Research Progress on Carbon Emissions of Public Buildings: A Visual Analysis and Review
Abstract
:1. Introduction
2. Research Methods
3. Results
3.1. Overview Analysis
3.1.1. Analysis of Annual Paper Volume Distribution
3.1.2. Analysis of the Literature Subject Categories
3.1.3. Publication Analysis
3.1.4. Analysis of the Cited Frequency of Paper
3.2. Cooperation Network Analysis
3.3. Keyword Analysis
3.3.1. Keyword Co-Occurrence Analysis
3.3.2. Keyword Clustering Analysis
3.4. Co-Citation Analysis
4. Discussion
4.1. Research Hotspots
4.2. Research Frontiers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Abd Majid, M.Z. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sust. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Hashmi, R.; Alam, K. Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: A panel investigation. J. Clean. Prod. 2019, 231, 1100–1109. [Google Scholar] [CrossRef]
- Qin, L.G.; Kirikkaleli, D.; Hou, Y.; Miao, X.; Tufail, M. Carbon neutrality target for G7 economies: Examining the role of environmental policy, green innovation and composite risk index. J. Environ. Manag. 2021, 295, 113119. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.W.; Chen, B.Y.; Shang, Y.P.; Song, M.L. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Li, H.M.; Qiu, P.; Wu, T. The regional disparity of per-capita CO2 emissions in China’s building sector: An analysis of macroeconomic drivers and policy implications. Energy Build. 2021, 244, 111011. [Google Scholar] [CrossRef]
- Guo, K.; Li, Q.; Zhang, L.M.; Wu, X.G. BIM-based green building evaluation and optimization: A case study. J Clean Prod. 2021, 320, 128824. [Google Scholar] [CrossRef]
- The Research Center for Building Energy Conservation of Tsinghua University. China Annual Building Energy Conservation Development Report 2022 (Public Buildings), 2022; China Architecture & Building Press: Beijing, China, 2022; pp. 3–13. [Google Scholar]
- Lavy, S.; Dixit, M.K. Literature review on design terror mitigation for facility managers in public access buildings. Facilities 2010, 28, 542–563. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.L.; Zhang, Y.L.; Ma, W.W.; Wu, R.; Wang, S.J. The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review. Land 2022, 11, 1430. [Google Scholar] [CrossRef]
- Cai, M.; Shi, Y.; Ren, C.; Yoshida, T.; Yamagata, Y.; Ding, C.; Zhou, N. The need for urban form data in spatial modeling of urban carbon emissions in China: A critical review. J. Clean. Prod. 2021, 319, 128792. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, Y.; Feng, W.M.; Zhang, Y.F.; Zhao, G.X. How to minimise the carbon emission of steel building products from a cradle-to-site perspective: A systematic review of recent global research. J. Clean. Prod. 2022, 368, 133156. [Google Scholar] [CrossRef]
- Ayanleye, S.; Udele, K.; Nasir, V.; Zhang, X.F.; Militz, H. Durability and protection of mass timber structures: A review. J. Build. Eng. 2022, 46, 103731. [Google Scholar] [CrossRef]
- Joseph, V.R.; Mustaffa, N.K. Carbon emissions management in construction operations: A systematic review. Eng. Constr. Archit. Manag. 2021; ahead-of-print. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Y.W.; Feng, W.M.; Fang, Y.; Feng, A.Q. Factors That Influence the Quantification of the Embodied Carbon Emission of Prefabricated Buildings: A Systematic Review, Meta-Analysis and the Way Forward. Buildings 2022, 12, 1265. [Google Scholar] [CrossRef]
- Dixit, M.K. Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters. Renew. Sustain. Energy Rev. 2017, 79, 390–413. [Google Scholar] [CrossRef]
- Lu, W.; Tam, V.W.Y.; Chen, H.; Du, L. A holistic review of research on carbon emissions of green building construction industry. Eng. Constr. Archit. Manag. 2020, 27, 1065–1092. [Google Scholar] [CrossRef]
- Lu, M.X.; Lai, J. Review on carbon emissions of commercial buildings. Renew. Sustain. Energy Rev. 2020, 119, 109545. [Google Scholar] [CrossRef]
- Chen, C.M. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, P. Study of international anticancer research trends via co-word and document co-citation visualization analysis. Scientometrics 2015, 105, 611–622. [Google Scholar] [CrossRef]
- Li, W.; Chen, X.H.; Xie, L.S.; Liu, Z.; Xiong, X.Y. Bioelectrochemical Systems for Groundwater Remediation: The Development Trend and Research Front Revealed by Bibliometric Analysis. Water 2019, 11, 1532. [Google Scholar] [CrossRef] [Green Version]
- van Nunen, K.; Li, J.; Reniers, G.; Ponnet, K. Bibliometric analysis of safety culture research. Saf. Sci. 2018, 108, 248–258. [Google Scholar] [CrossRef]
- Ying, J.; Zhang, X.J.; Zhang, Y.Q.; Bilan, S. Green infrastructure: Systematic literature review. Econ. Res.-Ekon. Istraz. 2022, 35, 343–366. [Google Scholar] [CrossRef]
- Allam, Z.; Sharifi, A.; Giurco, D.; Sharpe, S.A. On the Theoretical Conceptualisations, Knowledge Structures and Trends of Green New Deals. Sustainability 2021, 13, 12529. [Google Scholar] [CrossRef]
- Hu, H.K.; Xue, W.D.; Jiang, P.; Li, Y. Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends. Renew. Sustain. Energy Rev. 2022, 167, 112739. [Google Scholar] [CrossRef]
- Wang, J.J.; Jing, Y.Y.; Zhang, C.F. Optimization of capacity and operation for CCHP system by genetic algorithm. Appl. Energy 2010, 87, 1325–1335. [Google Scholar] [CrossRef]
- Kneifel, J. Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings. Energy Build. 2010, 42, 333–340. [Google Scholar] [CrossRef]
- Marnay, C.; Venkataramanan, G.; Stadler, M.; Siddiqui, A.S.; Firestone, R.; Chandran, B. Optimal technology selection and operation of commercial-building microgrids. IEEE Trans. Power Syst. 2008, 23, 975–982. [Google Scholar] [CrossRef]
- Juan, Y.K.; Gao, P.; Wang, J. A hybrid decision support system for sustainable office building renovation and energy performance improvement. Energy Build. 2010, 42, 290–297. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Ren, X.; Davies, M.; Mavrogianni, A. London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build. 2012, 47, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Liu, W.J.; Cai, J.J.; Hong, B.W.; Wang, C.S. A two-stage optimal planning and design method for combined cooling, heat and power microgrid system. Energy Convers. Manag. 2013, 74, 433–445. [Google Scholar] [CrossRef]
- Mago, P.J.; Hueffed, A.; Chamra, L.M. Analysis and optimization of the use of CHP-ORC systems for small commercial buildings. Energy Build. 2010, 42, 1491–1498. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O. Scope-based carbon footprint analysis of US residential and commercial buildings: An input-output hybrid life cycle assessment approach. Build. Environ. 2014, 72, 53–62. [Google Scholar] [CrossRef]
- Ma, M.D.; Cai, W.; Cai, W.G.; Dong, L. Whether carbon intensity in the commercial building sector decouples from economic development in the service industry? Empirical evidence from the top five urban agglomerations in China. J. Clean. Prod. 2019, 222, 193–205. [Google Scholar]
- Zuo, J.; Read, B.; Pullen, S.; Shi, Q. Achieving carbon neutrality in commercial building developments-Perceptions of the construction industry. Habitat Int. 2012, 36, 278–286. [Google Scholar] [CrossRef]
- Su, X.W.; Li, X.; Kang, Y.X. A Bibliometric Analysis of Research on Intangible Cultural Heritage Using CiteSpace. SAGE Open 2019, 9, 215824401984. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.; Webber, C.; Koomey, J.G. Status and future directions of the ENERGY STAR program. Energy 2002, 27, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Song, Y.Z.; Zhu, J.B.; Chang, R.D. Analyzing the influence factors of the carbon emissions from China’s building and construction industry from 2000 to 2015. J. Clean. Prod. 2019, 221, 552–566. [Google Scholar] [CrossRef]
- Liu, J.H.; Li, J.; Wang, J.H. In-depth analysis on thermal hazards related research trends about lithium-ion batteries: A bibliometric study. J. Energy Storage 2021, 35, 102253. [Google Scholar] [CrossRef]
- Xiang, X.W.; Ma, M.D.; Ma, X.; Chen, L.M.; Cai, W.G.; Feng, W.; Ma, Z.L. Historical decarbonization of global commercial building operations in the 21st century. Appl. Energy 2022, 322, 119401. [Google Scholar] [CrossRef]
- Xiang, X.W.; Ma, X.; Ma, Z.L.; Ma, M.D. Operational Carbon Change in Commercial Buildings under the Carbon Neutral Goal: A LASSO-WOA Approach. Buildings 2022, 12, 54. [Google Scholar] [CrossRef]
- Zhang, S.F.; Xiang, X.W.; Ma, Z.L.; Ma, M.D.; Zou, C.C. Carbon Neutral Roadmap of Commercial Building Operations by Mid-Century: Lessons from China. Buildings 2021, 11, 510. [Google Scholar] [CrossRef]
- Chen, M.X.; Ma, M.D.; Lin, Y.C.; Ma, Z.L.; Li, K. Carbon Kuznets curve in China’s building operations: Retrospective and prospective trajectories. Sci. Total Environ. 2022, 803, 150104. [Google Scholar] [CrossRef]
- Xiang, X.W.; Ma, X.; Ma, Z.L.; Ma, M.D.; Cai, W.G. Python-LMDI: A Tool for Index Decomposition Analysis of Building Carbon Emissions. Buildings 2022, 12, 83. [Google Scholar] [CrossRef]
- Ma, M.D.; Shen, L.Y.; Ren, H.; Cai, W.G.; Ma, Z.L. How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015. Sustainability 2017, 9, 1744. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.D.; Yan, R.; Cai, W.G. An extended STIRPAT model-based methodology for evaluating the driving forces affecting carbon emissions in existing public building sector: Evidence from China in 2000–2015. Nat. Hazards 2017, 89, 741–756. [Google Scholar] [CrossRef]
- Shibata, N.; Kajikawa, Y.; Takeda, Y.; Matsushima, K. Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation 2008, 28, 758–775. [Google Scholar] [CrossRef]
- Sabe, M.; Pillinger, T.; Kaiser, S.; Chen, C.M.; Taipale, H.; Tanskanen, A.; Tiihonen, J.; Leucht, S.; Correll, C.U.; Solmi, M. Half a century of research on antipsychotics and schizophrenia: A scientometric study of hotspots, nodes, bursts, and trends. Neurosci. Biobehav. Rev. 2022, 136, 104608. [Google Scholar] [CrossRef]
- Fenner, A.E.; Kibert, C.J.; Li, J.X.; Razkenari, M.A.; Hakim, H.; Lu, X.S.; Kouhirostami, M.; Sam, M. Embodied, operation, and commuting emissions: A case study comparing the carbon hotspots of an educational building. J. Clean. Prod. 2020, 268, 122081. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, D.; Hu, S.; Guo, S.Y. Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach. Energy Policy 2019, 134, 110949. [Google Scholar] [CrossRef]
- Azzouz, A.; Borchers, M.; Moreira, J.; Mavrogianni, A. Life cycle assessment of energy conservation measures during early stage office building design: A case study in London, UK. Energy Build. 2017, 139, 547–568. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.J.; Oyedele, L.O. Assessment and optimisation of life cycle environment, economy and energy for building retrofitting. Energy Sustain. Dev. 2021, 65, 77–100. [Google Scholar] [CrossRef]
- Li, X.L.; Ren, Z.Y.; Lin, D.M. An investigation on life-cycle energy consumption and carbon emissions of building space heating and cooling systems. Renew. Energy 2015, 84, 124–129. [Google Scholar]
- Wu, X.Y.; Peng, B.; Lin, B.R. A dynamic life cycle carbon emission assessment on green and non-green buildings in China. Energy Build. 2017, 149, 272–281. [Google Scholar] [CrossRef]
- Ma, J.J.; Du, G.; Zhang, Z.K.; Wang, P.X.; Xie, B.C. Life cycle analysis of energy consumption and CO2 emissions from a typical large office building in Tianjin, China. Build. Environ. 2017, 117, 36–48. [Google Scholar] [CrossRef]
- Zhang, X.C.; Wang, F.L. Life-cycle assessment and control measures for carbon emissions of typical buildings in China. Build. Environ. 2015, 86, 89–97. [Google Scholar] [CrossRef]
- Lu, K.; Jiang, X.Y.; Tam, V.W.Y.; Li, M.Y.; Wang, H.Y.; Xia, B.; Chen, Q. Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects. Sustainability 2019, 11, 6274. [Google Scholar] [CrossRef] [Green Version]
- Kumanayake, R.; Luo, H.B.; Paulusz, N. Assessment of material related embodied carbon of an office building in Sri Lanka. Energy Build. 2018, 166, 250–257. [Google Scholar] [CrossRef]
- Chau, C.K.; Hui, W.K.; Ng, W.Y.; Powell, G. Assessment of CO2 emissions reduction in high-rise concrete office buildings using different material use options. Resour. Conserv. Recycl. 2012, 61, 22–34. [Google Scholar] [CrossRef]
- He, J.H.; Yue, Q.; Li, Y.; Zhao, F.; Wang, H.M. Driving force analysis of carbon emissions in China’s building industry: 2000–2015. Sustain. Cities Soc. 2020, 60, 102268. [Google Scholar] [CrossRef]
- Xia, B.; Dong, S.C.; Li, Z.H.; Zhao, M.Y.; Sun, D.Q.; Zhang, W.B.; Li, Y. Eco-Efficiency and Its Drivers in Tourism Sectors with Respect to Carbon Emissions from the Supply Chain: An Integrated EEIO and DEA Approach. Int. J. Environ. Res. Public Health 2022, 19, 6951. [Google Scholar] [CrossRef]
- Wang, Y.K.; Liang, Y.; Shao, L.S. Driving Factors and Peak Forecasting of Carbon Emissions from Public Buildings Based on LMDI-SD. Discret. Dyn. Nat. Soc. 2022, 2022, 4958660. [Google Scholar] [CrossRef]
- Gan, L.; Ren, H.; Cai, W.G.; Wu, K.; Liu, Y.; Liu, Y. Allocation of carbon emission quotas for China’s provincial public buildings based on principles of equity and efficiency. Build. Environ. 2022, 216, 108994. [Google Scholar] [CrossRef]
- Liu, L.Q.; Liu, K.L.; Zhang, T.; Mao, K.; Lin, C.Q.; Gao, Y.F.; Xie, B.C. Spatial characteristics and factors that influence the environmental efficiency of public buildings in China. J. Clean. Prod. 2021, 322, 128842. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Duan, H.B.; Dong, D.; Song, Q.B.; Zuo, J.; Jiang, W.P. How to evaluate the efforts on reducing CO2 emissions for megacities? Public building practices in Shenzhen city. Resour. Conserv. Recycl. 2019, 149, 427–434. [Google Scholar] [CrossRef]
- Huo, T.F.; Ma, Y.L.; Cai, W.G.; Liu, B.S.; Mu, L.L. Will the urbanization process influence the peak of carbon emissions in the building sector? A dynamic scenario simulation. Energy Build. 2021, 232, 110590. [Google Scholar]
- Moraveji, Z.K.; Heravi, G.; Rostami, M. Evaluating the Economic Feasibility of Designing Zero Carbon Envelope Buildings: A Case Study of a Commercial Building in Iran. Iran. J. Sci. Tech. Trans. Civ. Eng. 2022, 46, 1723–1736. [Google Scholar] [CrossRef]
- Nadeeshani, M.; Ramachandra, T.; Gunatilake, S.; Zainudeen, N. Carbon Footprint of Green Roofing: A Case Study from Sri Lankan Construction Industry. Sustainability 2021, 13, 6745. [Google Scholar] [CrossRef]
- Cheung, M.; Fan, J. Carbon reduction in a high-density city: A case study of Langham Place Hotel Mongkok Hong Kong. Renew. Energy 2013, 50, 433–440. [Google Scholar]
- Moussa, R.R.; Ismaeel, W.S.E.; Solban, M.M. Energy generation in public buildings using piezoelectric flooring tiles; A case study of a metro station. Sustain. Cities Soc. 2022, 77, 103555. [Google Scholar]
- Kim, T.H.; Chae, C.U.; Kim, G.H.; Jang, H.J. Analysis of CO2 Emission Characteristics of Concrete Used at Construction Sites. Sustainability 2016, 8, 348. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Devjani, M.R. Analyzing energy consumption patterns of an educational building through data mining. J. Build. Eng. 2021, 44, 103385. [Google Scholar] [CrossRef]
- Papachristos, G.; Jain, N.; Burman, E.; Zimmermann, N.; Mumovic, D.; Davies, M.; Edkins, A. Low carbon building performance in the construction industry: A multi-method approach of project management operations and building energy use applied in a UK public office building. Energy Build. 2020, 206, 109609. [Google Scholar] [CrossRef]
- Lou, Y.L.; Ye, Y.Y.; Yang, Y.Z.; Zuo, W.D. Long-term carbon emission reduction potential of building retrofits with dynamically changing electricity emission factors. Build. Environ. 2022, 210, 108683. [Google Scholar] [CrossRef]
- Jahangir, M.H.; Eslamnezhad, S.; Mousavi, S.A.; Askari, M. Multi-year sensitivity evaluation to supply prime and deferrable loads for hospital application using hybrid renewable energy systems. J. Build. Eng. 2021, 40, 102733. [Google Scholar] [CrossRef]
- Khahro, S.H.; Kumar, D.; Siddiqui, F.H.; Ali, T.H.; Raza, M.S.; Khoso, A.R. Optimizing Energy Use, Cost and Carbon Emission through Building Information Modelling and a Sustainability Approach: A Case-Study of a Hospital Building. Sustainability 2021, 13, 3675. [Google Scholar] [CrossRef]
- Ahn, H.; Rim, D.; Freihaut, J.D. Performance assessment of hybrid chiller systems for combined cooling, heating and power production. Appl. Energy 2018, 225, 501–512. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhang, C.F.; Jing, Y.Y. Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China. Appl. Energy 2010, 87, 1247–1259. [Google Scholar]
- Fang, F.; Wei, L.; Liu, J.Z.; Zhang, J.H.; Hou, G.L. Complementary configuration and operation of a CCHP-ORC system. Energy 2012, 46, 211–220. [Google Scholar] [CrossRef]
- Li, F.; Sun, B.; Zhang, C.H.; Zhang, L.Z. Operation optimization for combined cooling, heating, and power system with condensation heat recovery. Appl. Energy 2018, 230, 305–316. [Google Scholar] [CrossRef]
- Chang, J.W.; Li, Z.; Huang, Y.; Yu, X.N.; Jiang, R.C.; Huang, R.; Yu, X.L. Multi-objective optimization of a novel combined cooling, dehumidification and power system using improved M-PSO algorithm. Energy 2022, 239, 122487. [Google Scholar] [CrossRef]
- Yousefi, H.; Ghodusinejad, M.H.; Kasaeian, A. Multi-objective optimal component sizing of a hybrid ICE plus PV/T driven CCHP microgrid. Appl. Therm. Eng. 2017, 122, 126–138. [Google Scholar] [CrossRef]
- Wu, H.F.; Liu, Q.B.; Xie, G.X.; Guo, S.P.; Zheng, J.; Su, B.S. Performance investigation of a novel hybrid combined cooling, heating and power system with solar thermochemistry in different climate zones. Energy 2020, 190, 116281. [Google Scholar] [CrossRef]
- Mago, P.J.; Hueffed, A.K. Evaluation of a turbine driven CCHP system for large office buildings under different operating strategies. Energ Build. 2010, 42, 1628–1636. [Google Scholar] [CrossRef]
- Han, G.; You, S.J.; Ye, T.Z.; Sun, P.; Zhang, H. Analysis of combined cooling, heating, and power systems under a compromised electric-thermal load strategy. Energ Build. 2014, 84, 586–594. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, M.L.; Wang, P.H.; Gu, J.Q.; Zheng, W.D.; Dong, Y.H. Bi-stage stochastic model for optimal capacity and electric cooling ratio of CCHPs-a case study for a hotel. Energ Build. 2019, 194, 113–122. [Google Scholar] [CrossRef]
- Kashav, S.; Centobelli, P.; Cerchione, R.; Merigo, J.M. Mapping Knowledge Management Research: A Bibliometric Overview. Technol. Econ. Dev. Econ. 2022, 28, 239–267. [Google Scholar] [CrossRef]
- Trujillo, C.M.; Long, T.M. Document co-citation analysis to enhance transdisciplinary research. Sci. Adv. 2018, 4, e1701130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, S. Practical Applications of Do-It-Yourself Citation Analysis. Ser. Libr. 2013, 64, 285–298. [Google Scholar] [CrossRef]
- Ramesh, T.; Prakash, R.; Shukla, K.K. Life cycle energy analysis of buildings: An overview. Energy Build. 2010, 42, 1592–1600. [Google Scholar] [CrossRef]
- Mago, P.J.; Fumo, N.; Chamra, L.M. Performance analysis of CCHP and CHP systems operating following the thermal and electric load. Int. J. Energy Res. 2009, 33, 852–864. [Google Scholar] [CrossRef]
- Wang, J.C. A study on the energy performance of hotel buildings in Taiwan. Energy Build. 2012, 49, 268–275. [Google Scholar] [CrossRef]
- Ma, M.D.; Yan, R.; Du, Y.J.; Ma, X.R.; Cai, W.G.; Xu, P.P. A methodology to assess China’s building energy savings at the national level: An IPAT-LMDI model approach. J. Clean. Prod. 2017, 143, 784–793. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Rincon, L.; Vilarino, V.; Perez, G.; Castell, A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Priyadarsini, R.; Xuchao, W.; Eang, L.S. A study on energy performance of hotel buildings in Singapore. Energy Build. 2009, 41, 1319–1324. [Google Scholar] [CrossRef]
- Chau, C.K.; Leung, T.M.; Ng, W.Y. A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Appl. Energy 2015, 143, 395–413. [Google Scholar] [CrossRef]
- Wu, X.C.; Priyadarsini, R.; Eang, L.S. Benchmarking energy use and greenhouse gas emissions in Singapore’s hotel industry. Energy Policy 2010, 38, 4520–4527. [Google Scholar]
- Zheng, C.Y.; Wu, J.Y.; Zhai, X.Q. A novel operation strategy for CCHP systems based on minimum distance. Appl. Energy 2014, 128, 325–335. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kim, B.; Kitamura, T.; Akizawa, K.; Chen, H.M.; Shimoda, Y. Building stock energy modeling considering building system composition and long-term change for climate change mitigation of commercial building stocks. Appl. Energy 2022, 306, 117907. [Google Scholar] [CrossRef]
- Zhu, J.J.; Chew, D.A.S.; Lv, S.N.; Wu, W.W. Optimization method for building envelope design to minimize carbon emissions of building operational energy consumption using orthogonal experimental design (OED). Habitat Int. 2013, 37, 148–154. [Google Scholar] [CrossRef]
- Pirmohamadi, A.; Dastjerdi, S.M.; Ziapour, B.M.; Ahmadi, P.; Rosen, M.A. Integrated solar thermal systems in smart optimized zero energy buildings: Energy, environment and economic assessments. Sustain. Energy Technol. 2021, 48, 101580. [Google Scholar] [CrossRef]
- Ikedi, C.U.; Okoroh, M.I.; Dean, A.M. Numerical assessment of energy contribution by building integrated photovoltaics in a commercial/office building refurbishment in UK. Int. J. Low-Carbon Technol. 2016, 11, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Hang, Y.; Qu, M.; Winston, R.; Jiang, L.; Widyolar, B.; Poiry, H. Experimental based energy performance analysis and life cycle assessment for solar absorption cooling system at University of Californian, Merced. Energy Build. 2014, 82, 746–757. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhao, H. Multi-Objective Optimization and Performance Assessments of an Integrated Energy System Based on Fuel, Wind and Solar Energies. Entropy 2021, 23, 431. [Google Scholar] [CrossRef] [PubMed]
- Shaahid, S.M. Economic Perspective of Hybrid Wind-Diesel Technology for Commercial Loads of Dhahran, Saudi Arabia A Step Towards Sustainable Future. Therm. Sci. 2015, 19, 167–178. [Google Scholar] [CrossRef]
- Zhou, S.J.; Cao, S.L.; Wang, S.W. Realisation of a coastal zero-emission office building with the support of hybrid ocean thermal, floating photovoltaics, and tidal stream generators. Energy Convers. Manag. 2022, 253, 115135. [Google Scholar] [CrossRef]
- Wang, Z.S.; Li, X.; Li, Y.; Zhao, T.Q.; Xia, X.; Zhang, H.Z. An Optimization Framework for Low-Carbon Oriented Integrated Energy System Management in Commercial Building under Electric Vehicle Demand Response. Processes 2021, 9, 1737. [Google Scholar] [CrossRef]
- Ceglia, F.; Marrasso, E.; Roselli, C.; Sasso, M. Small Renewable Energy Community: The Role of Energy and Environmental Indicators for Power Grid. Sustainability 2021, 13, 2137. [Google Scholar] [CrossRef]
- Huang, H.K.; Zhou, Y.J.; Huang, R.D.; Wu, H.J.; Sun, Y.J.; Huang, G.S.; Xu, T. Optimum insulation thicknesses and energy conservation of building thermal insulation materials in Chinese zone of humid subtropical climate. Sustain. Cities Soc. 2020, 52, 101840. [Google Scholar] [CrossRef]
- Oh, B.K.; Glisic, B.; Lee, S.H.; Cho, T.; Park, H.S. Comprehensive investigation of embodied carbon emissions, costs, design parameters, and serviceability in optimum green construction of two-way slabs in buildings. J. Clean. Prod. 2019, 222, 111–128. [Google Scholar] [CrossRef]
- Liang, Y.M.; Pan, Y.Q.; Yuan, X.L.; Yang, Y.T.; Fu, L.; Li, J.; Sun, T.R.; Huang, Z.Z.; Kosonen, R. Assessment of operational carbon emission reduction of energy conservation measures for commercial buildings: Model development. Energy Build. 2022, 268, 112189. [Google Scholar] [CrossRef]
- Xiang, Q.C.; Feng, X.P.; Jia, X.Y.; Cai, L.; Chen, R. Reducing Carbon Dioxide Emissions through Energy-saving Renovation of Existing Buildings. Aerosol Air Qual. Res. 2019, 19, 2732–2745. [Google Scholar] [CrossRef]
- Charles, A.; Maref, W.; Ouellet-Plamondon, C.M. Case study of the upgrade of an existing office building for low energy consumption and low carbon emissions. Energ Build. 2019, 183, 151–160. [Google Scholar] [CrossRef]
- Deshmukh, M.K.; Deshmukh, S.S. Modeling of hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2008, 12, 235–249. [Google Scholar] [CrossRef]
- Spiller, M.; Muller, C.; Mulholland, Z.; Louizidou, P.; Kupper, F.C.; Knosala, K.; Stenzel, P. Reducing Carbon Emissions from the Tourist Accommodation Sector on Non-Interconnected Islands: A Case Study of a Medium-Sized Hotel in Rhodes, Greece. Energies 2022, 15, 3801. [Google Scholar] [CrossRef]
- Li, L.L.; Ren, X.Y.; Tseng, M.L.; Wu, D.S.; Lim, M.K. Performance evaluation of solar hybrid combined cooling, heating and power systems: A multi-objective arithmetic optimization algorithm. Energy Convers. Manag. 2022, 258, 115541. [Google Scholar] [CrossRef]
- Sayegh, M.A.; Ludwinska, A.; Rajski, K.; Dudkiewicz, E. Environmental and energy saving potential from greywater in hotels. Sci. Total Environ. 2021, 761, 143220. [Google Scholar] [CrossRef]
- Rabani, M.; Madessa, H.B.; Ljungstrom, M.; Aamodt, L.; Lovvold, S.; Nord, N. Life cycle analysis of GHG emissions from the building retrofitting: The case of a Norwegian office building. Build. Environ. 2021, 204, 108159. [Google Scholar] [CrossRef]
- Yang, X.H.; Liu, K.; Leng, Z.Y.; Liu, T.; Zhang, L.F.; Mei, L.H. Multi-dimensions analysis of solar hybrid CCHP systems with redundant design. Energy 2022, 253, 124003. [Google Scholar] [CrossRef]
- Ren, J.; Cao, X.H.; Li, J.Q. Indoor Constant Illumination Control Strategy Research Based on Natural Lighting Analysis. Int. J. Pattern Recogn. 2021, 35, 2159037. [Google Scholar] [CrossRef]
- Hou, J.M.; Wang, J.J.; Zhou, Y.; Lu, X.M. Distributed energy systems: Multi-objective optimization and evaluation under different operational strategies. J. Clean. Prod. 2021, 280, 124050. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, B.; Du, J.; Liu, C.L.; Li, H.X.; Wang, S. Internationalization trends of carbon emission linkages: A case study on the construction sector. J. Clean. Prod. 2020, 270, 122433. [Google Scholar] [CrossRef]
- Pereira, V.; Silva, G.M.; Dias, A. Sustainability Practices in Hospitality: Case Study of a Luxury Hotel in Arrabida Natural Park. Sustainability 2021, 13, 3164. [Google Scholar] [CrossRef]
- Chen, L.F. Research note: A sustainable hypothesis for tourist hotels: Evidence from international hotel chains. Tour. Econ. 2013, 19, 1449–1460. [Google Scholar] [CrossRef]
- Tsai, K.T.; Lin, T.P.; Hwang, R.L.; Huang, Y.J. Carbon dioxide emissions generated by energy consumption of hotels and homestay facilities in Taiwan. Tour. Manag. 2014, 42, 13–21. [Google Scholar] [CrossRef]
- Liu, K.; Leng, J.W. Quantitative research on embodied carbon emissions in the design stage: A case study from an educational building in China. J. Asian Archit. Build. 2022, 21, 1182–1192. [Google Scholar] [CrossRef]
- Luo, Z.X.; Cang, Y.J.; Zhang, N.; Yang, L.; Liu, J.P. A Quantitative Process-Based Inventory Study on Material Embodied Carbon Emissions of Residential, Office, and Commercial Buildings in China. J. Therm. Sci. 2019, 28, 1236–1251. [Google Scholar] [CrossRef]
- Ye, H.; Ren, Q.; Hu, X.Y.; Lin, T.; Shi, L.Y.; Zhang, G.Q.; Li, X.H. Modeling energy-related CO2 emissions from office buildings using general regression neural network. Resour. Conserv. Recycl. 2018, 129, 168–174. [Google Scholar] [CrossRef]
- Othman, R.; Abu Kasim, S.Z.; Hashim, K.S.H.Y.; Baharuddin, Z.M. Evaluation of carbon reduction through integration of vertical and horizontal landscape design for hotel premises. J. Environ. Biol. 2016, 37, 1187–1190. [Google Scholar]
- Chow, D.H.C.; Levermore, G.J. The effects of future climate change on heating and cooling demands in office buildings in the UK. Build. Serv. Eng. Res. Technol. 2010, 31, 307–323. [Google Scholar] [CrossRef]
- Krarti, M.; Deneuville, A. Comparative evaluation of optimal energy efficiency designs for French and US office buildings. Energy Build. 2015, 93, 332–344. [Google Scholar] [CrossRef]
- Long, X.L.; Wang, X.; Mensah, C.N.; Wang, M.Z.; Zhang, J.J. Spatial and temporal heterogeneity of environmental efficiency for China’s hotel sector: New evidence through metafrontier global Malmquist-Luenberger. Environ. Sci. Pollut. Res. 2019, 26, 27534–27541. [Google Scholar] [CrossRef]
- Waibel, C.; Evins, R.; Carmeliet, J. Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials. Appl. Energy 2019, 242, 1661–1682. [Google Scholar] [CrossRef]
- Zomorodian, Z.S.; Tahsildoost, M. Energy and carbon analysis of double skin facades in the hot and dry climate. J. Clean. Prod. 2018, 197, 85–96. [Google Scholar] [CrossRef]
- Rapone, G.; Saro, O. Optimisation of curtain wall facades for office buildings by means of PSO algorithm. Energy Build. 2012, 45, 189–196. [Google Scholar] [CrossRef]
- An, J.H.; Bae, S.G.; Choi, J.; Le, M.G.; Oh, H.S.; Yun, D.Y.; Lee, D.E.; Park, H.S. Sustainable design model for analysis of relationships among building height, CO2 emissions, and cost of core walls in office buildings in Korea. Build. Environ. 2019, 150, 289–296. [Google Scholar] [CrossRef]
Rank | Journal | Quantity |
---|---|---|
1 | Energy and Buildings | 34 |
2 | Sustainability | 16 |
3 | Journal of Cleaner Production | 15 |
4 | Building and Environment | 13 |
5 | Applied Energy | 9 |
6 | Energy | 7 |
7 | Sustainable Cities and Society | 7 |
8 | Buildings | 5 |
9 | Energy Conversion and Management | 5 |
10 | Journal of Building Engineering | 5 |
Rank | Citation | Journal | Building Type | References |
---|---|---|---|---|
1 | 320 | Applied Energy | hotel building | [27] |
2 | 261 | Energy and Buildings | commercial building | [28] |
3 | 231 | IEEE Transactions on Power Systems | commercial building | [29] |
4 | 219 | Energy and Buildings | office building | [30] |
5 | 213 | Energy and Buildings | office building | [31] |
6 | 176 | Energy Conversion and Management | hospital | [32] |
7 | 140 | Energy and Buildings | commercial building | [33] |
8 | 111 | Building and Environment | commercial building | [34] |
9 | 96 | Journal of Cleaner Production | commercial building | [35] |
10 | 90 | Habitat International | commercial building | [36] |
Number | Frequent | Centrality | Year | Key Word |
---|---|---|---|---|
1 | 53 | 0.03 | 2007 | carbon emission |
2 | 46 | 0.12 | 2007 | performance |
3 | 45 | 0.11 | 2007 | building |
4 | 33 | 0.07 | 2008 | system |
5 | 32 | 0.19 | 2010 | energy |
6 | 28 | 0.05 | 2010 | environmental impact |
7 | 27 | 0.35 | 2007 | design |
8 | 26 | 0.19 | 2010 | optimization |
9 | 25 | 0.11 | 2013 | construction industry |
10 | 23 | 0.17 | 2013 | energy consumption |
Cluster ID | Size | Silhouette | Year | Cluster Name | Label |
---|---|---|---|---|---|
0 | 64 | 0.766 | 2017 | embodied energy | embodied energy; lifecycle assessment; carbon dioxide emissions; lifecycle analysis; Sri Lanka |
1 | 61 | 0.816 | 2018 | decoupling analysis | decoupling analysis; STIRPAT model; carbon Kuznets curve; building sector; carbon emission peak |
2 | 59 | 0.737 | 2016 | optimization | optimization; uncertainty; operation; CCHP strategy |
3 | 34 | 0.88 | 2016 | uncertainty analysis | uncertainty analysis; solar thermal system; energy analysis; hybrid cooling mode; electricity generation |
4 | 32 | 0.818 | 2015 | China | China; impact; micro-climate; behavior; embodied carbon emissions |
5 | 30 | 0.939 | 2019 | luxury hospitality | luxury hospitality; building energy efficiency; operational strategy; distributed energy system; data mining |
6 | 27 | 0.905 | 2017 | CHP system | CHP system; emission reduction; aerogel; carbon benchmarking; levelized cost of energy |
7 | 25 | 0.903 | 2014 | thermal simulation | thermal simulation; greenhouse gas (GHG); urban heat island; occupant satisfaction; electricity production |
8 | 25 | 0.853 | 2018 | energy hub | energy hub; electric vehicle; hourly efficiency power gird; photovoltaic; mixed land use |
9 | 19 | 0.923 | 2017 | thermal comfort | thermal comfort; machine learning; building energy efficiency retrofit; curtain wall; refrigeration and air-conditioning system |
10 | 15 | 0.908 | 2019 | environmental efficiency | environmental efficiency; Moran index; China’s public buildings; spatial econometric model; non-radial directional distance function |
Rank | Reference | Journal | Author | |||
---|---|---|---|---|---|---|
Reference Name | Count | Journal Name | Count | Author’s Name | Count | |
1 | Ramesh et al. (2010) [91] | 13 | Energy and Buildings | 801 | Ma, MD | 49 |
2 | Mago et al. (2009) [92] | 12 | Applied Energy | 471 | Wang, JJ | 49 |
3 | Jen Chun Wang (2012) [93] | 9 | Energy | 360 | Mago, PJ | 39 |
4 | Ma et al. (2017) [94] | 9 | Journal of Cleaner Production | 327 | Ang, BW | 26 |
5 | Cabeza et al. (2014) [95] | 9 | Building and Environment | 285 | Lin, BQ | 24 |
6 | Priyadarsini et al. (2009) [96] | 9 | Renewable and Sustainable Energy Reviews | 237 | Zhang, XC | 22 |
7 | Chau et al. (2015) [97] | 8 | Energy Conversion and Management | 206 | Huo, TF | 17 |
8 | Zhang et al. (2015) [57] | 8 | Energy Policy | 203 | Lai, JHK | 17 |
9 | Wu et al. (2010) [98] | 8 | Applied Thermal Engineering | 133 | Chau, CK | 16 |
10 | Zheng et al. (2014) [99] | 8 | Renewable Energy | 110 | Jiang, P | 16 |
Category | Factors | Stage 1 (2002–2006) | Stage 2 (2007–2011) | Stage 3 (2012–2016) | Stage 4 (2017–2022) | Sum (Factors) | Sum (Category) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | I*F | F | I*F | F | I*F | F | I*F | F | I*F | F | I*F | ||
Energy | Energy systems | 2 | 62 | 8 | 1050 | 14 | 347 | 44 | 411 | 68 | 1870 | 107 | 2244 |
Intensity of energy consumption | 1 | 5 | 5 | 49 | 6 | 54 | |||||||
Energy structure | 1 | 78 | 2 | 12 | 3 | 90 | |||||||
Renewable energy | 1 | 3 | 3 | 26 | 22 | 173 | 26 | 202 | |||||
Carbon emission coefficient | 1 | 5 | 3 | 23 | 4 | 28 | |||||||
Building | Building envelopes | 1 | 11 | 5 | 116 | 4 | 359 | 15 | 230 | 25 | 716 | 43 | 1732 |
Building structure | 3 | 174 | 5 | 120 | 8 | 294 | |||||||
Building types | 2 | 281 | 1 | 62 | 3 | 343 | |||||||
Building location | 2 | 281 | 1 | 0 | 3 | 281 | |||||||
Architectural morphology | 2 | 50 | 2 | 50 | |||||||||
Floor area per capita | 1 | 5 | 1 | 43 | 2 | 48 | |||||||
Waste | Construction waste | 1 | 89 | 1 | 1 | 2 | 90 | 2 | 90 | ||||
Operation | Operation manager | 1 | 90 | 1 | 90 | 14 | 369 | ||||||
Strategy and management | 2 | 62 | 1 | 36 | 10 | 181 | 13 | 279 | |||||
Material | Material | 5 | 315 | 13 | 308 | 18 | 623 | 18 | 623 | ||||
Ecology | Landscape | 1 | 1 | 4 | 33 | 5 | 34 | 7 | 81 | ||||
Micro-climate | 2 | 47 | 2 | 47 | |||||||||
Government | Policy and regulation | 1 | 23 | 1 | 90 | 2 | 14 | 4 | 127 | 4 | 127 | ||
User | User’s consciousness | 1 | 10 | 1 | 10 | 1 | 10 | ||||||
Sum | 3 | 73 | 21 | 1816 | 38 | 1620 | 134 | 1767 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Liu, H.; Xu, X.; Xiahou, X.; Cui, P.; Mao, P. Research Progress on Carbon Emissions of Public Buildings: A Visual Analysis and Review. Buildings 2023, 13, 677. https://doi.org/10.3390/buildings13030677
Gao Z, Liu H, Xu X, Xiahou X, Cui P, Mao P. Research Progress on Carbon Emissions of Public Buildings: A Visual Analysis and Review. Buildings. 2023; 13(3):677. https://doi.org/10.3390/buildings13030677
Chicago/Turabian StyleGao, Zhen, Hui Liu, Xiaoxiao Xu, Xiaer Xiahou, Peng Cui, and Peng Mao. 2023. "Research Progress on Carbon Emissions of Public Buildings: A Visual Analysis and Review" Buildings 13, no. 3: 677. https://doi.org/10.3390/buildings13030677
APA StyleGao, Z., Liu, H., Xu, X., Xiahou, X., Cui, P., & Mao, P. (2023). Research Progress on Carbon Emissions of Public Buildings: A Visual Analysis and Review. Buildings, 13(3), 677. https://doi.org/10.3390/buildings13030677