Synthesis and Evaluation of Eco-Friendly, Ambient-Cured, Geopolymer-Based Bricks Using Industrial By-Products
Abstract
:1. Introduction
General
2. Materials and Methods
2.1. Materials
2.2. Characterization of Materials
3. Preparation of Sustainable Red Mud Bricks
4. Testing Methods
5. Results and Discussion
6. Micro Characterization of SRMB Composition
7. Model Preparation Using Analysis of Systems (ANSYS)
8. Stress and Strain Distribution
9. Limitations and Future Work
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Omer, S.A.; Demirboga, R.; Khushefati, W.H. Relationship between compressive strength and UPV of GGBFS based geopolymer mortars exposed to elevated temperatures. Constr. Build. Mater. 2015, 94, 189–195. [Google Scholar] [CrossRef]
- Balczár, I.; Korim, T.; Dobrádi, A. Correlation of strength to apparent porosity of geopolymers—Understanding through variations of setting time. Constr. Build. Mater. 2015, 93, 983–988. [Google Scholar] [CrossRef]
- Gunasekara, C.; Law, D.W.; Setunge, S.; Sanjayan, J.G. Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers. Constr. Build. Mater. 2015, 95, 592–599. [Google Scholar] [CrossRef]
- Un, C.; Sanjayan, J.; Nicolas, R.S.; van Deventer, J. Predictions of long-term deflection of geopolymer concrete beams. Constr. Build. Mater. 2015, 94, 10–19. [Google Scholar] [CrossRef]
- Sarker, P.K.; Haque, R.; Ramgolam, K.V. Fracture behaviour of heat cured fly ash based geopolymer concrete. Mater. Des. 2013, 44, 580–586. [Google Scholar] [CrossRef]
- Kozhukhova, N.I.; Chizhov, R.V.; Zhernovsky, I.V.; Strokova, V.V. Structure formation of geopolymer perlite binder vs. type of alkali activating agent. Int. J. Pharm. Technol. 2016, 8, 15338–15348. [Google Scholar]
- Davidovits, J.; Davidovits, R. Ferro-sialate Geopolymers (-Fe-O-Si-O-Al-O-); Technical papers #27; Geopolymer Institute Library: Saint-Quentin, France, 2020. [Google Scholar]
- Ganesh, A.C.; Muthukannan, M.; Aakassh, S.; Subramanaian, B. Energy efficient production of geopolymer bricks using industrial waste. IOP Conf. Ser. Mater. Sci. Eng. 2020, 872, 012154. [Google Scholar] [CrossRef]
- Madani, H.; Ramezanianpour, A.; Shahbazinia, M.; Ahmadi, E. Geopolymer bricks made from less active waste materials. Construct. Build. Mater. 2020, 247, 118441. [Google Scholar] [CrossRef]
- Petrillo, A.; Cioffi, R.; Ferone, C.; Colangelo, F.; Borrelli, C. Eco-sustainable Geopolymer Concrete Blocks Production Process. Agric. Agric. Sci. Procedia 2016, 8, 408–418. [Google Scholar] [CrossRef]
- Xiao, R.; Jiang, X.; Zhang, M.; Polaczyk, P.; Huang, B. Analytical investigation of phase assemblages of alkali-activated materials in CaO-SiO2-Al2O3 systems: The management of reaction products and designing of precursors. Mater. Des. 2020, 194, 108975. [Google Scholar] [CrossRef]
- International Institute Aluminium. 2015. Available online: www.world-aluminium.org (accessed on 27 December 2014).
- International Institute Aluminium. 2022. Available online: www.international-aluminiuminstitute.org (accessed on 9 August 2022).
- Central Pollution Control Board (CPCB). India Reports. 2021. Available online: https://cpcb.nic.in/openpdffile.php?id=TmV3c0ZpbGVzLzg5XzE2Mjg3NTEwNDhfbWVkaWFwaG90bzIzMDk2LnBkZg== (accessed on 11 August 2021).
- Fly Ash for Highway Engineers. Chapter 1, Fly Ash—An Engineering Material; Government of India, 27 June 2017, India. Available online: https://www.fhwa.dot.gov/pavement/recycling/fach01.cfm (accessed on 11 August 2021).
- Central Electricity Authority Board (CEA). Government of India; 2020–2021, New Delhi, India. Available online: https://cea.nic.in/wp-content/uploads/notification/2021/12/CEAAnnualReport_final.pdf (accessed on 11 August 2021).
- GGBS Production by the Ministry of Mines, Government of India; 2021–2022. New Delhi, India. Available online: https://mines.gov.in/writereaddata/UploadFile/Mines_AR_2021-22_English.pdf (accessed on 11 August 2021).
- Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W.H.; Wang, H. Fly ash-based geopolymer: Clean production, properties and applications. J. Clean. Prod. 2016, 125, 253–267. [Google Scholar] [CrossRef]
- Davidovits, J. Properties of geopolymer cement. In Proceedings of the First International Conference on Alkaline Cements and Concretes, Scientific Research Institute on Binders and Materials, Kiev, Ukraine, 11–14 October 1994; Kiev State Technical University: Kiev, Ukraine; pp. 131–149. [Google Scholar]
- Mohsen, Q.; Mostafa, N.Y. Investigating the possibility of utilising low kaolinitic clays in production of geopolymer bricks. Ceramics-Silikaty 2010, 54, 160–168. [Google Scholar]
- Ferone, C.; Colangelo, F.; Cioffi, R.; Montagnaro, F.; Santoro, L. Mechanical Performances of Weathered Coal Fly Ash Based Geopolymer Bricks. Procedia Eng. 2011, 21, 745–752. [Google Scholar] [CrossRef]
- Jeyasehar, C.A.; Saravanan, G.; Ramakrishnan, A.K.; Kandasamy, S. Strength and durability studies on fly ash based geopolymer bricks. Asian J. Civ. Eng. 2013, 14, 797–808. [Google Scholar]
- Hodhod, O.A.; Alharthy, S.E.; Bakr, S.M. Physical and mechanical properties for metakaolin geopolymer bricks. Constr. Build. Mater. 2020, 265, 120217. [Google Scholar] [CrossRef]
- Mahmoodi, O.; Siad, H.; Lachemi, M.; Sahmaran, M. Synthesis and optimization of binary systems of brick and concrete wastes geopolymers at ambient environment. Constr. Build. Mater. 2021, 276, 122217. [Google Scholar] [CrossRef]
- Zheng, D.; Li, W. A High Compressive Strength Brick Composition Containing Red Mud, a High Compressive Strength Brick Manufacturing Method and a High Compressive Strength Brick. Chinese Patent CN108996988, 14 December 2018. [Google Scholar]
- Jiang, S.; Li, Y. Non-Burning Permeable Bricks and Preparation Method Thereof. Chinese Patent CN110304870, 12 August 2019. [Google Scholar]
- Hu, S.; Zhong, L.; Yang, X.; Bai, H.; Ren, B.; Zhao, Y.; Zhang, W.; Ju, X.; Wen, H.; Mao, S.; et al. Synthesis of rare earth tailing-based geopolymer for efficiently immobilizing heavy metals. Constr. Build. Mater. 2020, 254, 119273. [Google Scholar] [CrossRef]
- El-Naggar KA, M.; Amin, S.K.; El-Sherbiny, S.A.; Abadir, M.F. Preparation of geopolymer insulating bricks from waste raw materials. Constr. Build. Mater. 2019, 222, 699–705. [Google Scholar] [CrossRef]
- Manikandan, P.; Shanthakumar, K.; Vijayakumar, C.; Ajithsukumar, K.; Kishore Prakash, N.; Yousuf, I.M.; Nagaraj, G. Fly Ash-Based Geopolymer Bricks. Indian Patent IN202141047880, 21 October 2021. [Google Scholar]
- Shahul Hameed, M.; Vishnuram, B.G.; Dhanalakshmi, A.; Karthik Ragunath, S.; Arun Raja, L.; Dhanalakshmi, A.; Baskar Singh, G.; Nagamani, S.; Manoj Guru, R.; Dhivakar, M.; et al. Eco-Efficient Geopolymer Bricks. Indian Patent IN202141004597, 3 February 2021. [Google Scholar]
- IS 12089; Specification for Granulated Slag Manufacturing Portland Slag Cement. Bureau of Indian standards: New Delhi, India, 1987.
- Riski, O.; Prasetyoko, D.; Febrianti, D.K.; Ni’mah, Y.L.; Iftitahiyah, V.N.; Qoni’ah, I.; Santoso, E. The effect of crystallization time and H2o/CTAB ratio in the synthesis of mesoporous alumina from bauxite residue (red mud). Malays. J. Fundam. Appl. Sci. 2019, 15, 193–198. [Google Scholar]
- Panwar, N.; Chauhan, A.; Pali, H.S.; Sharma, M.D. Fabrication of aluminum 6061 red-mud composite using stir casting and micro structure observation. Mater. Today Proc. 2020, 21, 2014–2023. [Google Scholar] [CrossRef]
- Nordin, N.; Abdullah, M.M.A.B.; Tahir, M.F.M.; Sandu, A.V.; Hussin, K. Utilization of fly ash waste as construction material. Int. J. Conserv. Sci. 2016, 7, 161–166. [Google Scholar]
- Rafieizonooz, M.; Khankhaje, E.; Rezania, S. Assessment of environmental and chemical properties of coal ashes including fly ash and bottom ash, and coal ash concrete. J. Build. Eng. 2022, 49, 104040. [Google Scholar] [CrossRef]
- Pfingsten, J.; Rickert, J.; Lipus, K. Estimation of the content of ground granulated blast furnace slag and different pozzolanas in hardened concrete. Constr. Build. Mater. 2018, 165, 931–938. [Google Scholar] [CrossRef]
- Hammad, N.; El-Nemr, A.; Hasan, H.E.-D. The performance of fiber GGBS based alkali-activated concrete. J. Build. Eng. 2021, 42, 102464. [Google Scholar] [CrossRef]
- Sagar, B.; Sivakumar, M.V.N. Mechanical and microstructure characterization of alccofine based high strength concrete. Silicon 2020, 14, 795–813. [Google Scholar] [CrossRef]
- Sagarika, P.; Abhishek, S.; Niharika, P. Mechanical properties of green high-performance concrete using fly ash and alccofine. J. Xi’an Univ. Archit. Technol. 2020, XII, 1835–1842. [Google Scholar]
- Zawrah, M.; Sawan, S.A.; Khattab, R.; Abdel-Shafi, A. Effect of nano sand on the properties of metakaolin-based geopolymer: Study on its low rate sintering, Construct. Build. Mater. 2020, 246, 118486. [Google Scholar] [CrossRef]
- IS 3812:2013; Indian Standard, Pulverized Fuel Ash- Specification, Part 1, for Use as Pozzolana in Cement, Cement Mortar and Concrete. Bureau of Indian Standards: New Delhi, India, 2013.
- IS 1077:1992; Indian Standard, Common Burnt Clay Building Bricks, Specification, Fifth Revision. Bureau of Indian Standards: New Delhi, India, 1992.
- IS 3495:2019; Indian Standard, Burnt Clay Building Bricks, Method of Tests, Part 1, Determination of Compressive Strength, Fourth Revision. Bureau of Indian standards: New Delhi, India, 2019.
- IS 3495:2019; Indian Standard, Burnt Clay Building Bricks, Method of Tests, Part 2, Determination of Water Absorption, Fourth Revision. Bureau of Indian Standards: New Delhi, India, 2019.
- IS 3495:2019; Indian Standard, Burnt Clay Building Bricks, Method of Tests, Part 3, Determination of Efflorescence, Fourth Revision. Bureau of Indian Standards: New Delhi, India, 2019.
- IS 4860:1968; Indian Standard, Acid Resistance Bricks, Flooring, Wall Finishing and Roofing. Bureau of Indian Standards: New Delhi, India, 1968; 6th Reprint, September 1994.
- ASTM C (1006)-7; Standard Test Method for Splitting Tensile Strength of Masonry Units. American Society for Testing and Materials: West Conshohocken, PA, USA, 2007.
- ASTM C67-1299; Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile. American Society for Testing and Materials: West Conshohocken, PA, USA, 2005.
- IS 2180:1988; Indian Standard, Specification of Heavy-Duty Burnt Clay Building Bricks. Bureau of Indian Standards: New Delhi, India, 1988.
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef] [Green Version]
Material | Specific Gravity (G) | Specific Surface (m2/kg) | Colour | Average Particle Size (µ-Micron) | Type | Water Absorption | Bulk Density (g/cm3) | Fineness Modulus | Purity |
---|---|---|---|---|---|---|---|---|---|
RM | 2.83 | 373.3 | Red | <4.5 | Powder | - | - | - | - |
FA | 2.01 | 621.1 | Grey | <10 | Powder | - | - | - | - |
GGBS | 2.76 | 386 | Grey- white | <4.5 | Powder | - | - | - | - |
AL | 2.54 | 922.8 | Grey-white | <4.5 | Powder | - | - | - | - |
QD | 2.80 | - | Grey | <4.5 | Fine grain | 0.48 | 1.56 | 3.35 | - |
Na2SiO3 | 1.15 | - | Light brown | - | Liquid gel | - | - | - | - |
NaOH | - | - | White | - | Flakes | - | - | - | >98% |
Material | Fe2O3 | Al2O3 | SiO2 | TiO2 | CaO | MnO | V2O5 | Cr2O3 | ZrO2 | NbO | ThO2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Red mud | 54.261 | 38.648 | 3.593 | 2.084 | 0.725 | 0.381 | 0.128 | 0.095 | 0.073 | 0.006 | 0.006 |
Prasetyoko et al., (2019) [32] | 49.87 | 31.39 | 15.03 | 1.57 | 0.15 | - | 0.08 | 0.10 | - | - | -, etc. |
Panwar et al., (2020) [33] | 35.26 | 21.89 | 12.46 | 15.11 | 1.83 | 0.04 | 0.38 | 0.11 | 0.15 | - | -, etc. |
Material | SiO2 | Al2O3 | Fe2O3 | TiO2 | CaO | MnO | V2O5 | Cr2O3 | ZrO2 | NbO | SrO | ZnO | K2O | CuO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fly ash | 38.4 | 48.833 | 5.965 | 1.061 | 0.677 | 0.058 | 0.053 | 0.022 | 0.031 | 0.003 | 0.014 | 0.009 | 4.8 | 0.001 |
Nordin et al., (2016) [34] | 52.11 | 23.59 | 7.39 | 0.88 | 2.61 | 0.03 | - | - | - | - | - | - | 0.80 | -, etc. |
Rafieeizonooz et al. [35] (2022) | 47.6 | 23.8 | 7.4 | 2.92 | 10.7 | 0.12 | - | - | - | - | - | - | 1.4 | -, etc. |
Material | Al2O3 | SiO2 | Fe2O3 | TiO2 | CaO | MnO | SO3 | K2O | ZrO2 | CuO | SrO |
---|---|---|---|---|---|---|---|---|---|---|---|
GGBS | 36.723 | 28.883 | 0.619 | 0.695 | 29.369 | 1.240 | 0.154 | 2.244 | 0.027 | 0.006 | 0.034 |
Pfingsten et al., (2018) [36] | 10.96 | 35.75 | 0.43 | 1.03 | 44.45 | - | 0.01 | 0.45 | - | - | -, etc. |
Hammed et al., (2021) [37] | 11.40 | 39.40 | 0.76 | 0.75 | 38.65 | 0.26 | 1.10 | 0.34 | - | - | -, etc. |
Material | Al2O3 | SiO2 | Fe2O3 | TiO2 | CaO | MnO | K2O | SO3 | Y2O3 | ZrO2 | SrO | Na2O | Y2O3 | CI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alccofine | 36.75 | 28.64 | 1.167 | 0.51 | 28.54 | 1.40 | 2.79 | 0.14 | 0.06 | 0.03 | 0.03 | - | 0.006 | - |
Sagar and Kumar (2021) [38] | 24.57 | 37.53 | 0.92 | - | 29.46 | - | 0.61 | 0.18 | - | - | - | 0.03 | - | -, etc. |
Panda et al., (2020) [39] | 22.1 | 35 | 2.1 | - | 33 | - | - | 0.4 | - | - | - | - | - | 0.02, etc. |
Ingredients | Residual Mass (%) | Maximum Temperature (Celsius) |
---|---|---|
Red mud | 87.38 | 1198.9 |
Fly ash | 103.22 | 1198.9 |
Ground granulated blast furnace slag | 96.40 | 1198.9 |
Alccofine | 104.59 | 1198.9 |
Sample | Mix | Binder ratio | RM (kg/m3) | FA (kg/m3) | GGBS (kg/m3) | AL (kg/m3) |
---|---|---|---|---|---|---|
A1 | R30F70G00A00 | 0.38 | 165.40 | 385.92 | 0.00 | 0.00 |
A2 | R40F60G00A00 | 0.38 | 220.53 | 330.79 | 0.00 | 0.00 |
A3 | R50F50G00A00 | 0.36 | 275.66 | 275.66 | 0.00 | 0.00 |
A4 | R60F40G00A00 | 0.38 | 330.79 | 220.53 | 0.00 | 0.00 |
B1 | R20F70G10A00 | 0.38 | 110.26 | 385.92 | 55.13 | 0.00 |
B2 | R30F60G10A00 | 0.38 | 165.40 | 330.79 | 55.13 | 0.00 |
B3 | R40F50G10A00 | 0.36 | 220.53 | 275.66 | 55.13 | 0.00 |
B4 | R50F40G10A00 | 0.38 | 275.66 | 220.53 | 55.13 | 0.00 |
C1 | R25F70G00A05 | 0.36 | 137.83 | 385.92 | 0.00 | 27.57 |
C2 | R35F60G00A05 | 0.35 | 192.96 | 330.79 | 0.00 | 27.57 |
C3 | R45F50G00A05 | 0.38 | 248.09 | 275.66 | 0.00 | 27.57 |
C4 | R55F40G00A05 | 0.35 | 303.23 | 220.53 | 0.00 | 27.57 |
D1 | R15F70G10A05 | 0.40 | 82.70 | 385.92 | 55.13 | 27.57 |
D2 | R25F60G10A05 | 0.38 | 137.83 | 330.79 | 55.13 | 27.57 |
D3 | R35F50G10A05 | 0.35 | 192.96 | 275.66 | 55.13 | 27.57 |
D4 | R45F40G10A05 | 0.36 | 248.09 | 220.53 | 55.13 | 27.57 |
Term | Coefficient | Coefficient | T-Value | p-Value | VIF | |
---|---|---|---|---|---|---|
Constants | Constant | 18.750 | 0.318 | 58.87 | 0.000 | |
Y11 | 82.70 | 27.04 | 1.52 | 17.83 | 0.000 | 3.40 |
Y12 | 110.26 | 14.94 | 1.52 | 9.85 | 0.002 | 3.40 |
Y13 | 137.83 | 19.63 | 1.07 | 18.30 | 0.000 | 2.50 |
Y14 | 165.40 | 7.32 | 1.07 | 6.82 | 0.006 | 2.50 |
Y15 | 192.96 | 6.038 | 0.938 | 6.44 | 0.008 | 1.91 |
Y16 | 220.53 | −3.726 | 0.938 | −3.97 | 0.028 | 1.91 |
Y17 | 248.09 | −4.91 | 1.07 | −4.58 | 0.020 | 2.50 |
Y18 | 275.66 | −15.89 | 1.07 | −14.82 | 0.001 | 2.50 |
Y19 | 303.23 | −18.96 | 1.52 | −12.51 | 0.001 | 3.40 |
Y21 | 220.53 | 21.53 | 1.09 | 19.80 | 0.000 | 7.00 |
Y22 | 275.66 | 6.499 | 0.712 | 9.13 | 0.003 | 3.00 |
Y23 | 330.79 | −8.566 | 0.712 | −12.03 | 0.001 | 3.00 |
Regression Statistics | |
---|---|
Multiple R | 0.997245221 |
R Square | 0.994498031 |
Adjusted R Square | 0.909789206 |
Standard Error | 1.807086622 |
Observations | 16 |
Runs | Compressive Strength (A) | Tensile Strength (B) |
---|---|---|
1 | 1 | 1 |
2 | −1 | 1 |
3 | −1 | −1 |
4 | 1 | −1 |
5 | 1 | −1 |
6 | −1 | 1 |
7 | 1 | 1 |
8 | −1 | −1 |
9 | 1 | 1 |
10 | −1 | −1 |
11 | 1 | −1 |
12 | −1 | 1 |
Sample | Probability Output | Predicted Output | Percentile |
---|---|---|---|
1 | 7.12 | 4.68 | 3.125 |
2 | 7.32 | 6.78 | 9.375 |
3 | 8.82 | 8.88 | 15.625 |
4 | 9.36 | 10.99 | 21.875 |
5 | 14.22 | 16.23 | 28.125 |
6 | 15.36 | 18.33 | 34.375 |
7 | 16.98 | 20.44 | 40.625 |
8 | 18.39 | 22.54 | 46.875 |
9 | 20.34 | 16.02 | 53.125 |
10 | 20.66 | 18.12 | 59.375 |
11 | 21.32 | 20.22 | 65.625 |
12 | 24.39 | 22.33 | 71.875 |
13 | 26.32 | 27.57 | 78.125 |
14 | 30.33 | 29.67 | 84.375 |
15 | 32.15 | 31.77 | 90.625 |
16 | 35.38 | 33.88 | 96.875 |
Compressive Strength (A) | Tensile Strength (B) | Optimal Point |
---|---|---|
7.12 | 0.59 | 1 |
21.25 | 1.89 | 1 |
21.25 | 0.37 | 0 |
1.27 | 1.13 | 1 |
21.25 | 1.13 | 0 |
35.38 | 1.67 | 1 |
35.38 | 0.59 | 0 |
7.12 | 1.67 | 0 |
41.23 | 1.13 | 1 |
21.25 | 1.13 | 0 |
21.25 | 1.13 | 0 |
21.25 | 1.13 | 0 |
21.25 | 1.13 | 0 |
Sample | Mix | Compressive Strength | Water Absorption | Flexural Strength | Split Tensile Strength | Initial Rate of Water Absorption | Compressive Strength after Alternate Wetting and Drying Test |
---|---|---|---|---|---|---|---|
(MPa) | (%) | (MPa) | (MPa) | (%) | (MPa) | ||
A1 | R30F70G00A00 | 7.12 | 8.98 | 3.56 | 0.65 | 2.01 | 4.02 |
A2 | R40F60G00A00 | 7.32 | 10.32 | 3.69 | 0.59 | 2.32 | 4.12 |
A3 | R50F50G00A00 | 9.36 | 10.02 | 3.25 | 0.61 | 1.98 | 5.32 |
A4 | R60F40G00A00 | 8.82 | 11.03 | 2.95 | 0.82 | 1.85 | 5.2 |
B1 | R20F70G10A00 | 14.22 | 8.7 | 4.78 | 1.12 | 1.65 | 10.01 |
B2 | R30F60G10A00 | 16.98 | 7.98 | 4.68 | 1.21 | 1.54 | 10.12 |
B3 | R40F50G10A00 | 20.66 | 8.63 | 4.45 | 1.36 | 1.32 | 12.35 |
B4 | R50F40G10A00 | 24.39 | 7.25 | 3.99 | 1.5 | 1.1 | 15.55 |
C1 | R25F70G00A05 | 18.39 | 9.63 | 4.32 | 1.35 | 1.92 | 11.24 |
C2 | R35F60G00A05 | 15.36 | 8.65 | 4.68 | 1.23 | 0.98 | 12.36 |
C3 | R45F50G00A05 | 20.34 | 8.35 | 5.01 | 1.65 | 1.32 | 15.36 |
C4 | R55F40G00A05 | 21.32 | 8.02 | 5.2 | 1.66 | 1.87 | 16.35 |
D1 | R15F70G10A05 | 26.32 | 6.02 | 5.16 | 1.38 | 1.68 | 20.12 |
D2 | R25F60G10A05 | 30.33 | 5.32 | 5.21 | 1.62 | 1.74 | 24.35 |
D3 | R35F50G10A05 | 32.15 | 5.91 | 7.32 | 1.59 | 1.83 | 25.35 |
D4 | R45F40G10A05 | 35.38 | 5.84 | 6.07 | 1.669 | 1.95 | 28.35 |
Sample | Mix | Compressive Strength | Water Absorption | Flexural Strength | Split Tensile Strength | Initial Rate of Water Absorption | Compressive Strength after Alternate Wetting and Drying Test |
---|---|---|---|---|---|---|---|
(MPa) | (%) | (MPa) | (MPa) | (%) | (MPa) | ||
A1 | R30F70G00A00 | 7.99 | 8.01 | 4.02 | 0.87 | 1.9 | 3.98 |
A2 | R40F60G00A00 | 8.01 | 9.92 | 3.8 | 0.68 | 1.95 | 5.42 |
A3 | R50F50G00A00 | 11.25 | 10.02 | 3.61 | 0.67 | 1.55 | 7.42 |
A4 | R60F40G00A00 | 10.12 | 10.55 | 3.14 | 0.91 | 1.6 | 7.89 |
B1 | R20F70G10A00 | 15.15 | 8.32 | 5.22 | 1.63 | 1.5 | 10.22 |
B2 | R30F60G10A00 | 18.35 | 6.35 | 5.87 | 1.35 | 1.3 | 11.24 |
B3 | R40F50G10A00 | 22.31 | 8.04 | 4.68 | 1.47 | 1.2 | 14.87 |
B4 | R50F40G10A00 | 26.32 | 5.98 | 4.05 | 1.68 | 1.15 | 14.35 |
C1 | R25F70G00A05 | 21.21 | 9.05 | 4.71 | 1.67 | 1.4 | 16.32 |
C2 | R35F60G00A05 | 25.05 | 7.04 | 4.89 | 197 | 1.35 | 19.21 |
C3 | R45F50G00A05 | 28.36 | 7.85 | 5.37 | 1.87 | 1.25 | 16.45 |
C4 | R55F40G00A05 | 25.36 | 6.52 | 5.01 | 1.8 | 1.7 | 18.78 |
D1 | R15F70G10A05 | 39.21 | 7.85 | 5.87 | 1.78 | 1.85 | 24.63 |
D2 | R25F60G10A05 | 33.31 | 5.89 | 5.48 | 1.45 | 1.38 | 27.69 |
D3 | R35F50G10A05 | 36.39 | 5.87 | 6.02 | 1.39 | 1.54 | 28.65 |
D4 | R45F40G10A05 | 44.38 | 5.3 | 6.38 | 1.963 | 1.78 | 35.21 |
Property | Axis | Value |
---|---|---|
Compressive strength | Horizontal | 35.38 MPa |
Tensile strength | Horizontal | 1.67 MPa |
Young’s modulus | Horizontal | 26316 MPa |
Poisson’s ratio | Horizontal | 0.12 |
Compressive strength | Vertical | 3.59 MPa |
Tensile strength | Vertical | 1.34 MPa |
Young’s modulus | Vertical | 4631 MPa |
Poisson’s ratio | Vertical | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sruthi, S.; Gayathri, V. Synthesis and Evaluation of Eco-Friendly, Ambient-Cured, Geopolymer-Based Bricks Using Industrial By-Products. Buildings 2023, 13, 510. https://doi.org/10.3390/buildings13020510
Sruthi S, Gayathri V. Synthesis and Evaluation of Eco-Friendly, Ambient-Cured, Geopolymer-Based Bricks Using Industrial By-Products. Buildings. 2023; 13(2):510. https://doi.org/10.3390/buildings13020510
Chicago/Turabian StyleSruthi, Subramani, and Venkataraman Gayathri. 2023. "Synthesis and Evaluation of Eco-Friendly, Ambient-Cured, Geopolymer-Based Bricks Using Industrial By-Products" Buildings 13, no. 2: 510. https://doi.org/10.3390/buildings13020510
APA StyleSruthi, S., & Gayathri, V. (2023). Synthesis and Evaluation of Eco-Friendly, Ambient-Cured, Geopolymer-Based Bricks Using Industrial By-Products. Buildings, 13(2), 510. https://doi.org/10.3390/buildings13020510