A Review on Emerging Cementitious Materials, Reactivity Evaluation and Treatment Methods
Abstract
:1. Introduction
1.1. Supplementary Cementitious Materials (SCMs)
1.2. Standardized SCMs
1.2.1. Fly Ash
1.2.2. Ground Granular Blast Furnace Slag
1.2.3. Limestone Powder
1.2.4. Silica Fume
1.3. Industrial Application of Standardized SCMs
2. Emerging SCMs
2.1. Mine Tailings
2.2. Slags from Metal Production
2.2.1. Aluminum Dross
2.2.2. Iron and Steelmaking Slags
2.3. Wood Waste Ash
2.4. Waste from Concrete Production Activities
2.4.1. Concrete Sludge
2.4.2. Recycled Concrete Powder (RCP)
2.5. Insight on the Emerging SCMs
3. Methods for Enhancing the Reactivity of SCMs
3.1. Reduction in Particle Size of SCMs
3.2. Thermal Treatment
3.3. Additives
3.4. Combined Treatments
4. Reactivity Assessment Methods
Insight on the Evaluation Methods
5. Conclusions
- When unprocessed, certain materials such as CSW and AD are considered as hazardous; however, when used as an SCM in limited content, their hazardous nature is restricted and they can be beneficial for the construction industry.
- The only environmental impact and cost associated with emerging SCMs is the transportation of SCMs from the source to cement industries.
- The huge volume of emerging SCMs could potentially surpass the utilization of existing SCMs in concrete.
- Pre-treatment to mechanically reduce particle size, calcining, and adding gypsum and iron increase reactivity. For decades, mechanically reducing SCM particle size has been the most effective treatment method for improving reactivity, but it increases specific surface area and water demand. The CO2 emissions from these treatment methods may be acceptable when the reactivity of SCMs is enhanced.
- Several methods can be used to determine the material’s reactivity. As a rapid screening method, physical properties and chemical composition are used to classify a material as a potential SCM. However, some materials, such as mine tailings, may have pozzolanic oxides that have low pozzolanic reactivity because they are crystalline. This lowers the mechanical and durability properties of the concrete. Therefore, the reactivity of SCMs must be studied.
- Existing SCM reactivity methods have significant limitations. Due to these limitations, the actual reactivity of emerging SCMs is unknown or underreported, which prevents emerging SCMs from reaching the market.
Author Contributions
Funding
Conflicts of Interest
References
- Rashad, A.M.; Bai, Y.; Basheer, P.A.M.; Milestone, N.B.; Collier, N.C. Hydration and properties of sodium sulfate activated slag. Cem. Concr. Compos. 2013, 37, 20–29. [Google Scholar] [CrossRef] [Green Version]
- CEMBUREAU. Cementing the European Green Deal, Reaching Climate Neutrality along the Cement and Concrete Value Chained by 2050. 2020. Available online: https://cembureau.eu/media/kuxd32gi/cembureau-2050-roadmap_final-version_web.pdf (accessed on 25 May 2022).
- Xi, F.; Davis, S.; Ciais, P.; Crawford-Brown, D.; Guan, D.; Pade, C.; Shi, F.X.T.; Syddall, D.C.-B.M.; Lv, J.; Ji, L.; et al. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 2016, 9, 880–883. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency. Global Energy & CO2 Status Report 2019—Analysis; International Energy Agency: Paris, France, 2019; Available online: https://www.iea.org/reports/global-energy-co2-status-report-2019 (accessed on 4 February 2021).
- UN Environment; Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar]
- Yang, K.-H.; Jung, Y.-B.; Cho, M.-S.; Tae, S.-H. Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J. Clean. Prod. 2015, 103, 774–783. [Google Scholar] [CrossRef]
- Mala, K.; Mullick, A.K.; Jain, K.K.; Singh, P.K. Effect of Relative Levels of Mineral Admixtures on Strength of Concrete with Ternary Cement Blend. Int. J. Concr. Struct. Mater. 2013, 7, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Ye, G. Dehydration kinetics of Portland cement paste at high temperature. J. Therm. Anal. Calorim. 2012, 110, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Gunnarsson, I.; Arnórsson, S. Amorphous silica solubility and the thermodynamic properties of H4SiO°4 in the range of 0° to 350 °C at Psat. Geochim. Cosmochim. Acta 2000, 64, 2295–2307. [Google Scholar] [CrossRef]
- Izadifar, M.; Ukrainczyk, N.; Uddin, K.M.S.; Middendorf, B.; Koenders, E. Dissolution of Portlandite in Pure Water: Part 2 Atomistic Kinetic Monte Carlo (KMC) Approach. Materials 2022, 15, 1442. [Google Scholar] [CrossRef]
- Izadifar, M.; Natzeck, C.; Emmerich, K.; Weidler, P.G.; Gohari, S.; Burvill, C.; Thissen, P. Unexpected Chemical Activity of a Mineral Surface: The Role of Crystal Water in Tobermorite. J. Phys. Chem. C 2022, 126, 12405–12412. [Google Scholar] [CrossRef]
- Aprianti, E. A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production—A review part II. J. Clean. Prod. 2017, 142, 4178–4194. [Google Scholar] [CrossRef]
- Bediako, M.; Frimpong, A.O. Alternative Binders for Increased Sustainable Construction in Ghana—A Guide for Building Professionals. Mater. Sci. Appl. 2013, 4, 20–28. [Google Scholar] [CrossRef]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- Flower, D.J.M.; Sanjayan, J.G. Green house gas emissions due to concrete manufacture. Int. J. Life Cycle Assess. 2007, 12, 282–288. [Google Scholar] [CrossRef]
- Juenger, M.C.G.; Snellings, R.; Bernal, S.A. Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Zeggar, M.L.; Azline, N.; Safiee, N.A. Fly ash as supplementry material in concrete: A review. IOP Conf. Ser. Earth Environ. Sci. 2019, 357, 012025. [Google Scholar] [CrossRef]
- Concreteproducts.com. Fly Ash Use in Concrete Up Slightly; Overall Ash Recycling Rate Down. 2020. Available online: https://concreteproducts.com/index.php/2020/12/18/fly-ash-use-in-concrete-up-slightly-overall-ash-recycling-rate-down/ (accessed on 1 August 2022).
- Amran, M.; Fediuk, R.; Murali, G.; Avudaiappan, S.; Ozbakkaloglu, T.; Vatin, N.; Karelina, M.; Klyuev, S.; Gholampour, A. Fly Ash-Based Eco-Efficient Concretes: A Comprehensive Review of the Short-Term Properties. Materials 2021, 14, 4264. [Google Scholar] [CrossRef]
- Tapeshwar, K.; Ravi, R. A Review on Fly Ash Concrete. Int. J. Latest Res. Eng. Comput. 2015, 3, 7–10. [Google Scholar]
- Flores, R.M. Coal Composition and Reservoir Characterization. In Coal and Coalbed Gas; Elsevier: Amsterdam, The Netherlands, 2014; pp. 235–299. [Google Scholar]
- Blissett, R.S.; Rowson, N.A. A review of the multi-component utilisation of coal fly ash. Fuel 2012, 97, 1–23. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Amin, N.U. A multi-directional utilization of different ashes. RSC Adv. 2014, 4, 62769–62788. [Google Scholar] [CrossRef]
- ASTM C618-19; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2019.
- EN 450-1; Fly Ash for Concrete—Definition, Specifications and Conformity Criteria. iTeh, Inc.: Newark, DE, USA, 2012.
- Panesar, D.K. Supplementary cementing materials. In Developments in the Formulation and Reinforcement of Concrete; Elsevier: Amsterdam, The Netherlands, 2019; pp. 55–85. [Google Scholar]
- Johari, M.M.; Brooks, J.; Kabir, S.; Rivard, P. Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr. Build. Mater. 2011, 25, 2639–2648. [Google Scholar] [CrossRef]
- Behl, V.; Singh, V.; Dahiya, V.; Kumar, A. Characterization of physico-chemical and functional properties of fly ash concrete mix. Mater. Today Proc. 2021, 50, 941–945. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P. Effect of Fly Ash on the Durability Properties of High Strength Concrete. Procedia Eng. 2011, 14, 1149–1156. [Google Scholar] [CrossRef] [Green Version]
- Saha, A.K. Effect of class F fly ash on the durability properties of concrete. Sustain. Environ. Res. 2018, 28, 25–31. [Google Scholar] [CrossRef]
- Islam, M.M.; Alam, M.T.; Islam, M.S. Effect of fly ash on freeze–thaw durability of concrete in marine environment. Aust. J. Struct. Eng. 2018, 19, 146–161. [Google Scholar] [CrossRef]
- Zhang, J.; Matsuura, H.; Tsukihashi, F. Processes for Recycling. In Treatise on Process Metallurgy; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1507–1561. [Google Scholar]
- Matthes, W.; Vollpracht, A.; Villagrán, Y.; Kamali-Bernard, S.; Hooton, D.; Gruyaert, E.; Soutsos, M.; De Belie, N. Ground Granulated Blast-Furnace Slag. In Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4; De Belie, N., Marios, S., Elke, G., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–53. [Google Scholar]
- World Steel Association. World Steel in Figures 2021. 2021. Available online: https://worldsteel.org/wp-content/uploads/2021-World-Steel-in-Figures.pdf (accessed on 19 October 2022).
- Horii, K.; Tsutsumi, N.; Kitano, Y.; Kato, T. Processing and reusing technologies for steelmaking slag. Nippon Steel Tech. Rep. 2013, 805, 123–129. [Google Scholar]
- Rashad, A.M. An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Constr. Build. Mater. 2018, 187, 89–117. [Google Scholar] [CrossRef]
- Sakir, S.; Raman, S.N.; Safiuddin; Kaish, A.B.M.A.; Mutalib, A.A. Utilization of By-Products and Wastes as Supplementary Cementitious Materials in Structural Mortar for Sustainable Construction. Sustainability 2020, 12, 3888. [Google Scholar] [CrossRef]
- Boukendakdji, O.; Kadri, E.-H.; Kenai, S. Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self-compacting concrete. Cem. Concr. Compos. 2012, 34, 583–590. [Google Scholar] [CrossRef]
- Kuo, W.-T.; Chen, S.-H.; Wang, H.-Y.; Lin, J.-C. A study on the mechanical and electricity properties of cement mortar added with GGBFS and piezoelectric powder. Constr. Build. Mater. 2013, 49, 251–256. [Google Scholar] [CrossRef]
- Onn, C.C.; Mo, K.H.; Radwan, M.K.H.; Liew, W.H.; Ng, C.G.; Yusoff, S. Strength, Carbon Footprint and Cost Considerations of Mortar Blends with High Volume Ground Granulated Blast Furnace Slag. Sustainability 2019, 11, 7194. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.M.; Slater, J.R.; Wavell, S.E.; Oladiran, O. Effects of PFA and GGBS on Early-Ages Engineering Properties of Portland Cement Systems. J. Adv. Concr. Technol. 2012, 10, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Gholampour, A.; Ozbakkaloglu, T. Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag. J. Clean. Prod. 2017, 162, 1407–1417. [Google Scholar] [CrossRef]
- Bheel, N.; Abbasi, S.A.; Awoyera, P.; Olalusi, O.B.; Sohu, S.; Rondon, C.; Echeverría, A.M. Fresh and Hardened Properties of Concrete Incorporating Binary Blend of Metakaolin and Ground Granulated Blast Furnace Slag as Supplementary Cementitious Material. Adv. Civ. Eng. 2020, 2020, 8851030. [Google Scholar] [CrossRef]
- Aghaeipour, A.; Madhkhan, M. Effect of ground granulated blast furnace slag (GGBFS) on RCCP durability. Constr. Build. Mater. 2017, 141, 533–541. [Google Scholar] [CrossRef]
- Wang, D.H.; Shi, C.J.; Farzadnia, N.; Shi, Z.G.; Jia, H.F.; Ou, Z.H. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr. Build. Mater. 2018, 181, 659–672. [Google Scholar] [CrossRef]
- Courard, L.; Herfort, D.; Villagrán, Y. Limestone Powder; Springer: Berlin/Heidelberg, Germany, 2018; pp. 123–151. [Google Scholar]
- Global Cement Staff. Buzzi Unicem USA to Switch to Portland Limestone Cement Production by the End of 2022; Global Cement: Epsom, UK, 2022. [Google Scholar]
- Cement.org. Portland-Limestone Cement and Sustainability; Portland Cement Association: Washington, DC, USA, 2022. [Google Scholar]
- Li, C.; Jiang, L.; Xu, N.; Jiang, S. Pore structure and permeability of concrete with high volume of limestone powder addition. Powder Technol. 2018, 338, 416–424. [Google Scholar] [CrossRef]
- Kim, Y.-J.; van Leeuwen, R.; Cho, B.-Y.; Sriraman, V.; Torres, A. Evaluation of the Efficiency of Limestone Powder in Concrete and the Effects on the Environment. Sustainability 2018, 10, 550. [Google Scholar] [CrossRef] [Green Version]
- Ramezanianpour, A.A.; Ghiasvand, E.; Nickseresht, I.; Mahdikhani, M.; Moodi, F. Influence of various amounts of limestone powder on performance of Portland limestone cement concretes. Cem. Concr. Compos. 2009, 31, 715–720. [Google Scholar] [CrossRef]
- Liu, S.H.; Gao, Z.Y.; Rao, M.J. Study on the Ultra High Performance Concrete Containing Limestone Powder. Adv. Mater. Res. 2011, 250–253, 686–689. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, D.; De Schutter, G.; Yu, Z. The effect of MgSO4 on thaumasite formation. Cem. Concr. Compos. 2013, 35, 102–108. [Google Scholar] [CrossRef]
- Yuan, B.; Yu, Q.L.; Brouwers, H.J.H. Assessing the chemical involvement of limestone powder in sodium carbonate activated slag. Mater. Struct. 2017, 50, 136. [Google Scholar] [CrossRef] [Green Version]
- Sua-Iam, G.; Makul, N. Utilization of limestone powder to improve the properties of self-compacting concrete incorporating high volumes of untreated rice husk ash as fine aggregate. Constr. Build. Mater. 2013, 38, 455–464. [Google Scholar] [CrossRef]
- Nepomuceno, M.; Oliveira, L.; Lopes, S. Methodology for mix design of the mortar phase of self-compacting concrete using different mineral additions in binary blends of powders. Constr. Build. Mater. 2012, 26, 317–326. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, J.; Chen, H. Long-term properties of concrete containing limestone powder. Mater. Struct. 2017, 50, 168. [Google Scholar] [CrossRef]
- Lin, W.-T.; Cheng, A.; Černý, R. Effect of limestone powder on strength and permeability of cementitious mortars. MATEC Web Conf. 2020, 322, 01009. [Google Scholar] [CrossRef]
- Black, L. Low clinker cement as a sustainable construction material. In Sustainability of Construction Materials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 415–457. [Google Scholar]
- Kumar, A.; Kumar, R.; Das, V.; Jhatial, A.A.; Ali, T.H. Assessing the structural efficiency and durability of burnt clay bricks incorporating fly ash and silica fume as additives. Constr. Build. Mater. 2021, 310, 125233. [Google Scholar] [CrossRef]
- Nasr, M.S.; Hasan, Z.A.; Abed, M.K.; Dhahir, M.K.; Najim, W.N.; Shubbar, A.A.; Habeeb, Z.D. Utilization of High Volume Fraction of Binary Combinations of Supplementary Cementitious Materials in the Production of Reactive Powder Concrete. Period. Polytech. Civ. Eng. 2020, 65, 335–343. [Google Scholar] [CrossRef]
- Wetzel, A.; Middendorf, B. Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag. Cem. Concr. Compos. 2019, 100, 53–59. [Google Scholar] [CrossRef]
- Meddah, M.S.; Ismail, M.A.; El-Gamal, S.; Fitriani, H. Performances evaluation of binary concrete designed with silica fume and metakaolin. Constr. Build. Mater. 2018, 166, 400–412. [Google Scholar] [CrossRef]
- Lin, W.-T.; Zhao, W.-Q.; Chang, Y.-H.; Yang, J.-S.; Cheng, A. The Effect of Incorporating Ultra-Fine Spherical Particles on Rheology and Engineering Properties of Commercial Ultra-High-Performance Grout. Crystals 2021, 11, 1040. [Google Scholar] [CrossRef]
- Jeong, Y.; Kang, S.-H.; Kim, M.O.; Moon, J. Acceleration of cement hydration from supplementary cementitious materials: Performance comparison between silica fume and hydrophobic silica. Cem. Concr. Compos. 2020, 112, 103688. [Google Scholar] [CrossRef]
- Gleize, P.; Müller, A.; Roman, H. Microstructural investigation of a silica fume–cement–lime mortar. Cem. Concr. Compos. 2003, 25, 171–175. [Google Scholar] [CrossRef]
- Nili, M.; Ramezanianpour, A.A.; Sobhani, J. Evaluation of the effects of silica fume and air-entrainment on deicer salt scaling resistance of concrete pavements: Microstructural study and modeling. Constr. Build. Mater. 2021, 308, 124972. [Google Scholar] [CrossRef]
- Lü, Q.; Qiu, Q.; Zheng, J.; Wang, J.; Zeng, Q. Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability. Constr. Build. Mater. 2019, 228, 116986. [Google Scholar] [CrossRef]
- Keerio, M.A.; Abbasi, S.A.; Kumar, A.; Bheel, N.; Rehaman, K.U.; Tashfeen, M. Effect of Silica Fume as Cementitious Material and Waste Glass as Fine Aggregate Replacement Constituent on Selected Properties of Concrete. Silicon 2022, 14, 165–176. [Google Scholar] [CrossRef]
- Elbasir, O.M.; Araba, A.; Miskeen, M.B.; Nser, S.; Fathi, N. Effect of Addition Silica Fume to the workability, Strength and Permeability of Concrete. J. Pure Appl. Sci. 2019, 18, 414–417. [Google Scholar]
- Amudhavalli, N.K.; Mathew, J. Effect of Silica Fume on Strength and Durability Parameters of Concrete. Int. J. Eng. Sci. Emerg. Technol. 2012, 3, 2231–6604. Available online: http://www.ijeset.com/media/4N5-IJESET0202520.pdf (accessed on 25 May 2022).
- Hanumesh, B.M.; Varun, B.K.; Harish, B.A. The mechanical properties of concrete incorporating silica fume as partial replacement of cement. Int. J. Emerg. Technol. Adv. Eng. 2015, 5, 270. [Google Scholar]
- Bonavetti, V.L.; Castellano, C.; Donza, H.; Rahhal, V.; Irassar, E.F. Cement with silica fume and granulated blast-furnace slag: Strength behavior and hydration. Mater. Constr. 2014, 64, e025. [Google Scholar] [CrossRef] [Green Version]
- Vellaichamy, P.; Priyadharshini, S. Studies on Effect of Silica Fume on Workability and Strength of Concrete. Int. Res. J. Multidiscip. Technovation 2019, 1, 165–171. [Google Scholar] [CrossRef]
- Tavares, L.R.C.; Junior, J.F.T.; Costa, L.M.; Bezerra, A.C.D.S.; Cetlin, P.R.; Aguilar, M.T.P. Influence of quartz powder and silica fume on the performance of Portland cement. Sci. Rep. 2020, 10, 21461. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, B.; Swami, B.L.P. Effect of Metakaolin and Condensed Silica Fume on the Rheological and Structural Properties of Self-compacting Concrete. Civ. Eng. Arch. 2020, 8, 1057–1062. [Google Scholar] [CrossRef]
- Sadrmomtazi, A.; Tahmouresi, B.; Khoshkbijari, R.K. Effect of fly ash and silica fume on transition zone, pore structure and permeability of concrete. Mag. Concr. Res. 2018, 70, 519–532. [Google Scholar] [CrossRef]
- Shirdam, R.; Amini, M.; Bakhshi, N. Investigating the Effects of Copper Slag and Silica Fume on Durability, Strength, and Workability of Concrete. Int. J. Environ. Res. 2019, 13, 909–924. [Google Scholar] [CrossRef]
- Gong, J.; Zhu, L.; Li, J.; Shi, D. Silica Fume and Nanosilica Effects on Mechanical and Shrinkage Properties of Foam Concrete for Structural Application. Adv. Mater. Sci. Eng. 2020, 2020, 3963089. [Google Scholar] [CrossRef]
- Mohyiddeen, M.; Maya, T.M. Effect of Silica Fume on Concrete Containing Copper Slag as Fine Aggregate. Int. J. Res. Advent Technol. 2015, TASC-15, 55–59. [Google Scholar]
- Padavala, A.B.; Potharaju, M.; Kode, V.R. Mechanical properties of ternary blended mix concrete of fly ash and silica fume. Mater. Today Proc. 2021, 43, 2198–2202. [Google Scholar] [CrossRef]
- BRMCA (British Ready Mix Concrete Association). Cement Type/Early Age Properties—The Use of Low CO2 Cements in Concrete Should not Restrict the Rate of Construction; BRMCA (British Ready Mix Concrete Association): London, UK, 2011. [Google Scholar]
- Maraghechi, H.; Avet, F.; Wong, H.; Kamyab, H.; Scrivener, K. Performance of Limestone Calcined Clay Cement (LC3) with various kaolinite contents with respect to chloride transport. Mater. Struct. 2018, 51, 125. [Google Scholar] [CrossRef] [Green Version]
- Parra, P.A.Y.; Ganti, G.; Brecha, R.; Hare, B.; Schaeffer, M.; Fuentes, U. Global and Regional Coal Phase-Out Requirements of the Paris Agreement: Insights from the IPCC Special Report on 1.5 °C. 2019. Available online: https://climateanalytics.org/media/report_coal_phase_out_2019.pdf (accessed on 25 May 2022).
- McCarthy, M.J.; Robl, T.; Csetenyi, L.J. Recovery, processing, and usage of wet-stored fly ash. In Coal Combustion Products (CCP’s); Elsevier: Amsterdam, The Netherlands, 2017; pp. 343–367. [Google Scholar]
- Favier, A.; De Wolf, C.; Scrivener, K.; Habert, G. A Sustainable Future for the European Cement and Concrete Industry: Technology Assessment for Full Decarbonisation of the Industry by 2050; ETH Zurich: Zurich, Switzerland, 2018. [Google Scholar] [CrossRef]
- Simonsen, A.M.T.; Solismaa, S.; Hansen, H.; Jensen, P.E. Evaluation of mine tailings’ potential as supplementary cementitious materials based on chemical, mineralogical and physical characteristics. Waste Manag. 2020, 102, 710–721. [Google Scholar] [CrossRef]
- Brown, T.J.; Idoine, N.E.; Wrighton, C.E.; Raycraft, E.R.; Hobbs, S.F.; Shaw, R.A.; Everett, P.; Deady, E.A.; Kresse, C. World Mineral Production 2015–2019. 2021. Available online: https://www2.bgs.ac.uk/mineralsuk/download/world_statistics/2010s/WMP_2015_2019.pdf (accessed on 25 May 2022).
- Sun, W.; Ji, B.; Khoso, S.A.; Tang, H.; Liu, R.; Wang, L.; Hu, Y. An extensive review on restoration technologies for mining tailings. Environ. Sci. Pollut. Res. 2018, 25, 33911–33925. [Google Scholar] [CrossRef]
- Yao, G.; Liu, Q.; Wang, J.; Wu, P.; Lyu, X. Effect of mechanical grinding on pozzolanic activity and hydration properties of siliceous gold ore tailings. J. Clean. Prod. 2019, 217, 12–21. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, W.; Shi, D. Properties of an aged geopolymer synthesized from calcined ore-dressing tailing of bauxite and slag. Cem. Concr. Res. 2017, 100, 23–31. [Google Scholar] [CrossRef]
- Ghazi, A.B.; Jamshidi-Zanjani, A.; Nejati, H. Utilization of copper mine tailings as a partial substitute for cement in concrete construction. Constr. Build. Mater. 2022, 317, 125921. [Google Scholar] [CrossRef]
- Thomas, B.S.; Damare, A.; Gupta, R. Strength and durability characteristics of copper tailing concrete. Constr. Build. Mater. 2013, 48, 894–900. [Google Scholar] [CrossRef]
- Kiventerä, J.; Lancellotti, I.; Catauro, M.; Poggetto, F.D.; Leonelli, C.; Illikainen, M. Alkali activation as new option for gold mine tailings inertization. J. Clean. Prod. 2018, 187, 76–84. [Google Scholar] [CrossRef]
- Sigvardsen, N.M.; Nielsen, M.R.; Potier, C.; Ottosen, L.M.; Jensen, P.E. Utilization of Mine Tailings As Partial Cement Replacement. Mod. Environ. Sci. Eng. 2018, 4, 365–374. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, G.; Zhu, X.; Wang, J.; Wu, P.; Lyu, X. Preparation of Portland Cement with Gold Ore Tailings. Adv. Mater. Sci. Eng. 2019, 2019, 1324065. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, C.G.; Rocha, C.A.A.; de Siqueira, I.S.; Filho, R.D.T. Feasibility of iron-rich ore tailing as supplementary cementitious material in cement pastes. Constr. Build. Mater. 2021, 303, 124496. [Google Scholar] [CrossRef]
- Shettima, A.U.; Hussin, M.W.; Ahmad, Y.; Mirza, J. Evaluation of iron ore tailings as replacement for fine aggregate in concrete. Constr. Build. Mater. 2016, 120, 72–79. [Google Scholar] [CrossRef]
- Ling, G.; Shui, Z.; Gao, X.; Sun, T.; Yu, R.; Li, X. Utilizing Iron Ore Tailing as Cementitious Material for Eco-Friendly Design of Ultra-High Performance Concrete (UHPC). Materials 2021, 14, 1829. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Zhou, J.; Gbozee, M. Influences of phosphate tailings on hydration and properties of Portland cement. Constr. Build. Mater. 2015, 98, 593–601. [Google Scholar] [CrossRef]
- Pyo, S.; Tafesse, M.; Kim, B.-J.; Kim, H.-K. Effects of quartz-based mine tailings on characteristics and leaching behavior of ultra-high performance concrete. Constr. Build. Mater. 2018, 166, 110–117. [Google Scholar] [CrossRef]
- Janković, K.; Šušić, N.; Stojanović, M.; Bojović, D.; Lončar, L. The influence of tailings and cement type on durability properties of self-compacting concrete. Teh. Vjesn. 2017, 24, 957–962. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Fan, J.; Sun, W. Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete. Constr. Build. Mater. 2014, 50, 540–548. [Google Scholar] [CrossRef]
- Mao, S.; Zhang, Q. Mineralogical Characteristics of Phosphate Tailings for Comprehensive Utilization. Adv. Civ. Eng. 2021, 2021, 5529021. [Google Scholar] [CrossRef]
- Ince, C. Reusing gold-mine tailings in cement mortars: Mechanical properties and socio-economic developments for the Lefke-Xeros area of Cyprus. J. Clean. Prod. 2019, 238, 117871. [Google Scholar] [CrossRef]
- Galvão, J.L.B.; Andrade, H.D.; Brigolini, G.J.; Peixoto, R.A.F.; Mendes, J.C. Reuse of iron ore tailings from tailings dams as pigment for sustainable paints. J. Clean. Prod. 2018, 200, 412–422. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Eren, Ö. Recycling of copper tailings as an additive in cement mortars. Constr. Build. Mater. 2012, 37, 723–727. [Google Scholar] [CrossRef]
- Esmaeili, J.; Aslani, H. Use of copper mine tailing in concrete: Strength characteristics and durability performance. J. Mater. Cycles Waste Manag. 2019, 21, 729–741. [Google Scholar] [CrossRef]
- Vargas, F.; Lopez, M.; Rigamonti, L. Environmental impacts evaluation of treated copper tailings as supplementary cementitious materials. Resour. Conserv. Recycl. 2020, 160, 104890. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Eren, Ö. Reusing copper tailings in concrete: Corrosion performance and socioeconomic implications for the Lefke-Xeros area of Cyprus. J. Clean. Prod. 2016, 112, 420–429. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, F.; Li, W.; Liu, R.; Li, G.; Wei, J. Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete. Constr. Build. Mater. 2016, 118, 164–170. [Google Scholar] [CrossRef]
- Xiong, C.; Li, W.; Jiang, L.; Wang, W.; Guo, Q. Use of grounded iron ore tailings (GIOTs) and BaCO3 to improve sulfate resistance of pastes. Constr. Build. Mater. 2017, 150, 66–76. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Zhu, X.; Yao, G.; Wu, P.; Wang, Z.; Lyu, X.; Hu, S.; Qiu, J.; Chen, P.; et al. Approach to the management of gold ore tailings via its application in cement production. J. Clean. Prod. 2020, 269, 122303. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Y.; Bao, S.; Chen, T. Utilization of Iron Ore Tailings as Raw Material for Portland Cement Clinker Production. Adv. Mater. Sci. Eng. 2016, 2016, 1596047. [Google Scholar] [CrossRef]
- Young, G.; Yang, M. Preparation and characterization of Portland cement clinker from iron ore tailings. Constr. Build. Mater. 2019, 197, 152–156. [Google Scholar] [CrossRef]
- de Magalhães, L.F.; Morais, I.D.S.; Lara, L.F.D.S.; de Resende, D.S.; Menezes, R.M.R.O.; Aguilar, M.T.P.; Bezerra, A.C.D.S. Iron Ore Tailing as Addition to Partial Replacement of Portland Cement. Mater. Sci. Forum 2018, 930, 125–130. [Google Scholar] [CrossRef]
- de Magalhães, L.F.; França, S.; Oliveira, M.D.S.; Peixoto, R.A.F.; Bessa, S.A.L.; Bezerra, A.C.D.S. Iron ore tailings as a supplementary cementitious material in the production of pigmented cements. J. Clean. Prod. 2020, 274, 123260. [Google Scholar] [CrossRef]
- Agrawal, Y.; Gupta, T.; Chaudhary, S. Effect of mechanically treated and untreated zinc tailing waste as cement substitute in concrete production: An experimental and statistical analysis. Environ. Sci. Pollut. Res. 2022, 29, 28598–28623. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.C.; Chen, C.-F.; Chen, C.-W.; Dong, C.-D. Application of Basic Oxygen Furnace Slag in Increased Utilization of Dredged Harbor Sediment. J. Sustain. Metall. 2021, 7, 704–717. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Gao, Z. Use of steel slag as a granular material: Volume expansion prediction and usability criteria. J. Hazard. Mater. 2010, 184, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Mailar, G.; Sreedhara, B.M.; Manu, D.S.; Hiremath, P.; Jayakesh, K. Investigation of concrete produced using recycled aluminium dross for hot weather concreting conditions. Resour. Technol. 2016, 2, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Dai, C. Development of Aluminuim Dross-Based Material for Engineering Applications; Worcester Polytechnic Institute: Worcester, MA, USA, 2012. [Google Scholar]
- Shen, H.; Liu, B.; Ekberg, C.; Zhang, S. Harmless disposal and resource utilization for secondary aluminum dross: A review. Sci. Total Environ. 2020, 760, 143968. [Google Scholar] [CrossRef]
- Mahinroosta, M.; Allahverdi, A. Hazardous aluminum dross characterization and recycling strategies: A critical review. J. Environ. Manag. 2018, 223, 452–468. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Waste Classification List of Waste & Determining if Waste is Hazardous or Non-hazardous. 2018. Available online: Epa.ie/publications/monitoring--assessment/waste/2019--FULL-template.pdf (accessed on 25 May 2022).
- Adeosun, S.O. Physical and Mechanical Properties of Aluminum Dross. Adv. Mater. 2014, 3, 6. [Google Scholar] [CrossRef]
- Arimanwa, J.I.; Onwuka, D.O.; Arimanwa, M.C.; Onwuka, U.S. Prediction of the Compressive Strength of Aluminum Waste–Cement Concrete Using Scheffe’s Theory. J. Mater. Civ. Eng. 2012, 24, 177–183. [Google Scholar] [CrossRef]
- Elinwa, A.; Mbadike, E. The Use of Aluminum Waste for Concrete Production. J. Asian Arch. Build. Eng. 2011, 10, 217–220. [Google Scholar] [CrossRef]
- Javali, S.; Chandrashekar, A.R.; Naganna, S.R.; Manu, D.S.; Hiremath, P.; Preethi, H.G.; Kumar, N.V. Eco-concrete for sustainability: Utilizing aluminium dross and iron slag as partial replacement materials. Clean Technol. Environ. Policy 2017, 19, 2291–2304. [Google Scholar] [CrossRef]
- Reddy, M.S.; Neeraja, D. Mechanical and durability aspects of concrete incorporating secondary aluminium slag. Resour. Technol. 2016, 2, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Panditharadhya, B.J.; Sampath, V.; Mulangi, R.H.; Shankar, A.U.R. Mechanical properties of pavement quality concrete with secondary aluminium dross as partial replacement for ordinary portland cement. IOP Conf. Ser. Mater. Sci. Eng. 2018, 431, 032011. [Google Scholar] [CrossRef]
- Piemonti, A.; Conforti, A.; Cominoli, L.; Sorlini, S.; Luciano, A.; Plizzari, G. Use of Iron and Steel Slags in Concrete: State of the Art and Future Perspectives. Sustainability 2021, 13, 556. [Google Scholar] [CrossRef]
- Rađenović, A.; Malina, J.; Sofilić, T. Characterization of Ladle Furnace Slag from Carbon Steel Production as a Potential Adsorbent. Adv. Mater. Sci. Eng. 2013, 2013, 198240. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.S.; Pradhan, R.; Chandra, S. Utilization of Basic Oxygen Furnace (BOF) slag in the production of a hydraulic cement binder. Int. J. Miner. Process. 2006, 79, 98–105. [Google Scholar] [CrossRef]
- EÖzbay, E.; Erdemir, M.; Durmuş, H.İ. Utilization and efficiency of ground granulated blast furnace slag on concrete properties—A review. Constr. Build. Mater. 2016, 105, 423–434. [Google Scholar] [CrossRef]
- Muhmood, L.; Vitta, S.; Venkateswaran, D. Cementitious and pozzolanic behavior of electric arc furnace steel slags. Cem. Concr. Res. 2009, 39, 102–109. [Google Scholar] [CrossRef]
- Khan, K.; Amin, M.N. Influence of fineness of volcanic ash and its blends with quarry dust and slag on compressive strength of mortar under different curing temperatures. Constr. Build. Mater. 2017, 154, 514–528. [Google Scholar] [CrossRef]
- Parron-Rubio, M.E.; Perez-García, F.; Gonzalez-Herrera, A.; Rubio-Cintas, M.D. Concrete Properties Comparison When Substituting a 25% Cement with Slag from Different Provenances. Materials 2018, 11, 1029. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.-J.; Kim, Y.-U.; Oh, T.-G.; Cho, B.-S. Compressive Strength, Chloride Ion Penetrability, and Carbonation Characteristic of Concrete with Mixed Slag Aggregate. Materials 2020, 13, 940. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-Y.; Choi, J.-S.; Yuan, T.-F.; Yoon, Y.-S.; Mitchell, D. Comparing Properties of Concrete Containing Electric Arc Furnace Slag and Granulated Blast Furnace Slag. Materials 2019, 12, 1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lun, Y.; Zhou, M.; Cai, X.; Xu, F. Methods for improving volume stability of steel slag as fine aggregate. J. Wuhan Univ. Technol. Sci. Ed. 2008, 23, 737–742. [Google Scholar] [CrossRef]
- Quadir, M. Flexural Strength of Concrete by Partial Replacement of Sand with Basic Oxygen Furnace Slag. Res. Rev. J. Eng. Technol. 2018, 7, 8–17. [Google Scholar]
- Coppola, L.; Buoso, A.; Coffetti, D.; Kara, P.; Lorenzi, S. Electric arc furnace granulated slag for sustainable concrete. Constr. Build. Mater. 2016, 123, 115–119. [Google Scholar] [CrossRef]
- Sekaran, A.; Palaniswamy, M.; Balaraju, S. A Study on Suitability of EAF Oxidizing Slag in Concrete: An Eco-Friendly and Sustainable Replacement for Natural Coarse Aggregate. Sci. World J. 2015, 2015, 469376. [Google Scholar] [CrossRef] [Green Version]
- Jexembayeva, A.; Salem, T.; Jiao, P.; Hou, B.; Niyazbekova, R. Blended Cement Mixed with Basic Oxygen Steelmaking Slag (BOF) as an Alternative Green Building Material. Materials 2020, 13, 3062. [Google Scholar] [CrossRef]
- Amin, M.N.; Khan, K.; Saleem, M.U.; Khurram, N.; Niazi, M.U.K. Influence of Mechanically Activated Electric Arc Furnace Slag on Compressive Strength of Mortars Incorporating Curing Moisture and Temperature Effects. Sustainability 2017, 9, 1178. [Google Scholar] [CrossRef] [Green Version]
- Roslan, N.H.; Ismail, M.; Abdul-Majid, Z.; Ghoreishiamiri, S.; Muhammad, B. Performance of steel slag and steel sludge in concrete. Constr. Build. Mater. 2016, 104, 16–24. [Google Scholar] [CrossRef]
- Roslan, N.H.; Ismail, M.; Khalid, N.H.A.; Muhammad, B. Properties of concrete containing electric arc furnace steel slag and steel sludge. J. Build. Eng. 2020, 28, 101060. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, H.; Wang, J.; Feng, Q. Preliminary investigation on the pozzolanic activity of superfine steel slag. Constr. Build. Mater. 2015, 82, 227–234. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mishra, M.; Suganya, O. The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview. Ain Shams Eng. J. 2015, 6, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Cheah, C.B.; Ramli, M. The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: An overview. Resour. Conserv. Recycl. 2011, 55, 669–685. [Google Scholar] [CrossRef]
- Lakusic, S. Wood biomass ash as a raw material in concrete industry. J. Croat. Assoc. Civ. Eng. 2019, 71, 505–514. [Google Scholar] [CrossRef]
- Vu, V.-A.; Cloutier, A.; Bissonnette, B.; Blanchet, P.; Duchesne, J. The Effect of Wood Ash as a Partial Cement Replacement Material for Making Wood-Cement Panels. Materials 2019, 12, 2766. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Baxter, L.; Fonseca, F. Biomass fly ash in concrete: SEM, EDX and ESEM analysis. Fuel 2008, 87, 372–379. [Google Scholar] [CrossRef]
- Etiégni, L.; Campbell, A. Physical and chemical characteristics of wood ash. Bioresour. Technol. 1991, 37, 173–178. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Awolusi, T.F.; Sojobi, A.O.; Oguntayo, D.O.; Akinkurolere, O.O.; Orogbade, B. Effects of calcined clay, sawdust ash and chemical admixtures on Strength and Properties of concrete for pavement and flooring applications using Taguchi approach. Case Stud. Constr. Mater. 2021, 15, e00568. [Google Scholar] [CrossRef]
- Raza, M.S.; Rai, K.; Kumar, D.; Ali, M. Experimental Study of Physical, Fresh-State and Strength Parameters of Concrete incorporating Wood Waste Ash as a Cementitious Material. J. Mater. Eng. Struct. 2020, 7, 267–276. [Google Scholar]
- Bhat, J.A. Mechanical behaviour of self compacting concrete: Effect of wood ash and coal ash as partial cement replacement. Mater. Today Proc. 2021, 42, 1470–1476. [Google Scholar] [CrossRef]
- Keppert, M.; Davidová, V.; Doušová, B.; Scheinherrová, L.; Reiterman, P. Recycling of fresh concrete slurry waste as supplementary cementing material: Characterization, application and leaching of selected elements. Constr. Build. Mater. 2021, 300, 124061. [Google Scholar] [CrossRef]
- Schneider, M. The cement industry on the way to a low-carbon future. Cem. Concr. Res. 2019, 124, 105792. [Google Scholar] [CrossRef]
- Xuan, D.; Zhan, B.; Poon, C.S.; Zheng, W. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products. J. Hazard. Mater. 2016, 312, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Kesikidou, F.; Konopisi, S.; Anastasiou, E.K. Influence of Concrete Sludge Addition in the Properties of Alkali-Activated and Non-Alkali-Activated Fly Ash-Based Mortars. Adv. Civ. Eng. 2021, 2021, 5534002. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.X. Recycling fresh concrete waste: A review. Struct. Concr. 2018, 19, 1939–1955. [Google Scholar] [CrossRef]
- Kaliyavaradhan, S.K.; Ling, T.-C.; Mo, K.H. Valorization of waste powders from cement-concrete life cycle: A pathway to circular future. J. Clean. Prod. 2020, 268, 122358. [Google Scholar] [CrossRef]
- Hossain, U.; Xuan, D.; Poon, C.S. Sustainable management and utilisation of concrete slurry waste: A case study in Hong Kong. Waste Manag. 2017, 61, 397–404. [Google Scholar] [CrossRef]
- Tang, P.; Xuan, D.; Poon, C.S.; Tsang, D.C. Valorization of concrete slurry waste (CSW) and fine incineration bottom ash (IBA) into cold bonded lightweight aggregates (CBLAs): Feasibility and influence of binder types. J. Hazard. Mater. 2019, 368, 689–697. [Google Scholar] [CrossRef]
- He, X.; Zheng, Z.; Ma, M.; Su, Y.; Yang, J.; Tan, H.; Wang, Y.; Strnadel, B. New treatment technology: The use of wet-milling concrete slurry waste to substitute cement. J. Clean. Prod. 2020, 242, 118347. [Google Scholar] [CrossRef]
- Kou, S.-C.; Zhan, B.-J.; Poon, C.-S. Properties of partition wall blocks prepared with fresh concrete wastes. Constr. Build. Mater. 2012, 36, 566–571. [Google Scholar] [CrossRef]
- Xi, Y.; Anastasiou, E.; Karozou, A.; Silvestri, S. Fresh and hardened properties of cement mortars using marble sludge fines and cement sludge fines. Constr. Build. Mater. 2019, 220, 142–148. [Google Scholar] [CrossRef]
- Papí, J.A.F. Recycling of fresh concrete exceeding and wash water in concrete mixing plants. Mater. Constr 2014, 64, e004. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, Y.; Bai, H.; Ma, L. Utilization of Recycled Concrete Powder in Cement Composite: Strength, Microstructure and Hydration Characteristics. J. Renew. Mater. 2021, 9, 2189–2208. [Google Scholar] [CrossRef]
- Horsakulthai, V. Effect of recycled concrete powder on strength, electrical resistivity, and water absorption of self-compacting mortars. Case Stud. Constr. Mater. 2021, 15, e00725. [Google Scholar] [CrossRef]
- Ren, P.; Li, B.; Yu, J.-G.; Ling, T.-C. Utilization of recycled concrete fines and powders to produce alkali-activated slag concrete blocks. J. Clean. Prod. 2020, 267, 122115. [Google Scholar] [CrossRef]
- Rakhimova, N.R.; Rakhimov, R.Z. Hydrated Portland cement as an admixture to alkali-activated slag cement. Adv. Cem. Res. 2015, 27, 107–117. [Google Scholar] [CrossRef]
- Kim, Y.J.; Choi, Y.W. Utilization of waste concrete powder as a substitution material for cement. Constr. Build. Mater. 2012, 30, 500–504. [Google Scholar] [CrossRef]
- Zhu, P.; Mao, X.; Qu, W. Investigation of recycled powder as supplementary cementitious material. Mag. Concr. Res. 2019, 71, 1312–1324. [Google Scholar] [CrossRef]
- Sun, C.; Chen, L.; Xiao, J.; Singh, A.; Zeng, J. Compound utilization of construction and industrial waste as cementitious recycled powder in mortar. Resour. Conserv. Recycl. 2021, 170, 105561. [Google Scholar] [CrossRef]
- Kalinowska-Wichrowska, K.; Kosior-Kazberuk, M.; Pawluczuk, E. The Properties of Composites with Recycled Cement Mortar Used as a Supplementary Cementitious Material. Materials 2019, 13, 64. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Liu, F.; Tong, T.; Qi, C.; Yu, Q. Hydration of Concrete Containing Hybrid Recycled Demolition Powders. J. Mater. Civ. Eng. 2017, 29, 04017037. [Google Scholar] [CrossRef]
- Qing-Hua, C.; Tagnit-Hamou, A.; Sarkar, S.L. Strength and Microstructural Properties of Water Glass Activated Slag. MRS Proc. 1991, 245, 49. [Google Scholar] [CrossRef]
- ASTM C989-06; Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars. ASTM: West Conshohocken, PA, USA, 2006.
- EN 15167-1:2008; Ground Granulated Blast Furnace Slag for Use in Concrete, Mortar and Grout—Part 1: Definitions, Specifications and Conformity Criteria. iTeh, Inc.: Newark, DE, USA, 2008. Available online: https://www.en-standard.eu/une-en-15167-1-2008-ground-granulated-blast-furnace-slag-for-use-in-concrete-mortar-and-grout-part-1-definitions-specifications-and-conformity-criteria/ (accessed on 17 September 2022).
- IS 15388; Silica Fume—Specification. Bureau of Indian Standards: New Delhi, India. Bureau of Indian Standards: New Delhi, India, 2003. Available online: https://infostore.saiglobal.com/en-gb/standards/bis-is-15388-2003-r2017--183786_saig_bis_bis_442818/ (accessed on 17 September 2022).
- EN 13263-1:2005+A1:2009; Silica Fume for Concrete—Part 1: Definitions, Requirements and Conformity Criteria. iTeh, Inc.: Newark, DE, USA, 2009.
- ASTM C1240-20; Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/c1240-20.html (accessed on 17 September 2022).
- ASTM C1797-17; Standard Specification for Ground Calcium Carbonate and Aggregate Mineral Fillers for Use in Hydraulic Cement Concrete. ASTM: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/c1797-17.html (accessed on 17 September 2022).
- Nedeljković, M.; Visser, J.; Šavija, B.; Valcke, S.; Schlangen, E. Use of fine recycled concrete aggregates in concrete: A critical review. J. Build. Eng. 2021, 38, 102196. [Google Scholar] [CrossRef]
- Snellings, R. Assessing, Understanding and Unlocking Supplementary Cementitious Materials. RILEM Tech. Lett. 2016, 1, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Tangchirapat, W.; Tangpagasit, J.; Waew-kum, S.; Jaturapitakkul, C. A new pozzolanic material from palm oil fuel ash. KMUTT Res. Dev. J. 2003, 26, 459–473. [Google Scholar]
- Hou, P.-K.; Kawashima, S.; Wang, K.-J.; Corr, D.J.; Qian, J.-S.; Shah, S.P. Effects of colloidal nanosilica on rheological and mechanical properties of fly ash–cement mortar. Cem. Concr. Compos. 2013, 35, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Lothenbach, B.; Le Saout, G.; Ben Haha, M.; Figi, R.; Wieland, E. Hydration of a low-alkali CEM III/B–SiO2 cement (LAC). Cem. Concr. Res. 2012, 42, 410–423. [Google Scholar] [CrossRef]
- Yu, R.; Spiesz, P.; Brouwers, H.J.H. Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount. Constr. Build. Mater. 2014, 65, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Askarinejad, A.; Pourkhorshidi, A.R.; Parhizkar, T. Evaluation the pozzolanic reactivity of sonochemically fabricated nano natural pozzolan. Ultrason. Sonochem. 2012, 19, 119–124. [Google Scholar] [CrossRef]
- Farzadnia, N.; Ali, A.A.A.; Demirboga, R. Characterization of high strength mortars with nano alumina at elevated temperatures. Cem. Concr. Res. 2013, 54, 43–54. [Google Scholar] [CrossRef]
- Kiventerä, J.; Perumal, P.; Yliniemi, J.; Illikainen, M. Mine tailings as a raw material in alkali activation: A review. Int. J. Miner. Met. Mater. 2020, 27, 1009–1020. [Google Scholar] [CrossRef]
- Adesanya, E.; Ohenoja, K.; Yliniemi, J.; Illikainen, M. Mechanical transformation of phyllite mineralogy toward its use as alkali-activated binder precursor. Miner. Eng. 2020, 145, 106093. [Google Scholar] [CrossRef]
- Yao, G.; Wang, Q.; Wang, Z.; Wang, J.; Lyu, X. Activation of hydration properties of iron ore tailings and their application as supplementary cementitious materials in cement. Powder Technol. 2020, 360, 863–871. [Google Scholar] [CrossRef]
- Rodriguez, E.D.; Bernal, S.A.; Provis, J.L.; Payá, J.; Monzó, J.M.; Borrachero, M.V. Structure of Portland Cement Pastes Blended with Sonicated Silica Fume. J. Mater. Civ. Eng. 2012, 24, 1295–1304. [Google Scholar] [CrossRef]
- Kawashima, S.; Seo, J.-W.T.; Corr, D.; Hersam, M.C.; Shah, S.P. Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash–cement systems. Mater. Struct. 2014, 47, 1011–1023. [Google Scholar] [CrossRef] [Green Version]
- Yanguatin, H.; Ramírez, J.H.; Tironi, A.; Tobón, J. Effect of thermal treatment on pozzolanic activity of excavated waste clays. Constr. Build. Mater. 2019, 211, 814–823. [Google Scholar] [CrossRef]
- Shen, J.; Liu, X.; Zhu, S.; Zhang, H.; Tan, J. Effects of calcination parameters on the silica phase of original and leached rice husk ash. Mater. Lett. 2011, 65, 1179–1183. [Google Scholar] [CrossRef]
- Perumal, P.; Niu, H.; Kiventerä, J.; Kinnunen, P.; Illikainen, M. Upcycling of mechanically treated silicate mine tailings as alkali activated binders. Miner. Eng. 2020, 158, 106587. [Google Scholar] [CrossRef]
- Perumal, P.; Piekkari, K.; Sreenivasan, H.; Kinnunen, P.; Illikainen, M. One-part geopolymers from mining residues—Effect of thermal treatment on three different tailings. Miner. Eng. 2019, 144, 106026. [Google Scholar] [CrossRef]
- Guo, Z.; Feng, Q.; Wang, W.; Huang, Y.; Deng, J.; Xu, Z. Study on Flotation Tailings of Kaolinite-type Pyrite when Used as Cement Admixture and Concrete Admixture. Procedia Environ. Sci. 2016, 31, 644–652. [Google Scholar] [CrossRef]
- Wong, R.; Gillott, J.; Law, S.; Thomas, M.; Poon, C. Calcined oil sands fine tailings as a supplementary cementing material for concrete. Cem. Concr. Res. 2004, 34, 1235–1242. [Google Scholar] [CrossRef]
- Ghorbel, H.; Samet, B. Effect of iron on pozzolanic activity of kaolin. Constr. Build. Mater. 2013, 44, 185–191. [Google Scholar] [CrossRef]
- Soro, N.S. Influence des Ions fer sur les Transformations Thermiques de la Kaolinite; University of Limoges: Limoges, France, 2003. [Google Scholar]
- Taylor-Lange, S.C.; Rajabali, F.; Holsomback, N.A.; Riding, K.; Juenger, M.C. The effect of zinc oxide additions on the performance of calcined sodium montmorillonite and illite shale supplementary cementitious materials. Cem. Concr. Compos. 2014, 53, 127–135. [Google Scholar] [CrossRef]
- Vayghan, A.G.; Khaloo, A.; Rajabipour, F. The effects of a hydrochloric acid pre-treatment on the physicochemical properties and pozzolanic performance of rice husk ash. Cem. Concr. Compos. 2013, 39, 131–140. [Google Scholar] [CrossRef]
- Ataie, F.F.; Riding, K.A. Thermochemical Pretreatments for Agricultural Residue Ash Production for Concrete. J. Mater. Civ. Eng. 2013, 25, 1703–1711. [Google Scholar] [CrossRef]
- Sicakova, A.; Kovac, M. Technological characterisation of selected mineral additives. IOP Conf. Ser. Mater. Sci. Eng. 2018, 385, 012048. [Google Scholar] [CrossRef]
- BS EN 196-1:2005; Methods of Testing Cement Part 5: Pozzolanicity Test for Pozzolanic Cement. BSI: London, UK, 2005.
- NF P18-513; Additions Pour Béton Hydraulique Métakaolin Spécifications et Critères de Conformité. Association Francaise de Normalisation: Toulouse, France, 2012.
- Ali, H.A.; Xuan, D.; Poon, C.S. Assessment of long-term reactivity of initially lowly-reactive solid wastes as supplementary cementitious materials (SCMs). Constr. Build. Mater. 2020, 232, 117192. [Google Scholar] [CrossRef]
- Li, X.; Snellings, R.; Antoni, M.; Alderete, N.M.; Ben Haha, M.; Bishnoi, S.; Cizer, Ö.; Cyr, M.; De Weerdt, K.; Dhandapani, Y.; et al. Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1. Mater. Struct. 2018, 51, 151. [Google Scholar] [CrossRef] [Green Version]
- Avet, F.; Snellings, R.; Diaz, A.A.; Ben Haha, M.; Scrivener, K. Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem. Concr. Res. 2016, 85, 1–11. [Google Scholar] [CrossRef]
- ASTM C1897; Standard Test Methods for Measuring the Reactivity of Supplementary Cementitious Materials by Isothermal Calorimetry and Bound Water Measurements. ASTM: West Conshohocken, PA, USA, 2020.
- ASTM C1608-17; Standard Test Method for Chemical Shrinkage of Hydraulic Cement Paste. ASTM: West Conshohocken, PA, USA, 2017. Available online: http://www.astm.org/cgi-bin/resolver.cgi?C1608 (accessed on 17 September 2022).
- Scrivener, K.; Snellings, R.; Lothenbach, B. (Eds.) A Practical Guide to Microstructural Analysis of Cementitious Materials; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Suraneni, P.; Weiss, J. Examining the pozzolanicity of supplementary cementitious materials using isothermal calorimetry and thermogravimetric analysis. Cem. Concr. Compos. 2017, 83, 273–278. [Google Scholar] [CrossRef]
- IS 1727-1967; Methods of Test for Pozzolanic Materials. Bureau of Indian Standards: New Delhi, India, 2004.
- Parashar, A.; Bishnoi, S. A comparison of test methods to assess the strength potential of plain and blended supplementary cementitious materials. Constr. Build. Mater. 2020, 256, 119292. [Google Scholar] [CrossRef]
- ASTM C311/C311M; Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. ASTM: West Conshohocken, PA, USA, 2022. Available online: https://www.astm.org/c0311_c0311m-22.html (accessed on 17 September 2022).
- Ramanathan, S.; Kasaniya, M.; Tuen, M.; Thomas, M.D.; Suraneni, P. Linking reactivity test outputs to properties of cementitious pastes made with supplementary cementitious materials. Cem. Concr. Compos. 2020, 114, 103742. [Google Scholar] [CrossRef]
- Suraneni, P.; Burris, L.; Shearer, C.R.; Hooton, R.D. ASTM C618 Fly Ash Specification: Comparison with Other Specifications, Shortcomings, and Solutions. ACI Mater. J. 2021, 118, 157–167. [Google Scholar] [CrossRef]
- Wang, Y.; Burris, L.; Shearer, C.R.; Hooton, D.; Suraneni, P. Strength activity index and bulk resistivity index modifications that differentiate inert and reactive materials. Cem. Concr. Compos. 2021, 124, 104240. [Google Scholar] [CrossRef]
- Suraneni, P.; Hajibabaee, A.; Ramanathan, S.; Wang, Y.; Weiss, J. New insights from reactivity testing of supplementary cementitious materials. Cem. Concr. Compos. 2019, 103, 331–338. [Google Scholar] [CrossRef]
Sample | SiO2 | Al2O3 | Fe2O3 | Sum * | CaO | K2O | MgO | SO3 | Na2O | TiO2 | LOI | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.20 | - | 0.15 | 0.35 | 55.11 | 0.02 | 1.12 | 0.09 | - | - | 43.31 | [50] |
2 | 0.86 | 0.08 | 0.31 | 1.25 | 56.3 | 0.05 | 0.58 | - | 0.08 | - | 42.0 | [54] |
3 | 0.84 | 0.24 | 0.32 | 1.4 | 53.96 | 0.34 | 1.01 | - | - | - | 43.01 | [55] |
4 | 8.97 | 1.02 | 0.37 | 10.36 | 46.77 | 0.13 | 2.38 | 0.33 | 0.02 | - | 39.54 | [56] |
Sample | SiO2 | Al2O3 | Fe2O3 | Sum * | CaO | K2O | MgO | SO3 | Na2O | TiO2 | LOI | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 92.50 | 0.70 | 1.56 | 94.76 | 0.60 | 1.17 | 0.80 | 0.24 | 0.36 | - | 2.07 | [61] |
2 | 90.2 | 0.24 | 2.4 | 92.84 | 0.65 | 1.26 | 0.41 | 0.4 | 0.16 | 0.02 | 3.33 | [62] |
3 | 96.57 | 0.06 | 0.06 | 96.69 | 0.51 | 0.73 | 0.25 | 0.17 | 0.16 | 0.01 | 1.41 | [63] |
4 | 95.3 | 0.65 | 0.28 | 96.23 | 0.27 | - | 0.41 | 0.25 | 0.76 | - | - | [64] |
SF Content (by wt. of Cement) | Difference Compared to Control Mix (%) | |||
---|---|---|---|---|
Workability | Compressive | Splitting Tensile | Flexural | |
5% | ↓ 14.67% [70] ↓ 20.25% [71] | ↑ 21.5% [66], ↑ 15.29% [70], ↑ 7.81% [72], ↑ 1.59% [73], ↑ 23.04% [74] | ↑ 6.45% [70], ↑ 47.75% [72] ↑ 5.04% [73] | ↑ 21.06% [72], ↑ 2.06% [75], ↑ 4.49% [74] |
10% | ↓ 26.67% [70] ↓ 29.11% [71] | ↑ 36.9% [66], ↑ 27.45% [70], ↑ 22.09% [72], ↑ 5.34% [73] ↑ 20.99% [74] | ↑ 11.29% [70], ↑ 54.82% [72], ↑ 27.95% [73] | ↑ 54.11% [72], ↑ 5.91% [75], ↑ 12.36% [74] |
15% | ↓ 33.33% [70] ↓ 49.37% [71] | ↑ 7.84% [70], ↑ 23.50% [72], ↓ 16.01% [73] | ↑ 3.23% [70], ↑ 65.95% [72], ↓ 2.76% [73] | ↑ 60.62% [72] ↑ 3.08% [75], |
20% | ↓ 54.43% [71] | ↓15.59% [72], ↓ 24.08% [73] | ↓29.34% [72], ↓12.36% [73] | ↑ 21.40% [72], ↑ 5.41% [76] ↑ 0.51% [75] |
SCM | Chemistry | Estimated Volume | Utilized | Remarks |
---|---|---|---|---|
Coal Fly Ash (FA) | Si-Al | 700–1100 | 330–400 | Lower pozzolanic reactivity, carbon content |
Ground Granulated Blast Furnace Slag (GGBS) | Ca-Si-Al | 300–360 | 330 | Latent hydraulic reactivity, fully used |
Silica fume (SF) | Si | 1–2.5 | 0.5–1 | Preferred in high performance concrete |
Limestone (LP) | CaCO3 | Large accessible reserves | 300 | Cementitious contribution in combination with reactive aluminates |
Calcined Clays | Si-Al | 3 | Metakaolin being used, high water demand | |
Natural Pozzolans | Si-Al | 75 | High water demand, large variability |
Tailings Type | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | SO3 | P2O5 | Na2O | LOI | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|
Bauxite | 3.15 | 32.24 | 37.39 | 8.67 | 0.85 | - | - | - | - | 13.74 | [92] |
Copper | 0.16–2.90 | 60.90–79.52 | 7.66–17.03 | 3.60–4.22 | 0.49–1.53 | 1.85–2.63 | 1.11–4.50 | 0.34 | 0.11–4.30 | 2.10–4.26 | [93,94] |
Gold | 1.06–13.60 | 35.50–72.86 | 6.80–13.68 | 1.11–9.70 | 0.08–5.90 | 0.50–5.32 | 0.16–0.70 | - | <0.70–3.04 | 1.40–12.90 | [95,96,97] |
Iron | 0.09–13.68 | 33.26–56.00 | 7.92–10.96 | 8.30–50.96 | 0.43–6.50 | 0.18–2.31 | 0.01–10.59 | 0.18–0.31 | 1.72 | 3.30–9.60 | [98,99,100] |
Phosphate | 36.80 | 2.10 | 0.10 | 0.80 | 18.90 | - | 1.00 | - | 0.10 | 35.80 | [101] |
Quartz-based | 0.51 | 79.53 | 9.52 | 3.22 | 0.64 | 3.24 | - | - | 0.72 | 2.46 | [102] |
Zn-Pb | 13.60–20.01 | 35.50–43.26 | 6.80–11.11 | 6.40–15.57 | 4.00–4.31 | 1.00–4.10 | 0.32–2.00 | - | <0.70–0.92 | 5.10–5.61 | [96,103] |
Tailing | Specific Gravity | Blaine Specific Surface Area (cm2/g) | Density (g/cm3) | Water Absorption (%) | Ref |
---|---|---|---|---|---|
Gold | 3.46 | 368 | - | 7.15 | [106] |
Iron | 2.60–3.53 | 553.8–735 | 1.27 *–3.67 + | 7.00 | [98,99,107] |
Copper | 2.75–4.29 | 537–5776 | - | 13.82 | [108,109] |
Mine Tailing | Raw Material Proportions of Clinker (%) | Consistency (%) | Setting Time (min) | Compressive Strength (MPa) | Flexural Strength (MPa) | Ref | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Initial | Final | 3 Days | 7 Days | 28 Days | 3 Days | 7 Days | 28 Days | ||||
GT | 85.79% LS, 6.28% B, 2.53% ICM, 5.41% SS | 24.5 | 140 | 212 | 28.3 | 43.8 | 57.7 | 5.8 | 7.2 | 9.5 | [97] |
85.36% LS, 3.79% B, 3.29% ICM, 7.56% GT | 24.8 | 138 | 215 | 30.4 | 44.7 | 59.1 | 6.1 | 7.6 | 9.8 | ||
IOT | 77.08% LS, 17.65% C, 1.38% QS, 3.89% IO | 23.0 | 165 | 225 | 20.7 | - | 46.2 | 4.9 | - | 8.5 | [115] |
75.07% LS, 6.31% QS, 1.31% IO, 17.31% IOT | 23.8 | 160 | 235 | 20.8 | - | 48.6 | 4.9 | - | 8.5 | ||
IOT | 0% Clay substitution | - | 136 | 190 | 21.2 | - | 50.6 | - | - | - | [116] |
IOT as 10% clay substitution | - | 132 | 185 | 24.1 | - | 52.3 | - | - | - | ||
IOT as 20% clay substitution | - | 105 | 142 | 16.6 | - | 38.4 | - | - | - |
Al2O3 | SiO2 | Fe2O3 | AlCl3 | FeSO3 | CaO | SO3 | Ca(FeO3) | Al(OH)3 | MgO | AlN | LOI | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|
79.68 | 4.14 | - | 0.52 | 0.68 | 4.25 | - | 6.95 | 2.18 | - | 0.1 | 0.05 | [130] |
63.29 | 6.36 | 0.32 | - | - | 20.2 | 6.36 | - | - | 0.45 | - | 5.3 | [122] |
77.15 | 1.34 | 1.02 | - | - | 0.56 | - | - | - | 1.86 | 8.06 | - | [127] |
63.84 | 7.15 | 0.03 | - | - | 0.07 | 0.03 | - | - | 0.04 | - | - | [131] |
% Of AD | 0 | 5 | 10 | 15 | 20 | 30 | 0 | 5 | 10 | 15 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Consistency (%) | 34 | 34 | 34 | 34 | 38 | 40 | 30 | 31 | 32 | 34 | 38 | |
Setting Time (min) | Initial | 40 | 45 | 55 | 65 | 80 | 90 | 50 | 55 | 65 | 80 | 95 |
Final | 380 | 270 | 240 | 220 | 200 | 180 | 390 | 360 | 310 | 290 | 220 | |
Ref | [131] | [132] |
Slag | Dimensions (mm) | Density (kg/m3) | Surface Area (cm2/g) | Water Absorption (%) | Ref |
---|---|---|---|---|---|
GGBS | ≤0.063 | 2810–2910 | 4250–4620 | 2.1 | [139,140,141] |
BOF | 0.018 | 2690–3480 | 4515 | 0.4 | [142,143] |
EAF | 0.013–0.063 | 2840–3337 | 4990 | 4.32 | [139,142,144] |
LF | 0.063 | 1540 | - | 2 | [139,145] |
Slag | SiO2 | Fe2O3 | Al2O3 | Sum * | CaO | MgO | MnO | SO3 | TiO2 | P2O5 | Na2O | K2O | Cr2O3 | ZnO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GGBS | 34.03 | 0.74 | 11.39 | 46.16 | 38.26 | 8.65 | 0.92 | 0.62 | 3.58 | - | - | - | - | - |
BOF | 13.59 | 25.73 | 3.59 | 42.91 | 42.59 | 7.91 | 2.77 | 0.4 | 1.71 | 1.32 | - | - | 0.02 | - |
EAF | 16.23 | 33.05 | 8.34 | 57.62 | 27.71 | 5.21 | 4.57 | 0.13 | 0.7 | 1.76 | 0.13 | 0.1 | 2.57 | 0.44 |
LF | 20.86 | 1.75 | 10.95 | 33.56 | 53.29 | 7.18 | 2.76 | 1.25 | 0.29 | 0.1 | 1.16 | 0.22 | 0.45 | - |
Slag | % of Cement Replaced | Ref | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control | 1% | 3% | 5% | 10% | 15% | 20% | 25% | 30% | 35% | ||
BOF | 31.5 ± 0.4 | 32.1 ± 0.3 | 38.5 ± 0.2 | 42.2 ± 0.2 | 40.6 ± 0.1 | 36.1 ± 0.5 | - | - | - | - | [146] |
EAF | 39.57 | - | - | - | - | 37.93 | - | - | - | - | [141] |
53.6 | - | - | - | 48.1 ± 3.7 | 44.75 ± 1.75 | - | 44.95 ± 0.95 | - | [147] | ||
66.5 | - | - | - | - | 64.6 | - | - | 51.4 | - | [148] | |
LF | 59.34 | 43.06 ± 5.36 | - | - | [139] |
Wood Waste Ash | CaO | SiO2 | Al2O3 | Fe2O3 | Sum * | K2O | MgO | P2O5 | SO3 | Na2O | TiO2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Forest Residue | 47.55 | 20.65 | 2.99 | 1.42 | 25.06 | 10.23 | 7.2 | 5.05 | 2.91 | 1.6 | 0.4 |
Pine Dark | 56.83 | 9.2 | 7.2 | 2.79 | 19.19 | 7.78 | 6.19 | 5.02 | 2.83 | 1.97 | 0.19 |
Poplar Bark | 77.31 | 1.86 | 0.62 | 0.74 | 3.22 | 8.93 | 2.36 | 2.48 | 0.74 | 4.84 | 0.12 |
Sawdust | 44.11 | 26.17 | 4.53 | 1.82 | 32.52 | 10.83 | 5.34 | 2.27 | 2.05 | 2.48 | 0.4 |
Spruce Bark | 72.39 | 6.13 | 0.68 | 1.9 | 8.71 | 7.22 | 4.97 | 2.69 | 1.88 | 2.02 | 0.12 |
Wood Residue | 11.66 | 53.15 | 12.64 | 6.24 | 72.03 | 4.85 | 3.06 | 1.37 | 1.99 | 4.47 | 0.57 |
Material | SiO2 | CaO | Al2O3 | Fe2O3 | Sum * | K2O | Na2O | TiO2 | MgO | P2O5 | SO3 | LOI | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OPC | 19.57 | 64.51 | 3.81 | 3.12 | 26.5 | 0.69 | - | 0.27 | 1.48 | - | 5.43 | 1.08 | [167] |
CSW | 32.84 | 36.92 | 8.21 | 6.72 | 47.77 | 1.6 | - | 0.54 | 1.88 | - | 2.81 | 8.58 | [167] |
CSW | 28 | 36 | 9.4 | 7 | 44.4 | 1.5 | 1 | - | 1.6 | 0.3 | 3.7 | 10.7 | [161] |
CSW | 17.7 | 44.4 | 5.1 | 3.1 | 25.9 | 0.3 | - | 0.5 | 1.5 | - | 2.2 | 14.2 | [168] |
CSW | 36.49 | 20.58 | 14.35 | 4.34 | 55.18 | 1.73 | 0.35 | - | 2.67 | - | 1.22 | 17.13 | [169] |
Property | OPC | RCP |
---|---|---|
Bulk Density (kg/m3) | 1056 | 856 |
Apparent Density (kg/m3) | 2978 | 2355 |
Specific Surface Area (cm2/g) | 4930 | 4670 |
Oxides (%) | SiO2 | Al2O3 | Fe2O3 | Sum * | CaO | MgO | Na2O | K2O | SO3 | LOI | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|
OPC | 19.57 | 3.81 | 3.12 | 26.5 | 64.51 | 1.48 | - | 0.69 | 5.43 | 1.08 | [167] |
FRCA | 57.37 | 9.64 | 3.27 | 70.28 | 17.9 | 0.59 | - | 3.41 | 1.53 | 5.61 | [167] |
RCP | 27.8 | 6.7 | 2.73 | 37.23 | 29.1 | 4.49 | 0.56 | 1.09 | 1.11 | - | [173] |
55.19 | 2.18 | 4.85 | 62.22 | 35.02 | 0.29 | 0.22 | 0.7 | 0.51 | 1.42 | [174] | |
64.81 | 7.77 | 1.59 | 74.17 | 19.14 | 1.54 | 1.76 | 2.94 | - | - | [175] |
Test | Ref | Procedure | Remarks |
---|---|---|---|
Frattini Test EN 196-1 Part 5 | [214] | - Samples are prepared or mixed, stored for 7 and 28 days at a temperature of 40 °C, after which the samples are allowed to cool down to room temperature (27 °C), and the solution is filtered in a vacuum before testing. - The filtrate is then titrated with 0.1 M hydrochloride acid, EDTA, and murexide indicators are applied to detect OH− and Ca+ ion concentrations. | - If an SCM is reactive, the calcium ion concentration will be below saturation at the specified OH− ion concentration. |
Chapelle Test and Modified Chapelle Test (NF P18-513) | [215] | - 1 g of the SCM is mixed with 1 g of Ca(OH)2 in 200 mL water heated at 90–100 °C for 16 h, after which the unreacted lime is examined, and the results are expressed in milligrams of Ca(OH)2 per unit of SCM, respectively. The Ca(OH)2 consumed in mg/g of SCM is calculated using Equation (1): (1) - In the modified Chapelle test, 1 g of SCM is mixed with 2 g of Ca(OH)2. - This method produces two blank solutions using the same setup: (1) distilled water and Ca(OH)2 and (2) distilled water and SCM [216]. - The first blank solution is used to correct for carbonation while the second blank solution corrects for the release of alkali from the SCM. | - The variability of the Chapelle test and modified Chapelle test is reduced due to the use of CH instead of OPC. - An increase in the reactivity and modification of kinetics of the specimens has been observed to be due to the SCMs being subjected to high temperature (90–100 °C) for a significant duration (16 h). - Neither test takes into consideration the calcium already present in slag specimens. |
R3 Calorimetry | [217] | - The powder and water are pre-conditioned separately overnight at 40 °C in the calorimeter, after which they are mixed in a mechanical mixer for 2 min. Afterwards, a glass ampoule is weighed together with 15 g of sample, which is then sealed and inserted in the calorimeter at a constant temperature of 40 °C for 7 days to record the heat. | - The SCM is mixed with Ca(OH)2, sulphates, and alkalis in the quantities [218] initially used to evaluate calcined clays and limestone mixes, but its popularity has grown such that it is used for all SCMs. - The measured heat of hydration correlates well with mortar strength development, tested on calcined clay and limestone mixes [215]. |
R3 Bound Water | [217] | - Sliced specimens extracted from 7 days hydrated samples are dried at 105 °C to remove any surface and pore water, afterwards furnace-heated at 400 °C for 2 h, the weight loss is measured and recorded. | - The weight loss is proportional to the amount of water present in hydration products such as C-S-H and C-A-S-H, and this water helps define how the SCM reacts. - Additional step was added in ASTM C1897 [219]: once the weight loss is recorded at 400 °C, the sample is put in an oven at 500 °C and weight loss is recorded again. - By prolonging the temperature between 400 and 500 °C, CH content may be estimated. |
R3 Chemical Shrinkage | [217,220] | - Freshly prepared paste samples are poured into a vial up to 3 cm, afterwards the vial is completely filled with 40 °C temperature de-aerated water. - The sealed samples are then placed in water bath of constant temperature of 40 °C. The change in volume is noted, and based on the volumetric change, the chemical shrinkage is calculated. | - This R3 model test has the advantage of being repeatable for more extended periods than most other R3 test methods and has been employed in evaluating blends of SCMs with lime in a 1:1 ratio at a constant room temperature of 27 °C. - The volumetric change can be recorded in small intervals during the early stage, and the testing duration can last for up to 14 days. |
R3 Portlandite Consumption | [217] | - Pastes are prepared and dried at 40 °C for 7 days and weighed. - 50 mg of powder is heated from 30 to 950 °C at 10 °C/min in a TGA, and the weight loss over temperature is recorded. | - Portlandite consumption is computed using the tangent approach given by Scrivener et al. [221], and portlandite consumption is calculated by difference to the initial content [217]. |
Suraneni (Modified R3 Isothermal Calorimetry) Test | [222] | - Paste samples, prepared by mixing Ca(OH)2 and SCM in a 3:1 mass ratio with 0.5 M KOH to maintain 0.9 liquid-solid ratio of 0.9, are placed in a 50 °C preconditioned calorimeter, and the heat release is recorded for 240 h. - 50 mg of SCM is heated from 23 to 500 °C at 10 °C/min in a TGA | - Classified SCMs based on Ca(OH)2 consumption and heat release (Figure 7). - The boundaries suggested in Figure 7 for heat release are not fundamental, as a slight change in the system model (Ca(OH)2 value and temperature) can cause different values. |
Lime ReactivityIS 1727-1967 | [223] | - Mortar samples consisting of SCM, Ca(OH)2 and sand at a ratio of 1:2M:9, where M is the SCM/CH specific gravity ratio are prepared and kept at 27 °C for 48 h. After 8 days at 50 °C temperature and 90% relative humidity, the specimens’ compressive strengths are evaluated and dubbed the SCM’s lime reactivity. | - The fluctuating water to powder ratio and SCM concentration makes it impossible to compare similar SCMs with varying physical properties, let alone different SCMs. Thus, modified lime reactivity test in which lime to SCM ratio is set at one based on the lime reactivity test quantities 0.67 w/b ratio to eliminate mix fluctuation. |
Heat of Hydration (1:1) Test | [224] | - The paste specimen (SCM and lime at 1:1 with 0.65 w/b ratio) is placed in an isothermal calorimeter at 27 °C for 7 days, during which time its heat of hydration is measured. | - In contrast to R3 calorimetry, heat of hydration does not restrict the system to pozzolanic reactions and by conducting the tests at an ambient temperature, the effects of a higher temperature and kinetics can be reduced, leading to more reliable results. |
Strength Activity Index (SAI) ASTM C311 | [225] | - The compressive strength of concrete/mortar containing SCM is compared with the compressive strength of reference concrete/mortar sample at different curing ages. The influence of SCM can be expressed in Equation (2). (2) | - To comply with ASTM C618 [25] and EN 450-1 [26], SAI of at least 75% of the control mixture after 7 or 28 days is required. - It fails to distinguish between reactive and inert materials due to higher SCM level; the filler effects may outweigh other reaction effects [226], thus testing at early age may be impractical since pozzolanic activity is low at early age, often indistinguishable from inert fillers [227]. Additionally, the 75% cap is too low, as when cement is diluted, the strength of the test sample can be 80% of the control at the same w/c ratio [228]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jhatial, A.A.; Nováková, I.; Gjerløw, E. A Review on Emerging Cementitious Materials, Reactivity Evaluation and Treatment Methods. Buildings 2023, 13, 526. https://doi.org/10.3390/buildings13020526
Jhatial AA, Nováková I, Gjerløw E. A Review on Emerging Cementitious Materials, Reactivity Evaluation and Treatment Methods. Buildings. 2023; 13(2):526. https://doi.org/10.3390/buildings13020526
Chicago/Turabian StyleJhatial, Ashfaque Ahmed, Iveta Nováková, and Eirik Gjerløw. 2023. "A Review on Emerging Cementitious Materials, Reactivity Evaluation and Treatment Methods" Buildings 13, no. 2: 526. https://doi.org/10.3390/buildings13020526
APA StyleJhatial, A. A., Nováková, I., & Gjerløw, E. (2023). A Review on Emerging Cementitious Materials, Reactivity Evaluation and Treatment Methods. Buildings, 13(2), 526. https://doi.org/10.3390/buildings13020526