The Impact of Citizens’ Participation Level on Smart Sustainable Cities Outcomes: Evidence from Saudi Arabia
Abstract
:1. Introduction
2. Literature Review
2.1. Citizens’ Participation Measures
2.2. Smart Sustainable Cities Outcomes
2.3. Objectives and Hypotheses
3. Research Methodology
3.1. Data Collection for Interview
3.2. Data Collection for Questionnaire
3.3. Data Analysis Techniques
3.4. Data Reliability
Mean Score | SD * | Rank | |
---|---|---|---|
Accountability and responsibility | |||
Improving existing services | 3.9513 | 0.88057 | 1 |
Analysing the level of satisfaction with service | 3.4735 | 1.12020 | 2 |
Priority of city’s projects | 2.1991 | 0.92386 | 3 |
Improving policy development | 2.1372 | 0.82394 | 4 |
Developing urban planning | 2.0044 | 0.70866 | 5 |
Budgeting and implementation | 1.9558 | 0.72283 | 6 |
Transparency | |||
Citizens can request public information from authorities | 3.4823 | 0.98979 | 1 |
Citizens can request sensitive information from authorities | 3.4801 | 1.01224 | 2 |
Ongoing monitoring projects | 3.4735 | 1.11224 | 3 |
Authorities specify the response to shared information | 2.6372 | 1.16285 | 4 |
Making demands to enforce legal standards | 1.7301 | 0.96732 | 5 |
Participation | |||
Achieving better customer satisfaction levels | 3.0929 | 1.30478 | 1 |
Access and receive information that is easily understood and useful to users | 2.6416 | 1.18503 | 2 |
Identify what citizens want and what they can offer | 2.1681 | 1.10275 | 3 |
Fostering citizen influence in decision making | 1.6637 | 0.94855 | 4 |
Inclusion | |||
Improving the image of the local government | 3.4956 | 1.14406 | 1 |
Informing citizens about what is going on in the local government | 2.6991 | 1.26410 | 2 |
Holding demonstrations to protest against poor service quality | 2.2478 | 1.48791 | 3 |
Complying with legal requirements | 1.8584 | 1.02300 | 4 |
4. Results and Discussion
4.1. Theme 1: Adoption of Smart City Project among Citizens
4.2. Theme 2: The Drivers of CPL and SSCO
4.3. Theme 3: Causal Relationship between CPL and SSCO
4.4. Validating the Correlation between CPL and SSCO
- Table 10 shows that smart economy was predicted by all of the four CPLs F(13.526) = 1.868, R2 = 0.647, Adj. R2 = 0.615.
- Table 11 shows that smart people was predicted by all of the four CPLs F(12.672) = 1.868, R2 = 0.717, Adj. R2 = 0.685.
- Table 12 shows that smart governance was predicted by all of the four CPLs F(13.583) = 1.868, R2 = 0.817, Adj. R2 = 0.705.
- Table 13 shows that smart mobility was predicted by all of the four CPLs F(13.349) = 1.868, R2 = 0.644, Adj. R2 = 0.545.
- Table 14 shows that smart environment was predicted by all of the four CPLs F(14.073) = 1.868, R2 = 0.796, Adj. R2 = 0.71.
- Table 15 shows that smart living was predicted by all of the four CPLs F(14.011) = 1.868, R2 = 0.760, Adj. R2 = 0.660.
- All these Adj R2 values are above 0.5, indicating a significant correlation between each SCCO and the CPL.
4.5. Endogeneity Testing of the Effect of SSCO on CLP
- The CLP predicted by the six SSCO variables F= (−1.435), R2 = 0.24, Adj. R2 = 0.29.
4.6. Multivariate Regression Analysis between CPL and SSCO
4.7. Accountability and Responsibility
4.8. Transparency
4.9. Participation
4.10. Inclusion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CP | Citizens’ participation |
CPL | Citizens’ participation level |
FSCP | Future Saudi Cities Program |
ICT | Information communication technology |
MoMRA | Minister of Municipal and Rural Affairs |
MS | Mean score |
SSC | Smart sustainable cities |
SSCO | Smart sustainable cities outcome |
TS | Temporal sequence |
NA | Nonspurious association |
CA | Concomitant variation |
Notations
Notation | Meaning |
mean score for eat predictor | |
the participants’ score based on a Likert scale | |
is the total number of participants | |
intercept/constant | |
, ,.., | regression coefficients |
predictors | |
predictive error or residual | |
is the dependent variable | |
Where is the matrix of the dependent variable | |
X | Is the predictors, |
Is the error factor | |
Is the matrix of the regression parameters |
References
- Andone, D.; Holotescu, C.; Grosseck, G. Learning Communities in Smart Cities. Case Studies. In Proceedings of the 2014 International Conference on Web and Open Access to Learning (ICWOAL), Dubai, United Arab Emirates, 25–27 November 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Romero-Lankao, P.; Frantzeskaki, N.; Griffith, C. Sustainability transformation emerging from better governance. In Urban Planet. Knowledge towards Sustainable Cities; Cambridge University Press: Cambridge, UK, 2018; pp. 263–280. [Google Scholar] [CrossRef]
- Evans, B.; Joas, M.; Sundback, S.; Theobald, K. Governing local sustainability. J. Environ. Plan. Manag. 2006, 49, 849–867. [Google Scholar] [CrossRef]
- Allmendinger, P.; Tewdwr-Jones, M. New Labour, new planning? The trajectory of planning in Blair’s Britain. Urban Stud. 2000, 37, 1379–1402. [Google Scholar] [CrossRef]
- Almughairy, A.M. Rethinking Regional Development Strategies in Saudi Arabia: Planning Processes, Governance, and Implementation. J. Sustain. Dev. 2019, 12, 131. [Google Scholar] [CrossRef] [Green Version]
- Al-Hathloul, S. Riyadh development plans in the past fifty years (1967–2016). Curr. Urban Stud. 2017, 5, 97. [Google Scholar] [CrossRef] [Green Version]
- Shaw, D.; Sturzaker, J.; Brodie, K.; Sykes, O.; Dembski, S.; Sahar, A. Urban Planning Reviews: Governance of Planning, Local Planning and Urban Management; University of Liverpool: Liverpool, UK, 2016; Volume 2, Available online: https://livrepository.liverpool.ac.uk/3028230/1/Urban-Planning-Reviews_Output-1_Governance.pdf (accessed on 10 January 2023).
- Petesch, P.; Smulovitz, C.; Walton, M. Evaluating empowerment: A framework with cases from Latin America. In Measuring Empowerment: Cross-Disciplinary Perspectives; Narayan-Parker, D., Ed.; World Bank Press: Washington, DC, USA, 2005; pp. 39–68. [Google Scholar]
- Groom, Q.; Strubbe, D.; Adriaens, T.; Davis, A.J.; Desmet, P.; Oldoni, D.; Reyserhove, L.; Roy, H.E.; Vanderhoeven, S. Empowering citizens to inform decision-making as a way forward to support invasive alien species policy. Citiz. Sci. Theory Pract. 2019, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- World Development Report, Making Services Work for Poor People. 2004. Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/5986/WDR%202004%20-%20English.pdf?sequence=1&isAllowed=y (accessed on 10 January 2023).
- Erete, S.; Burrell, J.O. Empowered Participation: How Citizens Use Technology in Local Governance. In Proceedings of the Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 2307–2319. [Google Scholar] [CrossRef]
- Gaber, J. Building “A Ladder of Citizen Participation”: Sherry Arnstein, Citizen Participation, and Model Cities. J. Am. Plan. Assoc. 2019, 85, 188–201. [Google Scholar] [CrossRef]
- Sigwejo, A.; Pather, S. A citizen-centric framework for assessing e-government effectiveness. Electron. J. Inf. Syst. Dev. Ctries. 2016, 74, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Narayan, D. Bonds and bridges: Social capital and poverty. In Social Capital and Economic Development: Well-Being in Developing Countries; Edward Elgar Publishing: Cheltenham, UK, 2002; pp. 58–81. [Google Scholar] [CrossRef] [Green Version]
- Sartori, G. The Theory of Democracy Revisited; Chatham House: London, UK, 1987; Volume 1. [Google Scholar]
- Dahl, R.A. Democracy and Its Critics; Yale University Press: New Haven, CT, USA, 2008. [Google Scholar]
- Schumpeter, J.A. Capitalism, socialism and democracy (1942). J. Econ. Lit. 1976, 20, 1463. [Google Scholar] [CrossRef]
- UN-Habitat. Jeddah CPI Profile 2018. 2018. Available online: https://unhabitat.org/cpi-profile-jeddah (accessed on 15 January 2023).
- UN-Habitat. Saudi Cities Report 2019. 2018. Available online: https://unhabitat.org/saudi-cities-report-2019 (accessed on 15 January 2023).
- Ministry of Municipal and Rural Affairs. Future Saudi Cities Program. 2018. Available online: https://unhabitat.org/sites/default/files/2020/05/saudi_city_report.english.pdf (accessed on 15 January 2023).
- Knight, B.; Chigudu, H.; Tandon, R. Reviving Democracy: Citizens at the Heart of Government; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar] [CrossRef]
- Lee, J. Citizen Participation, Process, and Transparency in Local Government: An Exploratory Study. Policy Stud. J. 2019, 47, 1020–1041. [Google Scholar] [CrossRef]
- Paulussen, S.; Heinonen, A.; Domingo, D.; Quandt, T. Doing it together: Citizen participation in the professional news making process. OBSERVATORIO 2007, 1, 131–154. [Google Scholar] [CrossRef]
- Lim, A.; Malek, J.A.; Hussain, M.Y.; Tahir, Z. Citizen participation in building citizen-centric smart cities. Malays. J. Soc. Space 2018, 14, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y. Smart cities of the future. Eur. Phys. J. Spec. Top. 2012, 214, 481–518. [Google Scholar] [CrossRef] [Green Version]
- Harrison, C.; Donnelly, I.A. A theory of smart cities. In Proceedings of the 55th Annual Meeting of the ISSS—2011, Hull, UK, 17–22 July 2011. [Google Scholar]
- Lazaroiu, G.C.; Roscia, M. Definition methodology for the smart cities model. Energy 2012, 47, 326–332. [Google Scholar] [CrossRef]
- Odendaal, N. Information and communication technology and local governance: Understanding the difference between cities in developed and emerging economies. Comput. Environ. Urban Syst. 2003, 27, 585–607. [Google Scholar] [CrossRef]
- Castelnovo, W.; Misuraca, G.; Savoldelli, A. Smart cities governance: The need for a holistic approach to assessing urban participatory policy making. Soc. Sci. Comput. Rev. 2016, 34, 724–739. [Google Scholar] [CrossRef]
- Cardullo, P.; Kitchin, R. Being a ‘citizen’ in the smart city: Up and down the scaffold of smart citizen participation in Dublin, Ireland. GeoJournal 2019, 84, 1–13. [Google Scholar] [CrossRef]
- Martina, C.; Evansa, J.; Karvonenb, A.; Krassimira, P.; Yangd, D.; Linjordete, T. Smart-sustainability: A new urban fix? Sustain. Cities Soc. 2019, 45, 640–648. [Google Scholar] [CrossRef]
- Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What are the differences between sustainable and smart cities? Cities 2017, 60, 234–245. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Marques, J.; da Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? a systematic review of the literature. Sustain. Cities Soc. 2018, 45, 348–365. [Google Scholar] [CrossRef]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Mahesa, R.; Yudoko, G.; Anggoro, Y. Dataset on the sustainable smart city development in Indonesia. Data Brief 2019, 25, 104098. [Google Scholar] [CrossRef] [PubMed]
- Rajput, S.; Sharma, P. Sustainable Smart Cities in India: Challenges and Future Perspectives; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Ringenson, T.; Eriksson, E.; Börjesson Rivera, M.; Wangel, J. The Limits of the Smart Sustainable City. In Proceedings of the 2017 Workshop on Computing Within Limits, Santa Barbara, CA, USA, 22–24 June 2017; pp. 3–9. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M. Planning, development and management of sustainable cities: A commentary from the guest editors. Sustainability 2015, 7, 14677–14688. [Google Scholar] [CrossRef] [Green Version]
- Alamoudi, A.K.; Abidoye, R.B.; Lam, T.Y. Critical Review of Citizens’ Participation in Achieving Smart Sustainable Cities: The Case of Saudi Arabia. In International Summit Smart City 360°; Paiva, S., Li, X., Lopes, S.I., Gupta, N., Rawat, D.B., Patel, A., Karimi, H.R., Eds.; Springer: Cham, Switzerland, 2022; Volume 442, pp. 434–454. [Google Scholar] [CrossRef]
- De Mello Torres, J.G.; De Andrade, N.; Neto, P.L.d.O.C. Analysis of the European and Brazilian Rankings of Smart Cities: A Case Study of São José dos Campos and Toulouse. Int. J. Adv. Eng. Res. Sci. 2019, 6, 91–115. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, P.; Giordano, S.; Farouh, H.; Yousef, W. Modelling the Smart City Performance. Innov. Eur. J. Soc. Sci. Res. 2012, 25, 137–149. [Google Scholar] [CrossRef]
- Hanafizadeh, P.; Hanafizadeh, M.R.; Khodabakhshi, M. Extracting Core ICT Indicators Using Entropy Method. Inf. Soc. 2009, 25, 236–247. [Google Scholar] [CrossRef]
- Creswell, J. Research Design: Qualitative, Quantitative, and Mixed Method Approaches; University of Nebraska: Los Angeles, CA, USA, 2009. [Google Scholar]
- Babbie, E.R. The Basics of Social Research, 7th ed.; Cengage Learning: Boston, MA, USA, 2017; p. 310. [Google Scholar]
- Pratama, A.; Imawan, S. A Scale for Measuring Perceived Bureaucratic Readiness for Smart Cities. Public Adm. Policy Asia-Pac. J. 2019, 22, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Granier, B.; Kudo, H. How are citizens involved in smart cities? analysing citizen participation in Japanese “Smart Communities”. Inf. Polity 2016, 21, 61–76. [Google Scholar] [CrossRef]
- Niezabitowska, E.D. Research Methods and Techniques in Architecture; Routledge: Oxfordshire, UK, 2018; pp. P138–P260. [Google Scholar]
- Akins, R.; Tolson, H.; Cole, B. Stability of response characteristics of a Delphi panel: Application of bootstrap data expansion. BMC Med. Res. Methodol. 2005, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Osei-Kyei, R. A Best Practice Framework for Public Private Partnership Implementation For Infrastructure Development in Chana; The Hong Kong Polytechnic University: Hong Kong, 2018. [Google Scholar]
- Patton, M.Q. Qualitative Research. Encycl. Stat. Behav. Sci. 2005. [Google Scholar] [CrossRef]
- Etikan, I.; Musa, S.A.; Alkassim, R.S. Comparison of convenience sampling and purposive sampling. Am. J. Theor. Appl. Stat. 2016, 5, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Yager, J.; Kunkle, R.; Fochtmann, L.J.; Reid, S.M.; Plovnick, R.; Nininger, J.E.; Silverman, J.J.; Vergare, M.J. Who’s your expert? use of an expert opinion survey to inform the development of American psychiatric Association practice guidelines. Acad. Psychiatry 2014, 38, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Pallant, J. A Step by Step Guide to Data Analysis Using SPSS Survival Manual, 6th ed.; McGraw-Hill Education: London, UK, 2016. [Google Scholar]
- Stevens, R. Understanding the Self; SAGE in Association with the Open University: London, UK, 1996. [Google Scholar]
- Coakes, S.J.; Steed, L.G. SPSS: Analysis without Anguish; John Wiley & Sons: Milton, QLD, Australia, 2003. [Google Scholar]
- The Work Bank. Labor Force, Female (% of Total Labor Force)—Saudi Arabia. Available online: https://data.worldbank.org/indicator/SL.TLF.TOTL.FE.ZS?locations=SA (accessed on 22 November 2022).
- Al-Hazzaa, H.M. Physical inactivity in Saudi Arabia revisited: A systematic review of inactivity prevalence and perceived barriers to active living. Int. J. Heal. Sci. 2018, 12, 50–64. [Google Scholar]
- Naseem, S.; Dhruva, K. Issues and Challenges of Saudi Female Labor Force and the Role of Vision 2030: A Working Paper. Int. J. Econ. Financ. Issues 2017, 7, 23–27. [Google Scholar]
- Ke, F. A qualitative meta-analysis of computer games as learning tools. In Gaming and Simulations: Concepts, Methodologies, Tools and Applications; IGI Global: Hershey, PA, USA, 2011; pp. 1619–1665. [Google Scholar] [CrossRef]
- Bangor, A.; Kortum, P.; Miller, J. Determining what individual SUS scores mean: Adding a subjective rating scale. J. Usability Stud. 2009, 4, 114–123. [Google Scholar] [CrossRef]
- Cheung, E.; Chan, A.P. Risk factors of public-Private partnership projects in China: Comparison between the water, power, and transportation sectors. J. Urban Plan. Dev. 2011, 137, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Gliem, J.A.; Gliem, R.R. Calculating, Interpreting, and Reporting Cronbach’s Alpha Reliability Coefficient for Likert-type Scales. 2003 Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education, Columbus. pp. 82–88. Available online: https://hdl.handle.net/1805/344 (accessed on 5 January 2023).
- Draper, N.R.; Smith, H. Applied Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1998; Volume 326. [Google Scholar]
- Osei-Kyei, R.; Chan, A.P. Model for predicting the success of public–private partnership infrastructure projects in developing countries: A case of Ghana. Archit. Eng. Des. Manag. 2019, 15, 213–232. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Yan, R.; Song, Y. Analysing the impact of smart city service quality on citizen engagement in a public emergency. Cities 2022, 120, 103439. [Google Scholar] [CrossRef] [PubMed]
- Hayu, R.; Surachman, S.; Rofiq, A.; Rahayu, M. The effect of website quality and government regulations on online impulse buying behaviour. Manag. Sci. Lett. 2020, 10, 961–968. [Google Scholar] [CrossRef]
- Alamoudi, A.K.; Abidoye, R.B.; Lam, T.Y.M. An evaluation of stakeholders’ participation process in developing smart sustainable cities in Saudi Arabia. Smart Sustain. Built Environ. 2022; ahead of print. [Google Scholar] [CrossRef]
- Saguin, K. Cultivating beneficiary citizenship in urban community gardens in Metro Manila. Urban Stud. 2020, 57, 3315–3330. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. A novel model for data-driven smart sustainable cities of the future: A strategic roadmap to transformational change in the era of big data. Future Cities Environ. Plan. A Econ. Space 2021, 7, 3. [Google Scholar] [CrossRef]
- Malek, J.A.; Lim, S.B.; Yigitcanlar, T. Social Inclusion Indicators for Building Citizen-Centric Smart Cities: A Systematic Literature Review. Sustainability 2021, 13, 376. [Google Scholar] [CrossRef]
- Gohari, S.; Baer, D.; Nielsen, B.F.; Gilcher, E.; Situmorang, W.Z. Prevailing Approaches and Practices of Citizen Participation in Smart City Projects: Lessons from Trondheim, Norway. Infrastructures 2020, 5, 36. [Google Scholar] [CrossRef]
- Alamoudi, A.K.; Abidoye, R.B.; Lam, T.Y.M. The Impact of Stakeholders’ Management Measures on Citizen’ Participation Level in Implementing Smart Sustainable Cities. Sustainability 2022, 14, 16617. [Google Scholar] [CrossRef]
- Granger, C.W. Some aspects of causal relationships. J. Econom. 2003, 112, 69. [Google Scholar] [CrossRef]
- Wörgötter, F.; Porr, B. Temporal sequence learning, prediction, and control: A review of different models and their relation to biological mechanisms. Neural Comput. 2005, 17, 245–319. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.C.; Ivry, R.B. Spatial and temporal sequence learning in patients with Parkinson’s disease or cerebellar lesions. J. Cogn. Neurosci. 2003, 15, 1232–1243. [Google Scholar] [CrossRef]
- Spivakov, M. Spurious transcription factor binding: Non-functional or genetically redundant? Bioessays 2014, 36, 798–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorjonen, K.; Nilsonne, G.; Ingre, M.; Melin, B. Spurious correlations in research on ability tilt. Personal. Individ. Differ. 2022, 185, 111268. [Google Scholar] [CrossRef]
- Lennerstrand, G.; Thoden, U. Muscle Spindle Responses to Concomitant Variations in Length and in Fusimotor Activation 1. Acta Physiol. Scand. 1968, 74, 153–165. [Google Scholar] [CrossRef]
- Sinnott-Armstrong, W. How strong is this obligation? An argument for consequentialism from concomitant variation. Analysis 2009, 69, 438–442. [Google Scholar] [CrossRef]
- Simon, H.A. On the definition of the causal relation. J. Philos. 1952, 49, 517–528. [Google Scholar] [CrossRef]
- Christensen, L.A. Directionality: Problems Identified & Solved. Demogr. Res. 2001. Available online: https://www.audiologypractices.org/directionality-problems-identified-solved (accessed on 5 January 2023).
- Wunsch, G. Confounding and control. Demogr. Res. 2007, 16, 97–120. [Google Scholar] [CrossRef] [Green Version]
- Law, M.; Wald, N. Risk factor thresholds: Their existence under scrutiny. BMJ 2007, 324, 1570–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steger, S.; Mair, V.; Kofler, C.; Pittore, M.; Zebisch, M.; Schneiderbauer, S. Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling–Benefits of exploring landslide data collection effects. Sci. Total Environ. 2021, 776, 145935. [Google Scholar] [CrossRef]
- Ahadzie, D.; Proverbs, D.; Olomolaiye, P. Critical success criteria for mass house building projects in developing countries. Int. J. Proj. Manag. 2008, 26, 675–687. [Google Scholar] [CrossRef]
- Lam, T.Y.M. A performance outcome framework for appraising construction consultants in the university sector. J. Facil. Manag. 2016, 14, 249–265. [Google Scholar] [CrossRef]
- Finn, J.D. A General Model for Multivariate Analysis; Holt, Rinehart & Winston: New York, NY, USA, 1974. [Google Scholar]
- Prentice, R.L.; Williams, B.J.; Peterson, A.V. On the regression analysis of multivariate failure time data. Biometrika 1981, 68, 373–379. [Google Scholar] [CrossRef]
- Alexopoulos, E.C. Introduction to multivariate regression analysis. Hippokratia 2010, 14 (Suppl. 1), 23–28. [Google Scholar]
- Imai, K. Multivariate regression analysis for the item count technique. J. Am. Stat. Assoc. 2011, 106, 407–416. [Google Scholar] [CrossRef]
- Van Der Merwe, A.; Zidek James, V. Multivariate regression analysis and canonical variates. Can. J. Stat. 1980, 8, 27–39. [Google Scholar] [CrossRef]
- Jaakson, R. Decentralized administration and citizen participation in community planning. Long Range Plan. 1972, 5, 16–22. [Google Scholar] [CrossRef]
- McGrath, S.K.; Whitty, S.J. Accountability and responsibility defined. Int. J. Manag. Proj. Bus. 2018, 11, 687–707. [Google Scholar] [CrossRef]
- Zaazou, Z.A. Citizens’ participation in financing national projects (an applied study on the enlargement of the Suez Canal of Egypt). Rev. Econ. Political Sci. 2020; ahead of print. [Google Scholar] [CrossRef]
- Arnstein, S.R. A ladder of citizen participation. J. Am. Inst. Plan. 1969, 35, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, C.; McCarthy, S.; Carton, F.; Connor, Y.O.; Lynch, L.; Adam, F. Citizen participation in decision-making: Can one make a difference? J. Decis. Syst. 2016, 25, 248–260. [Google Scholar] [CrossRef] [Green Version]
- Roy, S. The Smart City Paradigm in India: Issues and Challenges of Sustainability and Inclusiveness. Soc. Sci. 2016, 44, 29–48. [Google Scholar]
- Padrón Nápoles, V.M.; Gachet Páez, D.; Esteban Penelas, J.L.; García Pérez, O.; Martín de Pablos, F.; Muñoz Gil, R. Social inclusion in smart cities. In Handbook of Smart Cities; Springer: Berlin/Heidelberg, Germany, 2021; pp. 469–514. [Google Scholar] [CrossRef]
- Abdelmoaty, A. Gender Mainstreaming and Women’s Involvement in Urban Planning Strategies. In Proceedings of the Second Arab Land Conference, Cairo, Egypt, 22–24 February 2021. [Google Scholar]
- VISION2030. An Ambitious Nation. Available online: https://www.vision2030.gov.sa/v2030/overview/an-ambitious-nation/ (accessed on 5 October 2022).
Area of Urban Sustainability (Primary Objectives of FSCP) | Related Sustainability Measures |
---|---|
Quality of life | Social sustainability: affordable housing, safety, transportation (road and rail network), electrical energy, drainage, telecommunication and quality public services, open spaces. |
Economic competitiveness | Economic sustainability: GDP, income per capita, homes to households ratio. |
Environmental protection | Environmental sustainability: water scarcity and management, pollution, solid waste management, green space, and biodiversity. |
Independent Variables | Measures Variables |
---|---|
Accountability and responsibility | The truthiness between government and citizen |
Transparency | The powerfulness of open data |
Participation | The willingness to participate |
Social inclusion | The ability to participate |
Indicators (Dependant Variables) | Sub-Indicators | Source |
---|---|---|
A—Smart Economic | A1—Innovative spirit | De Mello Torres, De Andrade and Neto [40], Lombardi, Giordano, Farouh and Yousef [41] |
A2—Entrepreneurship | De Mello Torres, De Andrade and Neto [40], Lombardi, Giordano, Farouh and Yousef [41] | |
A3—Economic image and trademarks | De Mello Torres, De Andrade and Neto [40] | |
A5—Flexibility of labour market | De Mello Torres, De Andrade and Neto [40] | |
A7—E-Business | Hanafizadeh, Hanafizadeh and Khodabakhshi [42] | |
B—Smart People | B1—Level of qualification | De Mello Torres, De Andrade and Neto [40] |
B2—Affinity to lifelong learning | Hanafizadeh, Hanafizadeh and Khodabakhshi [42] | |
B3—Social and ethnic plurality | De Mello Torres, De Andrade and Neto [40], Lombardi, Giordano, Farouh and Yousef [41] | |
B4—Flexibility | De Mello Torres, De Andrade and Neto [40], Lombardi, Giordano, Farouh and Yousef [41] | |
B5—Creativity | De Mello Torres, De Andrade and Neto [40] | |
B6—Cosmopolitanism/open-mindedness | De Mello Torres, De Andrade and Neto [40] | |
B7—Participation in public life | De Mello Torres, De Andrade and Neto [40] | |
C—Smart Governance | C1—Participation in decision-making | De Mello Torres, De Andrade and Neto [40], Hanafizadeh, Hanafizadeh and Khodabakhshi [42] |
C2—Public and social services | Hanafizadeh, Hanafizadeh and Khodabakhshi [42] | |
C3—Transparent governance | Lombardi, Giordano, Farouh and Yousef [41] | |
C4—E-government | Hanafizadeh, Hanafizadeh and Khodabakhshi [42] | |
D—Smart Mobility | D1—Local accessibility | De Mello Torres, De Andrade and Neto [40] |
D2—International accessibility and availability of ICT infrastructure | Hanafizadeh, Hanafizadeh and Khodabakhshi [42] | |
D3—Sustainable, innovative and safe transport Systems | Hanafizadeh, Hanafizadeh and Khodabakhshi [42] | |
E—Smart Environment | E1—Attractivity of natural conditions | Hanafizadeh, Hanafizadeh and Khodabakhshi [42] |
E2—Pollution | De Mello Torres, De Andrade and Neto [40] | |
E3—Environmental protection | Lombardi, Giordano, Farouh and Yousef [41] | |
E4—Sustainable resource management | De Mello Torres, De Andrade and Neto [40] | |
F—Smart Living | F1—Cultural facilities | De Mello Torres, De Andrade and Neto [40] |
F2—Health conditions | De Mello Torres, De Andrade and Neto [40] | |
F3—Individual safety | De Mello Torres, De Andrade and Neto [40] | |
F4—Housing quality | De Mello Torres, De Andrade and Neto [40] | |
F5—Education facilities | De Mello Torres, De Andrade and Neto [40]; Hanafizadeh, Hanafizadeh and Khodabakhshi [42] | |
F6—Touristic attractivity | De Mello Torres, De Andrade and Neto [40] | |
F7—Social cohesion | De Mello Torres, De Andrade and Neto [40] |
Code | Position | Year of Experience | Group |
---|---|---|---|
I-C-1 | Expert in creative cities | 15 | Commercial industry |
I-B-1 | Architect and practitioner | 25 | Academics |
I-C-2 | Expert in computer sciences | 14 | Commercial industry |
I-A-1 | Mayor of AlAhssa | 30 | Government implementation programme/policy makers |
I-B-2 | Professor at Imam Abdulrahman bin Faisal University | 25 | Academics |
I-C-3 | CEO of Sakan | 21 | Commercial industry |
I-A-2 | GM of Alshargia Authority | 25 | Government implementation programme/policy makers |
I-C-4 | Chairman of Urban Planning at KFUPM | 18 | Academics |
I-B-3 | Expert in humanising cities | 16 | Commercial industry |
I-B-4 | CEO of Imam Abdulaziz bin Mohammed Royal Reserve | 45 | Academics |
I-A-3 | Digital transformation authority | 28 | Government implementation programme/policy makers |
I-A-4 | Former Mayor of Riyadh | 50 | Government implementation programme/policy makers |
Themes | Codes |
---|---|
Adoption of smart city projects among the citizens | Adoption of global best practices, smart city and urban sustainability, smart sustainable, smart cities, and cultural sustainability. |
Factors influence the drivers of CPL and SSCO | Decentralized citizen, citizens’ participation and smart cities, materials for decision making, difficulties. |
Relationship between CPL and SSCO | Future Saudi Cities Program, human resources in performance of smart city, expectations from the programme, socio-cultural impact on citizens’ participation. |
Variables | Frequency (n = 245) | Percentage | |
---|---|---|---|
Gender | Male | 201 | 82.0 |
Female | 43 | 17.6 | |
Others | 1 | 0.4 | |
Age | 18–29 | 11 | 4.5 |
30–39 | 75 | 30.6 | |
40–49 | 96 | 39.2 | |
50 and above | 63 | 25.7 | |
Level of Education | Bachelor’s degree | 117 | 47.8 |
Diploma | 6 | 2.4 | |
Masters | 41 | 16.8 | |
PhD | 67 | 27.3 | |
Others | 14 | 5.7 | |
Field of Profession | Architecture | 39 | 15.9 |
Urban planning | 108 | 44.1 | |
Business management | 42 | 17.1 | |
Civil engineering | 6 | 2.5 | |
IT | 39 | 15.9 | |
Others | 11 | 4.5 | |
Sector of Practice | Public sector | 138 | 56.3 |
Private sector | 78 | 31.8 | |
Academia | 26 | 10.6 | |
Freelance | 3 | 1.3 | |
Years of Experience | 0–5 | 9 | 3.7 |
6–10 | 15 | 6.1 | |
11–15 | 48 | 19.6 | |
16–20 | 118 | 48.2 | |
21 and above | 55 | 22.4 |
Number of Items | Cronbach’s Alpha | M | SD | |
---|---|---|---|---|
Accountability and responsibility | 6 | 0.683 | 2.6202 | 0.54404 |
Transparency | 4 | 0.509 | 2.8308 | 0.67483 |
Participation | 4 | 0.54 | 2.3916 | 0.74078 |
Inclusion | 4 | 0.508 | 2.5752 | 0.78908 |
Variable of smart economy | 7 | 0.782 | 4.5266 | 1.01993 |
Variables of smart people | 7 | 0.679 | 4.5650 | 1.03472 |
Variables of smart governance | 4 | 0.78 | 4.5404 | 1.05563 |
Variables of smart mobility | 3 | 0.583 | 4.5821 | 1.04167 |
Variables of smart environment | 4 | 0.678 | 4.5725 | 1.06430 |
Variables of smart living | 5 | 0.868 | 4.4946 | 1.06073 |
Smart Sustainable Cities Outcomes | Accountability and Responsibility | Transparency | Participation | Inclusion | |
---|---|---|---|---|---|
Smart sustainable cities outcomes | 1 | ||||
Accountability and responsibility | 0.690 ** | 1 | |||
Transparency | 0.856 | 0.805 ** | 1 | ||
Participation | 0.909 | 0.709 ** | 0.799 ** | 1 | |
Inclusion | 0.490 | 0.474 ** | 0.329 ** | 0.609 ** | 1 |
Model/Predictor | Unstandardized Coefficients | Standardized Coefficients | p-Value | t | Sig. | |
---|---|---|---|---|---|---|
B | Std. Error | Beta | ||||
(Constant) | 5.272 | 0.39 | ||||
Accountability and responsibility | −0.224 | 0.119 | −0.139 | 0.061 | −1.877 | 0.062 |
Transparency | 0.05 | 0.107 | 0.035 | 0.009 | 0.465 | 0.642 |
Participation | −0.099 | 0.094 | −0.077 | 0.043 | −1.053 | 0.294 |
Inclusion | −0.003 | 0.089 | −0.002 | 0.002 | −0.034 | 0.0973 |
Dependent variable: smart economy. F(13.526) = 1.868, R2 = 0.647, Adj. R2 = 0.615 |
Model/Predictor | Unstandardized Coefficients | Standardized Coefficients | p-Value | t | Sig. | ||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | |||||
1 | (Constant) | 5.115 | 0.404 | 0.404 | |||
Accountability and responsibility | −0.151 | 0.124 | −0.091 | 0.023 | −1.218 | 0.124 | |
Transparency | 0.041 | 0.111 | 0.028 | 0.034 | 0.372 | 0.111 | |
Participation | −0.158 | 0.098 | −0.119 | 0.012 | −1.619 | 0.098 | |
Inclusion | 0.035 | 0.092 | 0.027 | 0.011 | 0.380 | 0.092 | |
Dependent variable: smart people. F(12.672) = 1.868, R2 = 0.717, Adj. R2 = 0.685 |
Model/Predictor | Unstandardized Coefficients | Standardized Coefficients | p-Value | t | Sig. | ||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | |||||
1 | (Constant) | 5.332 | 0.393 | ||||
Accountability and responsibility | −0.265 | 0.120 | −0.163 | 0.011 | −2.200 | 0.029 | |
Transparency | 0.001 | 0.108 | 0.001 | 0.012 | 0.008 | 0.994 | |
Participation | −0.095 | 0.095 | −0.073 | 0.002 | −1.000 | 0.319 | |
Inclusion | 0.069 | 0.090 | 0.054 | 0.001 | 0.769 | 0.443 | |
Dependent variable: smart governance. F(13.583) = 1.868, R2 = 0.817, Adj. R2 = 0.705 |
Model/Predictor | Unstandardized Coefficients | Standardized Coefficients | p-Value | t | Sig. | ||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | |||||
1 | (Constant) | 5.359 | 0.401 | ||||
Accountability and responsibility | −0.243 | 0.123 | −0.146 | 0.014 | −1.978 | 0.049 | |
Transparency | −0.025 | 0.110 | −0.017 | 0.042 | −0.226 | 0.822 | |
Participation | −0.103 | 0.097 | −0.077 | 0.023 | −1.058 | 0.291 | |
Inclusion | 0.085 | 0.092 | 0.065 | 0.001 | 0.923 | 0.357 | |
Dependent variable: smart mobility. F(13.349) = 1.868, R2 = 0.644, Adj. R2 = 0.545 |
Model/Predictor | Unstandardized Coefficients | Standardized Coefficients | p-Value | t | Sig. | ||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | |||||
1 | (Constant) | 5.435 | 0.386 | 0.000 | |||
Accountability and responsibility | −0.288 | 0.118 | −0.179 | 0.001 | −2.436 | 0.016 | |
Transparency | −0.022 | 0.106 | −0.015 | 0.000 | −0.205 | 0.837 | |
Participation | −0.101 | 0.093 | −0.078 | 0.000 | −1.077 | 0.283 | |
Inclusion | 0.098 | 0.088 | 0.078 | 0.001 | 1.108 | 0.269 | |
Dependent variable: smart environment. F(14.073) = 1.868, R2 = 0.796, Adj. R2 = 0.710 |
Model/Predictor | Unstandardized Coefficients | Standardized Coefficients | p-Value | t | Sig. | ||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | |||||
1 | (Constant) | 5.482 | 0.391 | 0.000 | |||
Accountability and responsibility | −0.293 | 0.120 | −0.180 | 0.022 | −2.444 | 0.015 | |
Transparency | −0.005 | 0.108 | −0.004 | 0.031 | −0.050 | 0.960 | |
Participation | −0.091 | 0.095 | −0.070 | 0.039 | −0.967 | 0.335 | |
Inclusion | 0.064 | 0.089 | 0.050 | 0.014 | 0.718 | 0.473 | |
Dependent variable: smart living. F(14.011) = 1.868, R2 = 0.760, Adj. R2 = 0.660 |
Predictor of CPL | Unstandardized Coefficients | Standardized Coefficients | p-Value | t | Sig. | |
---|---|---|---|---|---|---|
B | Std. Error | Beta | ||||
(Constant) | 5.482 | 1.391 | ||||
Smart economics | 1.930 | 1.120 | 0.800 | 0.542 | −5.655 | 12.100 |
Smart environment | 3.305 | 2.108 | 0.034 | 0.663 | −3.224 | 10.435 |
Smart governance | 2.930 | 1.095 | 0.070 | 0.784 | −4.150 | 3.200 |
Smart living | 1.530 | 1.089 | 0.050 | 0.543 | −5.877 | 3.153 |
Smart mobility | 2.230 | 1.432 | 0.530 | 0.564 | −4.545 | 3.455 |
Smart people | 2.930 | 2.019 | 0.090 | 0.601 | −5.658 | 6.051 |
Dependent variable: CLP. F= (−1.435), R2 = 0.24, Adj. R2 = 0.29 |
Unstandardized Coefficients | Standardized Coefficients | p-Value | t | Sig. | ||
---|---|---|---|---|---|---|
B | Std. Error | Beta | ||||
(Constant) | 5.845 | 0.186 | 0.000 | |||
Transparency | −0.133 | 0.190 | −0.080 | 0.002 | 3.224 | 0.235 |
Participation | −0.055 | 0.148 | −0.024 | 0.001 | 2.150 | 0.000 |
Inclusion | −0.101 | 0.105 | −0.050 | 0.019 | 1.877 | 0.153 |
Accessibility and responsibility | 0.055 | 0.109 | 0.090 | 0.004 | 2.658 | 0.051 |
Dependent variable: SSCO. F= 16.489, R2 = 0.76, Adj. R2 = 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamoudi, A.K.; Abidoye, R.B.; Lam, T.Y.M. The Impact of Citizens’ Participation Level on Smart Sustainable Cities Outcomes: Evidence from Saudi Arabia. Buildings 2023, 13, 343. https://doi.org/10.3390/buildings13020343
Alamoudi AK, Abidoye RB, Lam TYM. The Impact of Citizens’ Participation Level on Smart Sustainable Cities Outcomes: Evidence from Saudi Arabia. Buildings. 2023; 13(2):343. https://doi.org/10.3390/buildings13020343
Chicago/Turabian StyleAlamoudi, Abood Khaled, Rotimi Boluwatife Abidoye, and Terence Y. M. Lam. 2023. "The Impact of Citizens’ Participation Level on Smart Sustainable Cities Outcomes: Evidence from Saudi Arabia" Buildings 13, no. 2: 343. https://doi.org/10.3390/buildings13020343
APA StyleAlamoudi, A. K., Abidoye, R. B., & Lam, T. Y. M. (2023). The Impact of Citizens’ Participation Level on Smart Sustainable Cities Outcomes: Evidence from Saudi Arabia. Buildings, 13(2), 343. https://doi.org/10.3390/buildings13020343