Study of the Axial Compressive Behaviour of Cross-Shaped CFST and ST Columns with Inner Changes
Abstract
:1. Introduction
2. Experimental Research
2.1. Specimens Details
2.2. Material Properties
2.3. Specimens’ Construction
2.4. Measuring Instrument and Timeline for Loading
3. Discussion and Analysis
3.1. Failure Occurrence
3.1.1. Cross-Shaped CFST Specimen’s Failure Modes
3.1.2. Cross-Shaped ST Specimen’s Failure Modes
3.2. Axial Load–Displacement Relationship
3.3. Ductility Index
4. Numerical Model Analysis
4.1. Type of Elements
4.2. Materials, Interaction, Boundary Condition, and Meshing
- —Compressive stress and strain relationship of the ultimate stress;
- —The ultimate strain of the compressive stress and strain relationship;
- —Compressive strength of concrete cylinders, and cube;
- —The cross-sectional area of the steel tube and the concrete in the core area;
- —The ultimate stress of the tensile stress and strain relationship;
- —The ultimate strain of the tensile stress and strain relationship;
4.3. FEM Model Verification
4.4. Parametric Analysis of CFST Columns
4.4.1. Impact of Concrete Strength
4.4.2. Impact of Steel Thickness
4.4.3. Impact of Steel Strength
5. Cross-Shaped CFST Column Calculation Method
6. Conclusions
- The cross-shaped CFST showed more significant load-carrying capacity than cross-shaped ST columns. The cross-shaped columns’ load-bearing capacity can be increased by increased CFST column confinement factor. A decrease the in the confinement factor ratio will decrease the local buckling. Additionally, there was a crack indication in the corner area on the MC-CFST and MC-ST specimens.
- The results of the experiments were used to establish and validate the FEM model. The load-bearing capacity and stiffness of the specimen might all be accurately simulated by the FEM model. The FEM model has been used to analyze the steel tube’s local buckling and the concrete’s stress concentration.
- The MC-CFST column loading capacity under compression is underestimated by the design code GB50936-2014, ACI & AS, EC-4, and CECS-159:2004. The SC-CFST and OC-CFST columns’ capacity was underestimated by AIJ and EC-4 design codes. However, the cross-shaped CFST column is unsafe in those cases.
- Improved calculation procedures were proposed for estimating the ultimate load-bearing capacity of cross-shaped CFST columns under axial compression. The calculation technique for the factor coefficient, φ, has been provided by introducing the influence of the confinement factor, ξ, for the axial compressive load. With the conclusion of experimental and FEM data, the mathematical calculation values are in better agreement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, L.-H. Concrete Filled Steel Tubular Structures-Theory and Practice; Science Press: Beijing, China, 2007. [Google Scholar]
- Liu, X.J.L.; Yang, Y.; Cheng, G.; Lanning, J. Resistance of special-shaped concrete-filled steel tube columns under compression and bending. J. Constr. Steel Res. 2020, 169, 106038. [Google Scholar] [CrossRef]
- Yongqian, Z.S.Z. Design of L-shaped and T-shaped concrete-filled steel tubular stub columns under axial compression. Eng. Struct. 2020, 207, 110262. [Google Scholar] [CrossRef]
- Ahmeda, M.; Liang, Q.Q.; Patelb, V.I.; Hadi, M.N.S. Experimental and numerical studies of square concrete-filled double steel tubular short columns under eccentric loading. Eng. Struct. 2019, 197, 109419. [Google Scholar] [CrossRef]
- Anatoly Leonidovich Krishan, M.A.A.; Chernyshova, E.P. Strength Calculation of Short Concrete-filled Steel Tube Columns. Int. J. Concr. Struct. Mater. 2018, 12, 84. [Google Scholar] [CrossRef]
- Liang, Q.Q. Numerical simulation of high strength circular double-skin concrete-filled steel tubular slender columns. Eng. Struct. 2018, 168, 205–217. [Google Scholar] [CrossRef]
- Farid Abed, M.A.; Abdalla, S. Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs). J. Constr. Steel Res. 2012, 80, 429–439. [Google Scholar] [CrossRef]
- Ren, Q.X.; Lam, D.; Hou, C. Experiments on special-shaped CFST stub columns under axial compression. J. Constr. Steel Res. 2014, 98, 123–133. [Google Scholar] [CrossRef]
- Bin, Z.; Wang, Z.T.; Han, L.-H.; Uy, B.; Lam, D.; Kang, W.-H. Strength, stiffness and ductility of concrete-filled steel columns under axial compression. Eng. Struct. 2017, 135, 209–221. [Google Scholar] [CrossRef]
- Deren, L.Y.G.; Ding, F.; Wang, L.; Deng, C.; Yuan, T.; Clae, R. Experimental Study of Square CFST Stub Columns With a Low Steel Ratio Under Axial Loading. Struct. Mater. A Sect. J. Front. Mater. 2021, 8, 629819. [Google Scholar] [CrossRef]
- Wen, X.J.C.; Xie, F.; Ye, C.; Liu, C. Behavior of Corroded Thin-Walled Concrete-Filled Steel Tubular Stub Columns. Buildings 2022, 12, 481. [Google Scholar] [CrossRef]
- Jiang, L.; Ji, J.; Ren, H.; Wang, Q.; Sun, R.; Yu, C.; Zhang, H.; Luo, G. Bearing behavior of high-performance concrete-filled high-strength steel tube composite columns subjected to eccentrical load. Struct. Mater. A Sect. J. Front. Mater. 2022, 9, 972811. [Google Scholar] [CrossRef]
- Payam, S.; Asteris, P.G.; Formisano, A.; Armaghani, D.J. Iterative Finite Element Analysis of Concrete-Filled Steel Tube Columns Subjected to Axial Compression. Buildings 2022, 12, 2071. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Yang, Y. Research on special-shaped concrete-filled steel tubular columns under axial compression. J. Constr. Steel Res. 2018, 147, 203–223. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, F.; Li, M. Performance of Special-Shaped Concrete-Filled Square Steel Tube Column under Axial Compression. Adv. Civ. Eng. 2020, 2020, 1763142. [Google Scholar] [CrossRef]
- Zheng, Y. Flexural behaviour of stiffened and multi-cell L-shaped CFSTs considering different loading angles. J. Constr. Steel Res. 2021, 178, 106520. [Google Scholar] [CrossRef]
- Zhu, Y. Behavior of Concrete Filled L-Shaped Stiffened Steel Tubes under Axial Compression. Master’s Thesis, East China Jiaotong University, Jiangxi, China, 2017. [Google Scholar]
- Song, H. Research on Mechanical Behavior of Multi-Cell Special-Shaped Concrete-Filled Steel Tubular Stub Columns Under Axial Compression. Master’s Thesis, Chongqing University, Chongqing, China, 2017. [Google Scholar]
- Zhang, W.; Xiong, Q. Performance of L-shaped columns comprising concrete-filled steel tubes under axial compression. J. Constr. Steel Res. 2018, 145, 573–590. [Google Scholar] [CrossRef]
- Qiguang, C.; Liang, Z.Z.; Jinxuan, H.; Jieying, W. Study on Cross-shaped Concrete Filled Steel Tubular Stub Columns Subjected to Axial Compression: Experiments and Design Method. Open Civil Eng. J. 2017, 11, 1–13. [Google Scholar] [CrossRef]
- Hossain, K.M.A. Axial load behaviour of thin walled composite columns. Compos. Part B 2003, 34, 715–725. [Google Scholar] [CrossRef]
- Vrcelj, Z.B.U. Strength of slender concrete-filled steel box columns incorporating local buckling. J. Constr. Steel Res. 2002, 58, 275–300. [Google Scholar] [CrossRef]
- Roeder, C.W.; Lehman, D.E.; Bishop, E. Strength and Stiffness of Circular Concrete-Filled Tubes. J. Struct. Eng. 2010, 136, 1545–1553. [Google Scholar] [CrossRef]
- de Oliveira, W.L.A.; de Cresce El Debs, A.L.H.; Debs, M.K.E. Influence of concrete strength and length/diameter on the axial capacity of CFT columns. J. Constr. Steel Res. 2009, 65, 2103–2110. [Google Scholar] [CrossRef]
- Zeghichea, K.C. An experimental behaviour of concrete-filled steel tubular columns. J. Constr. Steel Res. 2005, 61, 53–66. [Google Scholar] [CrossRef]
- Lyu, H.M.; Zhou, A.; Yang, J. Perspectives for flood risk assessment and management for mega-city metro system. Tunn. Undergr. Space Technol. 2019, 84, 31–44. [Google Scholar] [CrossRef]
- Song, H.; Yang, Y.; Chen, Y.F. Study on Mechanical Behavior of Integrated Multi-cell Concrete-filled Steel Tubular Stub Columns Under Concentric Compression. Int. J. Civ. Eng. 2019, 17, 361–376. [Google Scholar] [CrossRef]
- Bing, C.X.Z.; Liang, N.; Yang, Y.; Shen, D.; Huang, B.; Du, Y.-H. Bearing capacity of welded composite T-shaped concrete-filled steel tubular columns under axial compression. Adv. Mech. Eng. 2020, 12, 3102. [Google Scholar] [CrossRef]
- Xu, L.; Du, G.; Wen, F.; Xu, H. Experimental study on normal section compression bearing capacity of composite T-shaped concrete-filled steel tubular columns. China Civ. Eng. J. 2009, 42, 14–21. [Google Scholar]
- Montuori, R.; Tisi, A. Comparative analysis and critical issues of the main constitutive laws for concrete elements confined with FRP. Compos. Part B 2012, 43, 3219–3230. [Google Scholar] [CrossRef]
- Richart, F.E.; Brandtzaeg, A.; Brown, A. The Failure of Concrete of Plain and Spirally Reinforced Concrete in Compression. Univ. III. Eng. Exp. Stn. Bull. 1929, 190. [Google Scholar]
- Karabinis, A.I.; Rousakis, T.C. FRP Confining Effects on Steel Reinforced Concrete Square Sections Subjected to Axial Load. In Proceedings of the 2nd International fib Congress, Naples, Italy, 5–8 June 2006. [Google Scholar]
- General Administration of Quality Supervision. Tensile Test of Metal Materials-Part 1: Test Method at Room Temperature; China Construction Industry Press: Beijing, China, 2010. [Google Scholar]
- Park, R. Ductility Evaluation from Laboratory and Analytical Testing. In Proceedings of the Ninth World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, 2–9 August 1988. [Google Scholar]
- Huang, Z.; Li, D.; Wang, J. Behaviour and design of ultra-high-strength CFST members subjected to compression and bending. J. Constr. Steel Res. 2020, 175, 6351. [Google Scholar] [CrossRef]
- Li, W.; Han, L.-H. Seismic performance of concrete-filled double-skin steel tubes after exposure to fire: Experiments. J. Constr. Steel Res. 2018, 154, 209–223. [Google Scholar] [CrossRef]
- Hassam, M.; Jia, C. Concentric and eccentric compression performance of multiple-cell cruciform CFSTs. J. Constr. Steel Res. 2022, 192, 7205. [Google Scholar] [CrossRef]
- Hana, L.-H.; Zhao, X.-L. Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). J. Constr. Steel Res. 2005, 61, 1241–1269. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, H. Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface. Steel Compos. Struct. 2012, 13, 277–293. [Google Scholar] [CrossRef]
- Japan, A.I. Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures; Architectural Institute of Tokyo: Tokyo, Japan, 1997. (In Japanese) [Google Scholar]
- GB 50936-2014; Technical Code for Concrete Filled Steel Tubular Structures. MOHURD: Beijing, China, 2014.
- Güneyisi, E.M.; Mermerdaş, K. Ultimate Capacity Prediction of Axially Loaded CFST Short Columns. Int. J. Steel Struct. 2016, 16, 99–114. [Google Scholar] [CrossRef]
- EN 1994-1-1 E.C.f. Eurocode 4 (EC4); Design of Composite Steel and Concrete Structures, in Part 1-1: General Rules and Rules for Buildings. European Council: Brussels, Belgium, 2005.
- CECS 159: 2004; Technical Specifications for Structures with Concrete-Filled Rectangular Steel Tube Members. ICECS Association: Glasgow, UK, 2004.
No. | Specimens | l (mm) | b (mm) | t (mm) | Concrete Strength (MPa) | Steel Strength (MPa) | l/b | ξ |
---|---|---|---|---|---|---|---|---|
1 | MC-CFST | 900 | 300 | 3 | 45.28 | 330 | 3 | 1.136 |
2 | SC-CFST | 900 | 300 | 3 | 45.28 | 330 | 3 | 0.936 |
3 | OC-CFST | 900 | 300 | 3 | 45.28 | 330 | 3 | 0.842 |
4 | MC-ST | 900 | 300 | 3 | - | 330 | 3 | - |
5 | SC-ST | 900 | 300 | 3 | - | 330 | 3 | - |
6 | OC-ST | 900 | 300 | 3 | - | 330 | 3 | - |
Inner Length | fu (MPa) | fy (MPa) | Es (MPa) | νs |
---|---|---|---|---|
111 mm | 587 | 328 | 201,059 | 0.30 |
80 mm | 607 | 333 | 201,426 | 0.30 |
Specimen | N0.85E (kN) | NEy (kN) | δEy (mm) | NEmax (kN) | δEmax (mm) | NFEM | NFEM/NEmax | η |
---|---|---|---|---|---|---|---|---|
MC-CFST | 3234.24 | 3306 | 2.138 | 3805 | 3.581 | 3688 | 0.97 | 0.93 |
SC-CFST | 2580.6 | 2735 | 2.067 | 3036 | 3.063 | 2948 | 0.97 | 0.862 |
OC-CFST | 2400.4 | 2627 | 2.045 | 2824 | 2.936 | 2845 | 1.007 | 0.810 |
MC-ST | 939.25 | 1105 | 1.445 | 1195 | 1.445 | 1210 | 1.012 | - |
SC-ST | 794.75 | 935 | 1.224 | 995 | 1.224 | 974 | 0.979 | - |
OC-ST | 698.7 | 791 | 1.1853 | 822 | 1.185 | 843 | 1.026 | - |
AVP | 0.99 | |||||||
AVE | 0.01 |
Dilation Angle | Eccentricity | fb0/fc0 | Shape Factor, K | Viscosity Parameter |
---|---|---|---|---|
30o | 0.1 | 1.16 | 0.667 | 0.0001 |
Parameter | t (mm) | fy (MPa) | fcu (MPa) |
---|---|---|---|
Concrete strength | 3 | 330 | 40 |
3 | 330 | 60 | |
Steel strength | 3 | 300 | 60 |
3 | 390 | 60 | |
3 | 420 | 60 | |
Steel thickness | 2 | 330 | 45 |
5 | 330 | 45 |
Specimen | AIJ | GB50936-2014 | ACI & AS | EC-4 | CECS-159:2004 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Nus (kN) | Ꞷ | Nus (kN) | Ꞷ | Nus (kN) | Ꞷ | Nus (kN) | Ꞷ | Nus (kN) | Ꞷ | |
MC-CFST | 3699.45 | 1.03 | 3321.96 | 1.15 | 3281.40 | 1.16 | 2766.84 | 1.38 | 3340.45 | 1.14 |
SC-CFST | 3410.40 | 0.89 | 3126.67 | 0.97 | 3059.95 | 0.992 | 2561.91 | 1.18 | 3143.61 | 0.67 |
OC-CFST | 3269.85 | 0.86 | 3033.11 | 0.93 | 2952.30 | 0.957 | 2462.28 | 1.15 | 3051.20 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Z.; Hasan, M.M.; Han, D.; Qin, Q.; Abdul Ghafar, W. Study of the Axial Compressive Behaviour of Cross-Shaped CFST and ST Columns with Inner Changes. Buildings 2023, 13, 423. https://doi.org/10.3390/buildings13020423
Tao Z, Hasan MM, Han D, Qin Q, Abdul Ghafar W. Study of the Axial Compressive Behaviour of Cross-Shaped CFST and ST Columns with Inner Changes. Buildings. 2023; 13(2):423. https://doi.org/10.3390/buildings13020423
Chicago/Turabian StyleTao, Zhong, Md Mehedi Hasan, Dongji Han, Qiudong Qin, and Wahab Abdul Ghafar. 2023. "Study of the Axial Compressive Behaviour of Cross-Shaped CFST and ST Columns with Inner Changes" Buildings 13, no. 2: 423. https://doi.org/10.3390/buildings13020423
APA StyleTao, Z., Hasan, M. M., Han, D., Qin, Q., & Abdul Ghafar, W. (2023). Study of the Axial Compressive Behaviour of Cross-Shaped CFST and ST Columns with Inner Changes. Buildings, 13(2), 423. https://doi.org/10.3390/buildings13020423