oravec, J.; Wetter, M.; Vrabie, D.L.; et al. All you need to know about model predictive control for buildings. Annu. Rev. Control 2020, 50, 190–232. [Google Scholar] [CrossRef]
- Sturzenegger, D.; Gyalistras, D.; Morari, M.; Smith, R.S. Model Predictive Climate Control of a Swiss Office Building: Implementation, Results, and Cost–Benefit Analysis. IEEE Trans. Control Syst. Technol. 2016, 24, 1–12. [Google Scholar] [CrossRef]
- Prívara, S.; Široký, J.; Ferkl, L.; Cigler, J. Model predictive control of a building heating system: The first experience. Energy Build. 2011, 43, 564–572. [Google Scholar] [CrossRef]
- Huang, H.; Chen, L.; Hu, E. A neural network-based multi-zone modelling approach for predictive control system design in commercial buildings. Energy Build. 2015, 97, 86–97. [Google Scholar] [CrossRef]
- Huang, H.; Chen, L.; Hu, E. A new model predictive control scheme for energy and cost savings in commercial buildings: An airport terminal building case study. Build. Environ. 2015, 89, 203–216. [Google Scholar] [CrossRef]
- Blum, D.; Wang, Z.; Weyandt, C.; Kim, D.; Wetter, M.; Hong, T.; Piette, M.A. Field demonstration and implementation analysis of model predictive control in an office HVAC system. Appl. Energy 2022, 318, 119104. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, T. Reinforcement learning for building controls: The opportunities and challenges. Appl. Energy 2020, 269, 115036. [Google Scholar] [CrossRef]
- Zanoli, S.M.; Pepe, C. Thermal, Lighting and IAQ Control System for Energy Saving and Comfort Management. Processes 2023, 11, 222. [Google Scholar] [CrossRef]
- Maddalena, E.T.; Lian, Y.; Jones, C.N. Data-driven methods for building control—A review and promising future directions. Control Eng. Pract. 2020, 95, 104211. [Google Scholar] [CrossRef]
- Mariano-Hernández, D.; Hernández-Callejo, L.; Zorita-Lamadrid, A.; Duque-Pérez, O.; Santos García, F. A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis. J. Build. Eng. 2021, 33, 101692. [Google Scholar] [CrossRef]
- Serale, G.; Fiorentini, M.; Capozzoli, A.; Bernardini, D.; Bemporad, A. Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities. Energies 2018, 11, 631. [Google Scholar] [CrossRef]
- Afroz, Z.; Shafiullah, G.M.; Urmee, T.; Higgins, G. Modeling techniques used in building HVAC control systems: A review. Renew. Sustain. Energy Rev. 2018, 83, 64–84. [Google Scholar] [CrossRef]
- Benndorf, G.A.; Wystrcil, D.; Réhault, N. Energy performance optimization in buildings: A review on semantic interoperability, fault detection, and predictive control. Appl. Phys. Rev. 2018, 5, 041501. [Google Scholar] [CrossRef]
- Li, X.; Wen, J. Review of building energy modeling for control and operation. Renew. Sustain. Energy Rev. 2014, 37, 517–537. [Google Scholar] [CrossRef]
- Wetter, M.; Bonvini, M.; Nouidui, T.S. Equation-based languages—A new paradigm for building energy modeling, simulation and optimization. Energy Build. 2016, 117, 290–300. [Google Scholar] [CrossRef]
- Ramos Ruiz, G.; Lucas Segarra, E.; Fernández Bandera, C. Model Predictive Control Optimization via Genetic Algorithm Using a Detailed Building Energy Model. Energies 2019, 12, 34. [Google Scholar] [CrossRef]
- Jorissen, F.; Helsen, L. Integrated Modelica Model and Model Predictive Control of a Terraced House Using IDEAS; Linköping University Electronic Press: Linköping, Sweden, 2018; Available online: https://modelica.org/events/modelica2019/subpages/modelica-conference-2019-proceedings (accessed on 29 November 2023).
- Cupeiro, I.; Drgoňa, J.; Abdollahpouri, M.; Picard, D.; Helsen, L. State Observers for Optimal Control Using White-Box Building Models. In Proceedings of the 5th International High Performance Buildings Conference at Purdue, West Lafayette, IN, USA, 9–12 July 2018. [Google Scholar]
- May-Ostendorp, P.; Henze, G.P.; Corbin, C.D.; Rajagopalan, B.; Felsmann, C. Model-predictive control of mixed-mode buildings with rule extraction. Build. Environ. 2011, 46, 428–437. [Google Scholar] [CrossRef]
- Coffey, B.; Haghighat, F.; Morofsky, E.; Kutrowski, E. A software framework for model predictive control with GenOpt. Energy Build. 2010, 42, 1084–1092. [Google Scholar] [CrossRef]
- Li, X.; Malkawi, A. Multi-objective optimization for thermal mass model predictive control in small and medium size commercial buildings under summer weather conditions. Energy 2016, 112, 1194–1206. [Google Scholar] [CrossRef]
- Zhao, J.; Lam, K.P.; Ydstie, B.E.; Karaguzel, O.T. EnergyPlus model-based predictive control within design–build–operate energy information modelling infrastructure. J. Build. Perform. Simul. 2015, 8, 121–134. [Google Scholar] [CrossRef]
- Jeon, B.-K.; Kim, E.-J. White-Model Predictive Control for Balancing Energy Savings and Thermal Comfort. Energies 2022, 15, 2345. [Google Scholar] [CrossRef]
- Afram, A.; Janabi-Sharifi, F.; Fung, A.S.; Raahemifar, K. Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system. Energy Build. 2017, 141, 96–113. [Google Scholar] [CrossRef]
- Ferreira, P.M.; Ruano, A.E.; Silva, S.; Conceição, E.Z.E. Neural networks based predictive control for thermal comfort and energy savings in public buildings. Energy Build. 2012, 55, 238–251. [Google Scholar] [CrossRef]
- Ra, S.J.; Kim, J.-H.; Park, C.S. Real-time model predictive cooling control for an HVAC system in a factory building. Energy Build. 2023, 285, 112860. [Google Scholar] [CrossRef]
- Si, Q.; Wei, J.; Li, Y.; Cai, H. Optimization for the Model Predictive Control of Building HVAC System and Experimental Verification. Buildings 2022, 12, 1602. [Google Scholar] [CrossRef]
- Arroyo, J.; Spiessens, F.; Helsen, L. Identification of multi-zone grey-box building models for use in model predictive control. J. Build. Perform. Simul. 2020, 13, 472–486. [Google Scholar] [CrossRef]
- Reynders, G.; Diriken, J.; Saelens, D. Quality of grey-box models and identified parameters as function of the accuracy of input and observation signals. Energy Build. 2014, 82, 263–274. [Google Scholar] [CrossRef]
- De Coninck, R.; Helsen, L. Practical implementation and evaluation of model predictive control for an office building in Brussels. Energy Build. 2016, 111, 290–298. [Google Scholar] [CrossRef]
- O’Dwyer, E.; De Tommasi, L.; Kouramas, K.; Cychowski, M.; Lightbody, G. Modelling and disturbance estimation for model predictive control in building heating systems. Energy Build. 2016, 130, 532–545. [Google Scholar] [CrossRef]
- Bird, M.; Daveau, C.; O’Dwyer, E.; Acha, S.; Shah, N. Real-world implementation and cost of a cloud-based MPC retrofit for HVAC control systems in commercial buildings. Energy Build. 2022, 270, 112269. [Google Scholar] [CrossRef]
- Kim, D.; Braun, J.E. MPC solution for optimal load shifting for buildings with ON/OFF staged packaged units: Experimental demonstration, and lessons learned. Energy Build. 2022, 266, 112118. [Google Scholar] [CrossRef]
- Jennifer, D.; José, A.C.; Andreas, K.A.; Karine, L. Predictive Setpoint Optimization of a Commercial Building Subject to a Winter Demand Penalty Affecting 12 Months of Utility Bills. In Proceedings of the Building Simulation 2017: 15th Conference of IBPSA, San Francisco, CA, USA, 7–9 August 2017; pp. 2209–2216. [Google Scholar]
- Arendt, K.; Jradi, M.; Shaker, H.R.; Veje, C.T. Comparative Analysis of White-, Gray- and Black-box Models for Thermal Simulation of Indoor Environment: Teaching Building Case Study. In Proceedings of the 2018 Building Performance Modeling Conference and SimBuild Co-Organized by ASHRAE and IBPSA, Chicago, IL, USA, 26–28 September 2018. [Google Scholar]
- Afram, A.; Janabi-Sharifi, F. Black-box modeling of residential HVAC system and comparison of gray-box and black-box modeling methods. Energy Build. 2015, 94, 121–149. [Google Scholar] [CrossRef]
- Afram, A.; Fung, A.S.; Janabi-Sharifi, F.; Raahemifar, K. Development and performance comparison of low-order black-box models for a residential HVAC system. J. Build. Eng. 2018, 15, 137–155. [Google Scholar] [CrossRef]
- Picard, D.; Sourbron, M.; Váňa, Z.; Cigler, J.; Ferkl, L.; Helsen, L.; Jorissen, F. Comparison of Model Predictive Control Performance Using Grey-Box and White-Box Controller Models of a Multi-zone Office Building. In Proceedings of the International High Performance Buildings Conference at Purdue, West Lafayette, IN, USA, 11–14 July 2016. [Google Scholar]
- Jorissen, F.; Picard, D.; Six, K.; Helsen, L. Detailed White-Box Non-Linear Model Predictive Control forScalable Building HVAC Control. In Proceedings of the 14th International Modelica Conference, Linköping, Sweden, 20–24 September 2021. [Google Scholar]
- Bamdad, K.; Cholette, M.E.; Guan, L.; Bell, J. Ant colony algorithm for building energy optimisation problems and comparison with benchmark algorithms. Energy Build. 2017, 154, 404–414. [Google Scholar] [CrossRef]
- Bamdad, K.; Cholette, M.E.; Guan, L.; Bell, J. Building energy optimisation under uncertainty using ACOMV algorithm. Energy Build. 2018, 167, 322–333. [Google Scholar] [CrossRef]
- Bamdad Masouleh, K. Building Energy Optimisation Using Machine Learning and Metaheuristic Algorithms. Ph.D. Thesis, Queensland University of Technology, Brisbane City, QLD, Australia, 2018. [Google Scholar] [CrossRef]
- Socha, K.; Dorigo, M. Ant colony optimization for continuous domains. Eur. J. Oper. Res. 2008, 185, 1155–1173. [Google Scholar] [CrossRef]
- Hoes, P.-J.; Loonen, R.; Trcka, M.; Hensen, J. Performance prediction of advanced building controls in the design phase using ESP-r, BCVTB and Matlab. In Proceedings of the First IBPSA-Engeland conference Building Simulation and Optimization, Loughborough, UK, 10–11 September 2012. [Google Scholar]
- Hu, J.; Karava, P. Simulation of anticipatory control strategies in buildings with mixed-mode cooling. In Proceedings of the International Building Performance Simulation Association, Chambéry, France, 26–28 August 2013. [Google Scholar]
- Aljafari, B.; Devarajan, G.; Subramani, S.; Vairavasundaram, S. Intelligent RBF-Fuzzy Controller Based Non-Isolated DC-DC Multi-Port Converter for Renewable Energy Applications. Sustainability 2023, 15, 9425. [Google Scholar] [CrossRef]
- Singh, R.R.; Yash, S.M.; Shubham, S.C.; Indragandhi, V.; Vijayakumar, V.; Saravanan, P.; Subramaniyaswamy, V. IoT embedded cloud-based intelligent power quality monitoring system for industrial drive application. Future Gener. Comput. Syst. 2020, 112, 884–898. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; De Stasio, C.; Mauro, G.M.; Vanoli, G.P. Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort. Energy Build. 2016, 111, 131–144. [Google Scholar] [CrossRef]
- Fernandez, N.; Katipamula, S.; Wang, W.; Xie, Y.; Zhao, M.; Corbin, C. Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction; PNNL-25985; Pacific Northwest National Laboratory: Richland, DC, USA, 2017. [Google Scholar]
- Wei, G.; Claridge, D.; Liu, M. Optimize the Supply Air Temperature Reset Schedule for a Single-Duct VAV System. In Proceedings of the Twelfth Symposium on Improving Building Systems in Hot and Humid Climates, San Antonio, TX, USA, 15–17 May 2000. [Google Scholar]
- Ma, J.; Qin, J.; Salsbury, T.; Xu, P. Demand reduction in building energy systems based on economic model predictive control. Chem. Eng. Sci. 2012, 67, 92–100. [Google Scholar] [CrossRef]
- Wetter, M.; Wright, J. A comparison of deterministic and probabilistic optimization algorithms for nonsmooth simulation-based optimization. Build. Environ. 2004, 39, 989–999. [Google Scholar] [CrossRef]
Component | Construction Materials | U-Value(W/m2-K) |
---|---|---|
Roof | Gravel built up roof with insulation and plywood sheathing | 0.267 |
Wall | Wood shingle over plywood, insulation, gypsum board | 0.520 |
Floor | Slab is 0.1 m heavy concrete | |
Window | 6 mm clear glass | 5.89 |
Parameters | Values |
---|---|
Total floor area (m2) | 463 (30.5 × 15.2) |
Zone height (m) | ~2.5 |
Equipment load (W/m2) | 7.5 |
Lighting load (W/m2) | 9.3 |
Occupancy density (Person/m2) | 0.1 |
HVAC system | VAV system with electrical reheats |
Chiller COP | 3.67 |
Temperature set-point (°C) | 21–24 |
Temperature set-back (°C) | 13–32 |
Pump configuration | Constant primary, variable secondary |
Fan delta pressure (Pa) | 600 |
Fan efficiency | 0.7 |
Fan motor efficiency | 0.9 |
Infiltration rate | 1.5 ach (1 ach during HVAC hours) |
Day 1 | Day 2 | Day 3 | Annual | ||
---|---|---|---|---|---|
HVAC energy savings (%) | RBC | 8.9 | −0.3 | −0.3 | 24 |
MPC | 17.6 | 7.6 | 3.7 | _ | |
HVAC peak load reduction (%) | RBC | 34.2 | ~0 | ~0 | ~0.3 |
MPC | 49.7 | 18.3 | 2 | _ |
8:00 | 9:00 | 10:00 | 11:00 | 12:00 | 13:00 | 14:00 | 15:00 | 16:00 | 17:00 | 18:00 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Day 1 | BC | 19.3 | 21.7 | 22.5 | 22.8 | 23.1 | 23.6 | 23.8 | 23.7 | 23.6 | 23.4 | 22.5 |
RBC | 20.0 | 22.0 | 22.5 | 22.8 | 23.2 | 23.6 | 23.8 | 23.7 | 23.6 | 23.4 | 22.5 | |
MPC | 20.0 | 22.0 | 22.7 | 23.3 | 23.8 | 24.0 | 23.9 | 24.0 | 24.0 | 23.8 | 23.1 | |
Day 2 | BC | 20.2 | 21.9 | 22.7 | 23.1 | 23.4 | 23.7 | 23.9 | 23.9 | 23.9 | 23.9 | 23.3 |
RBC | 19.3 | 21.0 | 21.6 | 22.3 | 22.7 | 23.1 | 23.4 | 23.6 | 23.7 | 23.6 | 22.8 | |
MPC | 20.8 | 22.2 | 23.1 | 23.3 | 23.5 | 23.7 | 23.9 | 23.9 | 24.0 | 24.1 | 23.7 | |
Day 3 | BC | 20.7 | 21.7 | 23.1 | 23.6 | 24.0 | 24.1 | 24.0 | 24.0 | 24.0 | 24.0 | 23.4 |
RBC | 20.7 | 21.7 | 23.1 | 23.6 | 24.0 | 24.1 | 24.0 | 24.0 | 24.0 | 24.0 | 23.4 | |
MPC | 21.4 | 22.1 | 23.3 | 24.0 | 24.2 | 24.3 | 24.3 | 24.0 | 24.0 | 24.0 | 23.8 |
Operating System | Windows 11 (Pro) |
---|---|
Processor | 12th Generation Intel(R) Core i7-1260P (18 MB Cache, up to 4.7 GHz) |
Memory | 16 GB (2 × 8 GB) |
Computational time | 22 a min |
15 b min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamdad, K.; Mohammadzadeh, N.; Cholette, M.; Perera, S. Model Predictive Control for Energy Optimization of HVAC Systems Using EnergyPlus and ACO Algorithm. Buildings 2023, 13, 3084. https://doi.org/10.3390/buildings13123084
Bamdad K, Mohammadzadeh N, Cholette M, Perera S. Model Predictive Control for Energy Optimization of HVAC Systems Using EnergyPlus and ACO Algorithm. Buildings. 2023; 13(12):3084. https://doi.org/10.3390/buildings13123084
Chicago/Turabian StyleBamdad, Keivan, Navid Mohammadzadeh, Michael Cholette, and Srinath Perera. 2023. "Model Predictive Control for Energy Optimization of HVAC Systems Using EnergyPlus and ACO Algorithm" Buildings 13, no. 12: 3084. https://doi.org/10.3390/buildings13123084
APA StyleBamdad, K., Mohammadzadeh, N., Cholette, M., & Perera, S. (2023). Model Predictive Control for Energy Optimization of HVAC Systems Using EnergyPlus and ACO Algorithm. Buildings, 13(12), 3084. https://doi.org/10.3390/buildings13123084