The Effect of the Microstructure of Diabases from Greece and Cyprus on Their Engineering Characteristics and the Mechanical Behaviour of Concrete
Abstract
:1. Introduction
2. Geological Settings (Greece and Cyprus)
2.1. Veria-Naousa Ophiolites (Greece)
2.2. Edessa Ophiolites (Greece)
2.3. Guevgueli Ophiolite Complex (Greece)
2.4. Troodos Ophiolite Complex (Cyprus)
3. Materials and Methods
3.1. Materials
3.2. Methods for the Aggregates
3.3. Methods for the Concretes
4. Results
4.1. Petrographic Features of the Rock Samples
4.2. Rock X-ray Diffractometry
4.3. Microtopography of the Studied Diabases
4.4. Engineering Properties of the Aggregates
4.5. Mechanical Properties of the Concrete Specimens
4.6. Microscopic Features of the Concrete Specimens
5. Discussion
5.1. Correlation Analysis between the Engineering Properties of the Investigated Diabases
5.2. Evaluation of the Diabases from Different Complexes Regarding the Quality of Concrete
5.3. The Impact of the Microroughness of the Aggregates on the Final Mechanical Behaviour of the Produced Concrete
6. Conclusions
- The intense high strength and durability of the altered diabases result from the low amount of soft minerals and microcracks, along with the preservation of igneous textures.
- Diabases from the Veria-Naousa and Guevgueli ophiolite complexes showed better engineering properties in contrast to those derived from the Edesssa ophiolite complex and even more than those derived from Cyprus (Troodos ophiolite complex), which strongly depended on their alteration degree.
- The microstructural characteristics of the diabases seemed to be the critical parameter for the mechanical behaviour of the produced concrete specimens, where those made using Veria-Naousas’ and Guevguelis’ diabases were classified as the most durable ones; in contrast, those made using Edessas’ and Cyprus’ diabases were of lower quality.
- The mechanical performance of the produced concrete specimens was directly dependent on the micropetrographic characteristics of the concrete aggregates.
- The decisive factors for achieving better bonding between the cement paste and the aggregate in the concrete (optimum cohesion) were the microstructural characteristics of the aggregates contained, enhancing the contribution of petrography in engineering geology.
- Petrography may act as a useful tool in order to predict the mechanical behaviour of aggregate rocks and the produced concrete specimens.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghannam, S.; Najm, H.; Vasconez, R. Experimental study of concrete made with granite and iron powders as partial replacement of sand. Sustain. Mater. Technol. 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Singh, M.; Choudhary, K.; Srivastava, A.; Sangwan, K.S.; Bhunia, D. A study on environmental and economic impacts of using waste marble powder in concrete. J. Build. Eng. 2017, 13, 87–95. [Google Scholar] [CrossRef]
- Amudhavalli, N.; Sivasankar, S.; Shunmugasundaram, M.; Kumar, A.P. Characteristics of granite dust concrete with M-sand as replacement of fine aggregate composites. Mater. Today 2020, 27, 1401–1406. [Google Scholar] [CrossRef]
- Ahmadi, S.F.; Reisi, M.; Amiri, M.C. Reusing granite waste in eco-friendly foamed concrete as aggregate. J. Build. Eng. 2022, 46, 103566. [Google Scholar] [CrossRef]
- Radonjanin, V.; Malešev, M.; Marinković, S.; Al Malty, A.E.S. Green recycled aggregate concrete. Construct. Build. Mater. 2013, 47, 1503–1511. [Google Scholar] [CrossRef]
- Çakır, O. Experimental analysis of properties of recycled coarse aggregate (RCA) concrete with mineral additives. Construct. Build. Mater. 2014, 68, 17–25. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F. Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Construct. Build. Mater. 2014, 51, 151–162. [Google Scholar] [CrossRef]
- Marie, I.; Quiasrawi, H. Closed-loop recycling of recycled concrete aggregates. J. Clean. Prod. 2012, 37, 243–248. [Google Scholar] [CrossRef]
- Yaragal, S.C.; Basavana Gowda, S.N.; Rajasekaran, C. Characterization and performance of processed lateritic fine aggregates in cement mortars and concretes. Construct. Build. Mater. 2019, 200, 10–25. [Google Scholar] [CrossRef]
- Behera, M.; Bhattacharyya, S.K.; Minocha, A.K.; Deoliya, R.; Maiti, S. Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Construct. Build. Mater. 2014, 68, 501–516. [Google Scholar]
- Magbool, H.M. Utilisation of ceramic waste aggregate and its effect on Eco-friendly concrete: A review. J. Build. Eng. 2022, 47, 103815. [Google Scholar] [CrossRef]
- Jackson, N. Civil Engineering Materials; Macmillan Press Ltd.: London, UK, 1981. [Google Scholar]
- Taylor, G.D. Materials in Construction, 2nd ed.; Longman Group Ltd., Longman House, Burnt Mill: Harlow, UK, 1994. [Google Scholar]
- Rajput, R.K. Engineering Materials, 3rd ed.; S. Chard & Company Ltd.: New Delhi, India, 2006. [Google Scholar]
- Neville, A.M. Properties of Concrete, 4th ed.; Pitman: London, UK, 1995. [Google Scholar]
- Aulia, T.B.; Deutschmann, K. Effect of mechanical properties of aggregate on the ductility of high performance concrete. Lacer 1999, 4, 133–147. [Google Scholar]
- Thomas, M.D.A.; Folliard, K.J. Concrete aggregates and the durability of concrete. Durab. Concr. Cem. Compos. 2007, 10, 247–281. [Google Scholar]
- Yilmaz, M.; Turgul, A. The effects of different sandstone aggregates on concrete strength. Constr. Build. Mater. 2012, 35, 294–303. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Stamatis, P.M.; Tsikouras, B.; Papoulis, D.; Lampropoulou, P.; Hatzipanagiotou, K. The influence of alteration of aggregates on the quality of the concrete: A case study from serpentinites and andesites from central Macedonia (North Greece). Geosciences 2018, 8, 115. [Google Scholar] [CrossRef]
- Al-Oraimi, S.K.; Taha, R.; Hassan, H.F. The effect of the mineralogy of coarse aggregate on the mechanical properties of high-strength concrete. Constr. Build. Mater. 2006, 20, 499–503. [Google Scholar] [CrossRef]
- Rigopoulos, I.; Tsikouras, B.; Pomonis, P.; Hatzipanagiotou, K. The influence of alteration on the engineering properties of diabases: The example from the Pindos and Vourinos ophiolites (northern Greece). Int. J. Rock Mech. Min. Sci. 2010, 47, 69–80. [Google Scholar] [CrossRef]
- Yilmaz, N.G.; Goktan, R.M.; Kibici, Y. Relations between some quantitative petrographic characteristics and mechanical strength properties of granitic building stones. Int. J. Rock Mech. Min. Sci. 2011, 48, 506–513. [Google Scholar] [CrossRef]
- Petrounias, P.; Rogkala, A.; Kalpogiannaki, M.; Tsikouras, B.; Hatzipanagiotou, K. Comparative study of physico-mechanical properties of ultrabasic rocks (Veria-Naousa ophiolite) and andesites from central Macedonia (Greece). Bull. Geol. Soc. Gr. 2016, 50, 1989–1998. [Google Scholar]
- Giannakopoulou, P.P.; Tsikouras, B.; Hatzipanagiotou, K. The interdependence of mechanical properties of ultramafic rocks from Geraniaophiolitic complex. Bull. Geol. Soc. Gr. 2016, 50, 1829–1837. [Google Scholar]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Lampropoulou, P.; Koutsopoulou, E.; Papoulis, D.; Tsikouras, B.; Hatzipanagiotou, K. The Impact of Secondary Phyllosilicate Minerals on the Engineering Properties of Various Igneous Aggregates from Greece. Minerals 2018, 8, 329. [Google Scholar] [CrossRef]
- Shakoor, A.; Bonelli, R.E. Relationship between petrographic characteristics, engineering index properties and mechanical properties of selected sandstones. Bull. Ass. Eng. Geol. 1991, 28, 55–71. [Google Scholar] [CrossRef]
- Haney, M.G.; Dhakoor, A. The relationship between tensile and compressive strengths for selected sandstones as influenced by index properties and petrographic characteristics. In Proceedings of the 7th International IAEG Congress, Lisbon, Portugal, 5–9 September 1996; Volume IV, pp. 3013–3021. [Google Scholar]
- Turgul, A.; Zarif, I. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 1999, 51, 303–317. [Google Scholar]
- Smith, M.R.; Collis, L. Aggregates: Sand, Gravel and Crushed Rock Aggregates for Construction Purposes; The Geological Society: London, UK, 2001. [Google Scholar]
- Miskovsky, K.; Tabora, D.M.; Kou, S.Q.; Lindqvist, P.A. Influence of the mineralogical compositionand textural properties on the quality of coarse aggregates. J. Mater. Eng. Perform. 2004, 13, 144–150. [Google Scholar] [CrossRef]
- LaLonde, W.S.; Janes, M.F. Concrete Engineering Handbook; Library of Congress: New York, NY, USA, 1961. [Google Scholar]
- Dawood, E.T.; Ramli, M. Contribution of Hybrid Fibers on The Hybrid Fibers on the Properties of High Strength Concrete Having High Workability. Procedia 2011, 14, 814–820. [Google Scholar] [CrossRef]
- Mishuk, B.; Rahman, A.M.; Ashrafuzzaman, M.; Barua, S. Effect of Aggregates Properties on the Crushed Strength of Aggregates. Int. J. Mater. Sci. Appl. 2015, 4, 343–349. [Google Scholar]
- Nevile, A.M. Properties of Concrete; Longman: London, UK, 2011. [Google Scholar]
- Buertey, J.T.; Atsrim, F.; Ofei, W.S. An Examination of the Physiomechanical Properties of Rock Lump and Aggregates in Three Leading Quarry Sites near Accra. Am. J. Civ. Eng. 2016, 4, 264–275. [Google Scholar] [CrossRef] [Green Version]
- Gonilho Pereira, C.; Castro-Gomes, J.; Pereira de Oliveira, L. Influence of natural coarse aggregate size, mineralogy and water content on the permeability of structural concrete. Constr. Build. Mater. 2009, 23, 602–608. [Google Scholar] [CrossRef]
- Kiliç, A.; Atiş, C.D.; Teymen, A.; Karahan, O.; Özcan, F.; Bilim, C.; Özdemir, M. The influence of aggregate type on the strength and abrasion resistance of high strength concrete. Cement Concr. Comp. 2008, 30, 290–296. [Google Scholar] [CrossRef]
- Piasta, W.; Góra, J.; Turkiewicz, T. Properties and durability of coarse igneous rock aggregates and concretes. Constr. Build. Mater. 2016, 126, 119–129. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Kalpogiannaki, M.; Koutsovitis, P.; Damoulianou, M.-E.; Koukouzas, N. Petrographic Characteristics of Sandstones as a Basis to Evaluate Their Suitability in Construction and Energy Storage Applications. A Case Study from KlepaNafpaktias (Central Western Greece). Energies 2020, 13, 1119. [Google Scholar] [CrossRef]
- Özturan, T.; Çeçen, C. Effect of coarse aggregate type on mechanical properties of concretes with different strengths. Cem. Concr. 2007, 27, 165–170. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Stamatis, P.M.; Lampropoulou, P.; Tsikouras, B.; Hatzipanagiotou, K. The Effect of Petrographic Characteristics and Physico-Mechanical Properties of Aggregates on the Quality of Concrete. Minerals 2018, 8, 577. [Google Scholar] [CrossRef]
- Rogkala, A.; Petrounias, P.; Tsikouras, B.; Hatzipanagiotou, K. New Occurrence of Pyroxenites in the Veria-NaousaOphiolite (North Greece): Implications on Their Origin and Petrogenetic Evolution. Geosciences 2017, 7, 92. [Google Scholar] [CrossRef]
- Rogkala, A.; Petrounias, P.; Tsikouras, B.; Hatzipanagiotou, K. Petrogenetic significance of spinel from serpentinised peridotites from Veria-Naousa ophiolite. Bull. Geol. Soc. Gr. 2016, 50, 1999–2008. [Google Scholar]
- Rogkala, A.; Petrounias, P.; Koutsovitis, P.; Giannakopoulou, P.P.; Pomonis, P.; Lampropoulou, P.; Hatzipanagiotou, K. Rodingites from the Veria-Naousa ophiolite (Greece): Mineralogical evolution, metasomatism and petrogenetic processes. Geochemistry 2022, 82, 125860. [Google Scholar] [CrossRef]
- Brunn, J.H. Geological Map of Greece, Veroia Sheet, 1:50.000; IGME: Athens, Greece, 1982. [Google Scholar]
- Decourt, J.; Aubouin, J.; Savoyat, E. Le sill on méso hellénique et la zone pélagonienne. Bull. Soc. Géol. Fr. 1977, 1, 32–70. [Google Scholar]
- Michailidis, K.M. Zoned chromites with high Mn-contents in the Fe-Ni-Cr-laterite ore deposits from the Edessa area in Northern Greece. Miner. Depos. 1990, 25, 190–197. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J.W. The Igneous Rocks of Greece: The Anatomy of an Orogen; Gebrueder Borntraeger: Berlin/Stuttgart, Germany, 2002. [Google Scholar]
- Rogkala, A.; Petrounias, P.; Tsikouras, B.; Giannakopoulou, P.P.; Hatzipanagiotou, K. Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece). Minerals 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Eleftheriadis, G.; Castorina, F.; Soldatos, T.; Masi, U. Geochemical and Sr-Nd isotopic evidence for the genesis of the Late Cainozoic Almopia volcanic rocks (Central Macedonia, Greece). Mineral. Petrol. 2003, 78, 21–36. [Google Scholar] [CrossRef]
- Mercier, J.L.; Vergely, P. Geological Map of Greece, Edhessa Sheet, 1:50.000; IGME: Athens, Greece, 1984. [Google Scholar]
- Saccani, E.; Bortolotti, V.; Marroni, M.; Pandolfi, L.; Photiades, A.; Principi, G. The Jurassic association of backarc basin ophiolites and calc-alkaline volcanics in the Guevgueli complex (Northern Greece): Implication for the evolution of the Vardar zone. Ofioliti 2008, 33, 209–227. [Google Scholar]
- Zachariadis, P.; Kostopoulos, D.; Reischmann, T.; Himmerkus, F.; Matukov, D.; Sergeev, S. U-Pb ion-microprobe zircon dating of subduction-related magmatism from northern Greece: The ages of the Guevgueli, Thessaloniki and Chalkidiki igneous complexes. Geophys. Res. 2006, Abstr 8, 055560. [Google Scholar]
- Mavrides, A.; Matarangas, D.; Karfakis, J. Geological Map of Greece, Skra Sheet, 1:50.000; IGME: Athens, Greece, 1982. [Google Scholar]
- Mercier, J.L.; Kougoulis, C. Geological Map of Greece, Evzoni Sheet, 1:50.000; IGME: Athens, Greece, 1987. [Google Scholar]
- Urquhart, E.; Banner, F.T. Biostratigraphy of the supra-ophiolite sediments of the Troodos Massif, Cyprus: The Cretaceous Perapedhi, Kannaviou, Moni and Kathikas formations. Geol. Magaz. 1994, 131, 499–518. [Google Scholar] [CrossRef]
- AASHTO T255; Standard Method of Test for Total Evaporable Moisture Content of Aggregate by Drying. ASTM International:: West Conshohocken, PA, USA, 2000.
- ISRM. Suggested Methods. In Rock Characterization Testing and Monitoring; Brown, E., Ed.; Pergamon Press: Oxford, UK, 1981. [Google Scholar]
- BS 812; Testing Aggregates, Part 105: Methods for Determination of Particle Shape. Section: 105.1: Flakiness Index. British Standards Institution: London, UK, 1989.
- BS 812; Testing Aggregates, Part 105: Methods for Determination of Particle Shape. Section: 105.2: Elongation Index. British Standards Institution: London, UK, 1990.
- ASTM C-131; Resistance to Abrasion of Small-Size Coarse Aggregate by Use of the Los Angeles Machine. ASTM: Philadelphia, PA, USA, 1989.
- ASTM D 2938-95; Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens. American Society for Testing and Materials: West Conshohocken, PA, USA, 2002.
- EN 1367-2; Tests for Thermal and Weathering Properties of Aggregates—Part 2: Magnesium Sulfate Test. European Committee for Standardization: Brussels, Belgium, 1999.
- EN 932; Part 3: Procedure and Terminology for Simplified Petrographic Description. European Standard: Warsaw, Poland, 1996.
- Bish, D.L.; Post, J.E. Quantitative mineralogical analysis using the Rietveld full- pattern fitting method. Am. Mineral. 1993, 78, 932–940. [Google Scholar]
- BS 812; Methods for Sampling and Testing of Mineral Aggregates, Sands and Fillers, Part 1: Methods for Determination of Particle Size and Shape. British Standard Institution: London, UK, 1975.
- ACI-2111-91; Standard for Selecting Proportions for Normal, Heavyweight and Mass Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2002.
- BS EN 12390; Part 3: Testing Hardened Concrete. Compressive Strength of Test Specimens. British Standard Institution: London, UK, 2009.
- ASTM C856; Standard Practice for Petrographic Examination of Hardened Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- Farzadnia, N.; Abang, A.A.A.; Demirboga, R.; Anwar, M.P. Effect of halloysite nano clay on mechanical properties, thermal behavior and microstructure of cement mortars. Cem. Concr. Res. 2013, 48, 97–104. [Google Scholar] [CrossRef]
- Golewski, G.L. An assessment of microcracks in the interfacial transition zone of durable concrete composites with fly additives. Compos. Struct. 2018, 200, 515–520. [Google Scholar] [CrossRef]
- Meng, Y.; Ling, T.G.; Mo, K.H. Recycling of wastes for value-added applications in concrete blocks: An overview. Resour. Conserv. Recycl. 2018, 138, 298–312. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Lampropoulou, P.; Tsikouras, B.; Rigopoulos, I.; Hatzipanagiotou, K. Petrographic and Mechanical Characteristics of Concrete Produced by Different Type of Recycled Materials. Geosciences 2019, 9, 264. [Google Scholar] [CrossRef]
- Petrounias, P.; Rogkala, A.; Giannakopoulou, P.P.; Christogerou, A.; Lampropoulou, P.; Liogris, S.; Koutsovitis, P.; Koukouzas, N. Utilization of Industrial Ferronickel Slags as Recycled Concrete Aggregates. Appl. Sci. 2022, 12, 2231. [Google Scholar] [CrossRef]
- Gunsallus, K.L.; Kulhawy, F.H. A comparative evaluation of rock strength measures. Int. J. Rock Mech. Min. Sci. 1984, 21, 233–248. [Google Scholar] [CrossRef]
- Kahraman, S.; Fener, M. Predicting the Los Angeles abrasion loss of rock aggregates from the uniaxial compressive strength. Mat. Lett. 2007, 61, 4865–4891. [Google Scholar] [CrossRef]
- Ugur, I.; Demirdag, S.; Yavuz, H. Effect of rock properties on the Los Angeles abrasion and impact test characteristics of the aggregates. Mat. Charact. 2010, 61, 90–96. [Google Scholar] [CrossRef]
- Koukis, G.; Sabatakakis, N.; Spyropoulos, A. Resistance variation of low-quality aggregates. Bull. Eng. Geol. Environ. 2007, 66, 457–466. [Google Scholar] [CrossRef]
- Giannakopoulou, P.P.; Petrounias, P.; Tsikouras, B.; Kalaitzidis, S.; Rogkala, A.; Hatzipanagiotou, K.; Tombros, S.F. Using Factor Analysis to Determine the Interrelationships between the Engineering Properties of Aggregates from Igneous Rocks in Greece. Minerals 2018, 8, 580. [Google Scholar] [CrossRef]
- Diamantis, K.; Gartzos, E.; Migiros, G. Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations. Eng. Geol. 2009, 108, 199–207. [Google Scholar] [CrossRef]
- Undul, O.; Tugrul, A. On the variations of geo-engineering properties of dunites and diorites related to weathering. Environ. Earth Sci. 2016, 75, 1326. [Google Scholar] [CrossRef]
- Giannakopoulou, P.P.; Petrounias, P.; Rogkala, A.; Tsikouras, B.; Stamatis, P.M.; Pomonis, P.; Hatzipanagiotou, K. The Influence of the Mineralogical Composition of Ultramafic Rocks on Their Engineering Performance: A Case Study from the Veria-Naousa and GeraniaOphiolite Complexes (Greece). Geosciences 2018, 8, 251. [Google Scholar] [CrossRef] [Green Version]
Tests/Analytical Methods | Standards |
---|---|
Moisture content (w) | AASHTO T-255 [57] |
Total porosity (nt) Specific gravity (ρd) | ISRM 1981 [58] ISRM 1981 [58] |
Water absorption (wa) | ISRM 1981 [58] |
Elongation index (IE) | BS 812 1989 [59] |
Flakiness index (IF) | BS 812 1990 [60] |
Los Angeles abrasion value (LA) | ASTM C-131 [61] |
Uniaxial compressive strength (UCS). | ASTM D 2938-95 [62] |
Soundness test (S) | EN 1367-2 standard [63] |
Mineralogical and microstructural characterization using a polarizing microscope | EN-932-3 [64] |
Semi-qualitative calculations of mineral phases using XRD | Bish and Post [65] |
Surface texture study through SEI | BS 812 Part 1 [66] |
Samples | ΒΕ.113 | BE.43 | ED.45 | ED.110 | KIL.2 | KIL.3 | ED.66B | BE.24 | PR1 | PR3 |
---|---|---|---|---|---|---|---|---|---|---|
cpx | - | 6.6 | 15.5 | 3.1 | 25.9 | 19.4 | 29.2 | 13.1 | 22.0 | 20.0 |
qz | - | 6.0 | 7.0 | 2.1 | 5.1 | 4.2 | - | 9.4 | - | - |
plg | 59.1 | 47.0 | 46.0 | 46.0 | 39.9 | 51.1 | 52.0 | 33.6 | 44.0 | 45.0 |
Kfs | - | - | - | - | - | 1.3 | - | - | - | - |
bi | - | - | 5.1 | - | - | - | - | - | - | - |
ttn | 2.3 | 2.5 | - | - | 1.7 | 0.9 | 3.0 | 1.8 | 4.5 | 3.5 |
ilm | - | - | - | - | - | - | - | 2.9 | - | - |
mgt | - | 4.0 | - | - | - | - | - | - | - | - |
ap | - | 2.4 | - | - | - | - | - | - | - | 1.2 |
ser | - | - | - | - | - | - | - | 5.8 | - | - |
chl | 18.0 | 10.0 | 19.0 | 7.2 | 9.6 | 7.2 | 15.8 | 13.6 | 22.0 | 23.3 |
act | 20.6 | 15.0 | - | 33.2 | 6.8 | 9.4 | - | 11.1 | - | - |
ep | - | 6.5 | 7.4 | 8.4 | 11.0 | 6.5 | - | 4.4 | - | - |
prh | - | - | - | - | - | - | - | 4.3 | - | - |
grt | - | - | - | - | - | - | - | - | 7.5 | 7.0 |
Samples | W (%) | ρd (KN/m3) | wa (%) | IF (%) | IE (%) | LA (%) | UCS (MPa) | S (%) |
---|---|---|---|---|---|---|---|---|
KIL.2/Guevgueli | 0.20 | 28.80 | 0.86 | 31.67 | 34.73 | 9.31 | 122.3 | 3.71 |
KIL.3/Guevgueli | 0.14 | 28.35 | 0.84 | 36.91 | 44.77 | 10.77 | 126.7 | 2.52 |
ΒΕ.24/Veria | 0.44 | 27.69 | 0.82 | 33.30 | 9.80 | 11.34 | 124.6 | 3.45 |
ΒΕ.43/Veria | 0.25 | 26.57 | 0.38 | 31.30 | 16.60 | 8.72 | 150.0 | 3.74 |
ED.24/Edessa | 0.52 | 25.40 | 0.36 | 15.79 | 19.68 | 14.15 | 91.30 | 3.58 |
ΒΕ.113/Veria | 0.42 | 25.30 | 0.35 | 24.05 | 14.00 | 12.00 | 97.20 | 2.02 |
ED.45/Edessa | 0.41 | 26.66 | 0.40 | 29.93 | 16.00 | 9.99 | 110.0 | 3.12 |
ED.66B/Edessa | 0.50 | 27.75 | 0.80 | 46.17 | 17.00 | 8.18 | 119.0 | 2.47 |
ED.110/Edessa | 0.20 | 27.36 | 0.48 | 24.88 | 17.80 | 7.31 | 148.0 | 3.96 |
PR1/Cyprus | 1.40 | 24.00 | 2.71 | 20.14 | 36.75 | 17.00 | 62.0 | 8.00 |
PR2/Cyprus | 0.80 | 23.20 | 3.25 | 19.50 | 31.56 | 17.00 | 70.0 | 5.50 |
PR3/Cyprus | 1.00 | 24.50 | 2.80 | 18.00 | 35.00 | 16.00 | 74.0 | 5.20 |
PR4/Cyprus | 0.90 | 23.40 | 2.76 | 20.00 | 36.40 | 18.00 | 61.0 | 6.50 |
BE.180/Veria | 0.45 | 27.00 | 0.83 | 32.50 | 9.78 | 11.50 | 125.0 | 3.60 |
KIL.11/Guevgueli | 0.21 | 28.70 | 0.80 | 31.59 | 34.70 | 9.40 | 122.0 | 3.70 |
KIL.12/Guevgueli | 0.19 | 28.55 | 0.82 | 34.50 | 35.50 | 10.20 | 123.0 | 3.20 |
Samples | UCScon (MPa) |
---|---|
KIL.2/Guevgueli | 32.0 |
KIL.3/Guevgueli | 32.0 |
ΒΕ.24/Veria | 32.0 |
ΒΕ.43/Veria | 33.0 |
ED.24/Edessa | 31.0 |
ΒΕ.113/Veria | 31.0 |
ED.45/Edessa | 31.0 |
ED.66B/Edessa | 31.0 |
ED.110/Edessa | 32.0 |
PR1/Cyprus | 26.0 |
PR2/Cyprus | 29.0 |
PR3/Cyprus | 28.0 |
PR4/Cyprus | 27.0 |
BE.180/Veria | 32.0 |
KIL.11/Guevgueli | 32.0 |
KIL.12/Guevgueli | 31.0 |
Pair | t-Test | dF | p-Value | t-Table Values | Figure | |||
---|---|---|---|---|---|---|---|---|
α = 0.01 | α = 0.02 | α = 0.05 | α = 0.10 | |||||
LA–UCS | −12.015149 | 15 | 0.0000000042488 | 2.947 | 2.602 | 2.131 | 1.753 | 9 |
W–LA | −14.537938 | 15 | 0.00000000030169 | 2.947 | 2.602 | 2.131 | 1.753 | 10 |
W–UCS | −14.81061 | 15 | 0.00000000023224 | 2.947 | 2.602 | 2.131 | 1.753 | 11 |
W–S | −10.9701 | 15 | 0.000000014586 | 2.947 | 2.602 | 2.131 | 1.753 | 12 |
LA–UCScon | −14.135563 | 15 | 0.0000000004474 | 2.947 | 2.602 | 2.131 | 1.753 | 13 |
UCS–UCScon | 11.510811 | 15 | 0.0000000076185 | 2.947 | 2.602 | 2.131 | 1.753 | 14 |
S–UCScon | −30.845358 | 15 | 0.000000000000005515 | 2.947 | 2.602 | 2.131 | 1.753 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Papalla, A.; Giamas, V.; Lampropoulou, P.; Koutsovitis, P.; Koukouzas, N.; Hatzipanagiotou, K. The Effect of the Microstructure of Diabases from Greece and Cyprus on Their Engineering Characteristics and the Mechanical Behaviour of Concrete. Buildings 2023, 13, 396. https://doi.org/10.3390/buildings13020396
Petrounias P, Giannakopoulou PP, Rogkala A, Papalla A, Giamas V, Lampropoulou P, Koutsovitis P, Koukouzas N, Hatzipanagiotou K. The Effect of the Microstructure of Diabases from Greece and Cyprus on Their Engineering Characteristics and the Mechanical Behaviour of Concrete. Buildings. 2023; 13(2):396. https://doi.org/10.3390/buildings13020396
Chicago/Turabian StylePetrounias, Petros, Panagiota P. Giannakopoulou, Aikaterini Rogkala, Arsinoe Papalla, Vasileios Giamas, Paraskevi Lampropoulou, Petros Koutsovitis, Nikolaos Koukouzas, and Konstantin Hatzipanagiotou. 2023. "The Effect of the Microstructure of Diabases from Greece and Cyprus on Their Engineering Characteristics and the Mechanical Behaviour of Concrete" Buildings 13, no. 2: 396. https://doi.org/10.3390/buildings13020396
APA StylePetrounias, P., Giannakopoulou, P. P., Rogkala, A., Papalla, A., Giamas, V., Lampropoulou, P., Koutsovitis, P., Koukouzas, N., & Hatzipanagiotou, K. (2023). The Effect of the Microstructure of Diabases from Greece and Cyprus on Their Engineering Characteristics and the Mechanical Behaviour of Concrete. Buildings, 13(2), 396. https://doi.org/10.3390/buildings13020396