Effect of Block Morphology on Building Energy Consumption of Office Blocks: A Case of Wuhan, China
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.2.1. Urban Building Energy Modeling
1.2.2. The Effect of Block Morphology on Building Energy Consumption
1.3. Research Aim
- Are there differences in building energy consumption distribution characteristics among different office blocks? If so, to what extent?
- Do block morphological parameters have an effect on building energy consumption? If so, what morphological parameters? To what extent?
- What are the key morphological parameters that have a combined effect on building energy consumption in office blocks?
2. Methodology
2.1. Access to 3D Model Data of Office Blocks
2.1.1. Selection of Samples
2.1.2. Classification of Office Block Samples
2.1.3. Calculation of Block Morphological Parameters
2.2. Building Energy Simulation (BES) Workflow
2.2.1. BES Workflow for Office Blocks
2.2.2. 3D Model Generation
2.2.3. The Setting of Simulation Parameters
2.2.4. Building Energy Simulation
2.3. BES Model Validation
2.3.1. Building Energy Data Measurement
2.3.2. BES Model Validation
2.4. Correlation Analysis and Multiple Linear Regression Analysis
3. Results and Discussion
3.1. The Effect of Block Typologies on Building EUI
3.1.1. Building EUI for All Office Blocks
3.1.2. Building EUI for Different Typologies
3.2. The Effect of Block Morphology on Building EUI
3.2.1. Correlation Analysis between Block Morphology and Building EUI
3.2.2. Predictive Model for Building Energy Consumption with Coupled Block Morphology
- (1)
- Predictive model
- (2)
- The predictive model validation
3.3. Limitations and Future Research
4. Conclusions
- Block morphology impacted the total EUI by 13.82%.
- The effect of block morphology on the building cooling, heating, and lighting EUI was 28.83%, 28.56%, and 23.23%, respectively.
- The results of the correlation analysis demonstrated that BSF is the most significant factor regarding EUI and this is followed by FAR (PCC = −0.810), BH (PCC = −0.644), and BD (PCC = −0.623).
- The predictive model for building energy consumption with the coupled block morphology for office blocks was as follows Equation (2).
- The key morphological parameter which combined affect the building energy consumption of office blocks are BSF and FAR, with standardized coefficients of 0.514 and −0.414, respectively. BSF has 1.24 times the effect on building energy consumption than FAR.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
BW | Average Building Width of Block |
BD | Average Building Depth of Block |
BH | Average Building Height of Block |
W/D | Width-to-Depth Ratio of Block |
H/D | Height-to-Depth Ratio of Block |
BSF | Building Shape Factor |
BCR | Building Coverage Ratio |
FAR | Floor Area Ratio |
EUI | Energy Use Intensity |
PCC | Pearson Correlation Coefficient |
R-squared (R2) | Goodness-of-Fit |
VIF | Variance Inflation Factor |
BES | Building Energy Simulation |
Appendix A
Block Typology | Block Samples | BW | BD | BH | W/D | H/D | BSF | BCR | FAR |
---|---|---|---|---|---|---|---|---|---|
Courtyard multi-storey | A1-1 | 43.54 | 15.74 | 24.00 | 2.77 | 1.52 | 0.22 | 0.29 | 1.74 |
A1-2 | 50.09 | 23.05 | 20.00 | 2.17 | 0.87 | 0.18 | 0.33 | 1.65 | |
A1-3 | 78.13 | 33.19 | 16.00 | 2.35 | 0.48 | 0.16 | 0.44 | 1.76 | |
A1-4 | 45.97 | 14.27 | 20.00 | 3.22 | 1.40 | 0.24 | 0.26 | 1.30 | |
A1-5 | 42.58 | 13.69 | 24.00 | 3.11 | 1.75 | 0.25 | 0.22 | 1.33 | |
A1-6 | 57.63 | 19.55 | 20.00 | 2.95 | 1.02 | 0.19 | 0.32 | 1.62 | |
Pavilion multi-storey | A2-1 | 46.44 | 24.51 | 23.33 | 1.89 | 0.95 | 0.17 | 0.30 | 1.78 |
A2-2 | 26.43 | 23.13 | 24.00 | 1.14 | 1.04 | 0.21 | 0.18 | 1.10 | |
A2-3 | 34.74 | 24.40 | 20.00 | 1.42 | 0.82 | 0.20 | 0.30 | 1.49 | |
A2-4 | 68.76 | 40.31 | 20.00 | 1.71 | 0.50 | 0.15 | 0.33 | 1.66 | |
A2-5 | 40.00 | 20.15 | 20.00 | 1.99 | 0.99 | 0.22 | 0.18 | 0.90 | |
A2-6 | 46.34 | 23.94 | 16.00 | 1.94 | 0.67 | 0.19 | 0.32 | 1.26 | |
Slab multi-storey | A3-1 | 72.78 | 25.53 | 8.00 | 2.85 | 0.31 | 0.23 | 0.37 | 0.75 |
A3-2 | 59.33 | 18.80 | 20.75 | 3.16 | 1.10 | 0.20 | 0.29 | 1.51 | |
A3-3 | 60.04 | 19.32 | 24.00 | 3.11 | 1.24 | 0.19 | 0.20 | 1.20 | |
A3-4 | 44.88 | 21.20 | 20.00 | 2.12 | 0.94 | 0.20 | 0.16 | 0.80 | |
A3-5 | 34.38 | 16.26 | 17.93 | 2.11 | 1.10 | 0.25 | 0.21 | 0.90 | |
A3-6 | 69.91 | 24.18 | 23.16 | 2.89 | 0.96 | 0.16 | 0.20 | 1.17 | |
A3-7 | 77.76 | 24.15 | 24.00 | 3.22 | 0.99 | 0.15 | 0.30 | 1.78 | |
A3-8 | 84.56 | 27.30 | 20.00 | 3.10 | 0.73 | 0.16 | 0.35 | 1.77 | |
Mid-rise pavilion | B1-1 | 26.79 | 21.18 | 30.67 | 1.26 | 1.45 | 0.21 | 0.28 | 1.96 |
B1-2 | 41.78 | 25.36 | 28.29 | 1.65 | 1.12 | 0.16 | 0.28 | 2.40 | |
B1-3 | 55.35 | 31.03 | 30.00 | 1.78 | 0.97 | 0.16 | 0.52 | 2.68 | |
B1-4 | 38.98 | 25.44 | 37.50 | 1.53 | 1.47 | 0.16 | 0.31 | 2.73 | |
B1-5 | 43.56 | 26.10 | 46.67 | 1.67 | 1.79 | 0.15 | 0.19 | 2.49 | |
B1-6 | 31.45 | 30.84 | 28.00 | 1.02 | 0.91 | 0.16 | 0.32 | 2.26 | |
B1-7 | 47.51 | 24.48 | 41.33 | 1.94 | 1.69 | 0.15 | 0.24 | 2.59 | |
B1-8 | 42.95 | 23.97 | 48.00 | 1.79 | 2.00 | 0.16 | 0.20 | 2.36 | |
B1-9 | 33.44 | 19.10 | 36.00 | 1.75 | 1.89 | 0.20 | 0.26 | 2.28 | |
B1-10 | 31.38 | 24.16 | 48.36 | 1.30 | 2.00 | 0.17 | 0.16 | 2.30 | |
B1-11 | 33.56 | 25.82 | 41.33 | 1.30 | 1.60 | 0.16 | 0.19 | 2.10 | |
B1-12 | 41.24 | 25.50 | 28.00 | 1.62 | 1.10 | 0.16 | 0.21 | 2.14 | |
B1-13 | 56.04 | 29.38 | 30.40 | 1.91 | 1.03 | 0.15 | 0.37 | 2.42 | |
Mid-rise slab | B2-1 | 52.20 | 21.32 | 30.91 | 2.45 | 1.45 | 0.18 | 0.31 | 2.05 |
B2-2 | 72.29 | 30.10 | 32.67 | 2.40 | 1.09 | 0.14 | 0.37 | 2.14 | |
B2-3 | 49.51 | 23.86 | 40.44 | 2.07 | 1.69 | 0.16 | 0.30 | 2.30 | |
B2-4 | 61.05 | 28.67 | 37.71 | 2.13 | 1.32 | 0.15 | 0.35 | 2.50 | |
B2-5 | 53.43 | 19.90 | 42.86 | 2.68 | 2.15 | 0.17 | 0.23 | 2.31 | |
B2-6 | 49.12 | 22.57 | 34.29 | 2.18 | 1.52 | 0.16 | 0.22 | 2.21 | |
B2-7 | 51.76 | 25.22 | 38.22 | 2.05 | 1.52 | 0.16 | 0.26 | 2.24 | |
High-rise pavilion | C1-1 | 53.79 | 28.50 | 53.09 | 1.89 | 1.86 | 0.13 | 0.28 | 3.50 |
C1-2 | 41.64 | 31.13 | 56.00 | 1.34 | 1.80 | 0.15 | 0.29 | 3.45 | |
C1-3 | 33.60 | 30.24 | 100.00 | 1.11 | 3.31 | 0.14 | 0.13 | 3.30 | |
C1-4 | 58.04 | 41.98 | 69.33 | 1.38 | 1.65 | 0.11 | 0.37 | 4.08 | |
C1-5 | 92.54 | 46.52 | 69.00 | 1.99 | 1.48 | 0.11 | 0.48 | 4.20 | |
C1-6 | 50.73 | 36.98 | 66.29 | 1.37 | 1.79 | 0.12 | 0.36 | 4.00 | |
C1-7 | 34.84 | 31.43 | 57.00 | 1.11 | 1.81 | 0.14 | 0.26 | 4.08 | |
C1-8 | 31.34 | 21.97 | 44.00 | 1.43 | 2.00 | 0.18 | 0.25 | 4.14 | |
C1-9 | 41.36 | 34.59 | 50.86 | 1.20 | 1.47 | 0.13 | 0.35 | 4.27 | |
C1-10 | 42.15 | 33.25 | 53.14 | 1.27 | 1.60 | 0.13 | 0.32 | 4.34 | |
C1-11 | 58.01 | 35.99 | 56.00 | 1.61 | 1.56 | 0.12 | 0.29 | 3.67 | |
C1-12 | 48.34 | 25.46 | 54.86 | 1.90 | 2.15 | 0.15 | 0.30 | 3.67 | |
C1-13 | 55.90 | 32.35 | 50.40 | 1.73 | 1.56 | 0.12 | 0.32 | 3.86 | |
C1-14 | 56.75 | 34.27 | 76.00 | 1.66 | 2.22 | 0.11 | 0.38 | 4.32 | |
High-rise slab | C2-1 | 72.04 | 32.31 | 64.62 | 2.23 | 2.00 | 0.13 | 0.39 | 3.65 |
C2-2 | 58.47 | 24.28 | 50.67 | 2.41 | 2.09 | 0.14 | 0.28 | 3.57 | |
C2-3 | 65.73 | 21.75 | 66.40 | 3.02 | 3.05 | 0.15 | 0.26 | 2.82 | |
C2-4 | 69.06 | 33.26 | 73.14 | 2.08 | 2.20 | 0.11 | 0.25 | 3.50 | |
C2-5 | 54.53 | 26.40 | 61.71 | 2.07 | 2.34 | 0.13 | 0.26 | 3.78 | |
C2-6 | 52.33 | 16.45 | 90.40 | 3.18 | 5.50 | 0.18 | 0.20 | 4.21 |
References
- IEA. World Energy Outlook 2022; IEA: Paris, France, 2022.
- IEA. World Energy Outlook 2021; IEA: Paris, France, 2021.
- Central People’s Government of the People’s Republic of China. Proposal of the CPC Central Committee on Formulating the 14th Five-Year Plan for National Economic and Social Development and the long-range Goals for the next Five-Year Period. 2020. Available online: http://www.gov.cn/zhengce/2020-11/03/content_5556991.htm (accessed on 20 January 2023).
- The State Council of China. Carbon Peaking Action Programme by 2030. 2021. Available online: http://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm (accessed on 20 January 2023).
- China Association of Building Energy Efficiency. China Building Energy Consumption Research Report 2016; China Association of Building Energy Efficiency: Shanghai, China, 2016. [Google Scholar]
- Hong, T.; Langevin, J.; Sun, K. Building simulation: Ten challenges. Build. Simul. 2018, 11, 871–898. [Google Scholar] [CrossRef]
- Souza, L.; Bueno, C. City Information Modelling as a support decision tool for planning and management of cities: A systematic literature review and bibliometric analysis. Build. Environ. 2022, 207, 108403. [Google Scholar] [CrossRef]
- Omrany, H.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Clements-Croome, D.J. The uptake of City Information Modelling (CIM): A comprehensive review of current implementations, challenges and future outlook. Smart Sustain. Built Environ. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Ang, Y.; Berzolla, Z.; Reinhart, C. From concept to application: A review of use cases in urban building energy modeling. Appl. Energy 2020, 279, 115738. [Google Scholar] [CrossRef]
- Reinhart, C.F.; Davila, C.C. Urban building energy modeling—A review of a nascent field. Build. Environ. 2016, 97, 196–202. [Google Scholar] [CrossRef]
- Hong, T.; Chen, Y.; Luo, X.; Luo, N.; Lee, S.H. Ten questions on urban building energy modeling. Build. Environ. 2020, 168, 106508. [Google Scholar] [CrossRef]
- Ratti, C.; Baker, N.; Steemers, K. Energy consumption and urban texture. Energy Build. 2005, 37, 762–776. [Google Scholar] [CrossRef]
- Oh, M.; Jang, K.M.; Kim, Y. Empirical analysis of building energy consumption and urban form in a large city: A case of Seoul, South Korea. Energy Build. 2021, 245, 111046. [Google Scholar] [CrossRef]
- Steemers, K. Energy and the city: Density, buildings and transport. Energy Build. 2003, 35, 3–14. [Google Scholar] [CrossRef]
- Strømann-Andersen, J.; Sattrup, P.A. The urban canyon and building energy use: Urban density versus daylight and passive solar gains. Energy Build. 2011, 43, 2011–2020. [Google Scholar] [CrossRef]
- Shareef, S.; Altan, H. Urban block configuration and the impact on energy consumption: A case study of sinuous morphology. Renew. Sustain. Energy Rev. 2022, 163, 112507. [Google Scholar] [CrossRef]
- El Bat, S.; Romani, Z.; Bozonnet, E.; Draoui, A.; Allard, F. Optimizing urban courtyard form through the coupling of outdoor zonal approach and building energy modeling. Energy 2023, 264, 126176. [Google Scholar] [CrossRef]
- Bansal, P.; Quan, S.J. Relationships between building characteristics, urban form and building energy use in different local climate zone contexts: An empirical study in Seoul. Energy Build. 2022, 272, 112335. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, G.; Wang, Y.; Zhou, H.; Ma, L. A quantitative analysis of the impact of residential cluster layout on building heating energy consumption in cold IIB regions of China. Energy Build. 2021, 253, 111515. [Google Scholar] [CrossRef]
- Li, C.; Song, Y.; Kaza, N. Urban form and household electricity consumption: A multilevel study. Energy Build. 2018, 158, 181–193. [Google Scholar] [CrossRef]
- Huang, J.; Kaewunruen, S. Forecasting Energy Consumption of a Public Building Using Transformer and Support Vector Regression. Energies 2023, 16, 966. [Google Scholar] [CrossRef]
- Li, X.; Ying, Y.; Xu, X.; Wang, Y.; Hussain, S.A.; Hong, T.; Wang, W. Identifying key determinants for building energy analysis from urban building datasets. Build. Environ. 2020, 181, 107114. [Google Scholar] [CrossRef]
- Vartholomaios, A. A parametric sensitivity analysis of the influence of urban form on domestic energy consumption for heating and cooling in a Mediterranean city. Sustain. Cities Soc. 2017, 28, 135–145. [Google Scholar] [CrossRef]
- Shi, Z.; Fonseca, J.A.; Schlueter, A. A parametric method using vernacular urban block typologies for investigating interactions between solar energy use and urban design. Renew. Energy 2021, 165, 823–841. [Google Scholar] [CrossRef]
- Javanroodi, K.; Nik, V.M.; Mahdavinejad, M. A novel design-based optimization framework for enhancing the energy efficiency of high-rise office buildings in urban areas. Sustain. Cities Soc. 2019, 49, 101597. [Google Scholar] [CrossRef]
- Loeffler, R.; Österreicher, D.; Stoeglehner, G. The energy implications of urban morphology from an urban planning perspective – A case study for a new urban development area in the city of Vienna. Energy Build. 2021, 252, 111453. [Google Scholar] [CrossRef]
- Hadavi, M.; Pasdarshahri, H. Investigating effects of urban configuration and density on urban climate and building systems energy consumption. J. Build. Eng. 2021, 44, 102710. [Google Scholar] [CrossRef]
- Shareef, S. The impact of urban morphology and building’s height diversity on energy consumption at urban scale. The case study of Dubai. Build. Environ. 2021, 194, 107675. [Google Scholar] [CrossRef]
- SMangan, D.; Oral, G.K.; Kocagil, I.E.; Sozen, I. The impact of urban form on building energy and cost efficiency in temperate-humid zones. J. Build. Eng. 2021, 33, 101626. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, L.; Shabunko, V.; Tay, S.E.R.; Sun, H.; Lau, S.S.Y.; Reindl, T. Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city. Appl. Energy 2019, 240, 513–533. [Google Scholar] [CrossRef]
- Kamal, A.; Abidi, S.M.H.; Mahfouz, A.; Kadam, S.; Rahman, A.; Hassan, I.G.; Wang, L.L. Impact of urban morphology on urban microclimate and building energy loads. Energy Build. 2021, 253, 111499. [Google Scholar] [CrossRef]
- Boccalatte, A.; Fossa, M.; Gaillard, L.; Menezo, C. Microclimate and urban morphology effects on building energy demand in different European cities. Energy Build. 2020, 224, 110129. [Google Scholar] [CrossRef]
- Mirzabeigi, S.; Razkenari, M. Design optimization of urban typologies: A framework for evaluating building energy performance and outdoor thermal comfort. Sustain. Cities Soc. 2022, 76, 103515. [Google Scholar] [CrossRef]
- Quan, S.J.; Li, C. Urban form and building energy use: A systematic review of measures, mechanisms, and methodologies. Renew. Sustain. Energy Rev. 2021, 139, 110662. [Google Scholar] [CrossRef]
- Wang, C.; Ferrando, M.; Causone, F.; Jin, X.; Zhou, X.; Shi, X. Data acquisition for urban building energy modeling: A review. Build. Environ. 2022, 217, 109056. [Google Scholar] [CrossRef]
- East China Construction Group Co., Ltd. Architectural Design Sourcebook, Volume 3; China Architecture & Building Press: Beijing, China, 2017; p. 2. [Google Scholar]
- Ministry of Public Security of the People’s Republic of China. Code for Fire Protection Design of Buildings, GB 50016-2014; China Planning Press: Beijing, China, 2014; pp. 61–62.
- Zhejiang Building Design & Research Institute. Office Building Design Standards, JGJ /T 67-2019; China Architecture Publishing Media Co., Ltd.: Beijing, China, 2019; pp. 15–16. [Google Scholar]
- Wang, W.; Liu, K.; Zhang, M.; Shen, Y.; Jing, R.; Xu, X. From simulation to data-driven approach: A framework of integrating urban morphology to low-energy urban design. Renew. Energy 2021, 179, 2016–2035. [Google Scholar] [CrossRef]
- Ahmadian, E.; Sodagar, B.; Bingham, C.; Elnokaly, A.; Mills, G. Effect of urban built form and density on building energy performance in temperate climates. Energy Build. 2021, 236, 110762. [Google Scholar] [CrossRef]
- Ahmadian, E.; Sodagar, B.; Mills, G.; Byrd, H.; Bingham, C.; Zolotas, A. Sustainable cities: The relationships between urban built forms and density indicators. Cities 2019, 95, 102382. [Google Scholar] [CrossRef]
- Tian, J.; Xu, S. A morphology-based evaluation on block-scale solar potential for residential area in central China. Sol. Energy 2021, 221, 332–347. [Google Scholar] [CrossRef]
- Urquizo, J.; Calderón, C.; James, P. Understanding the complexities of domestic energy reductions in cities: Integrating data sets generally available in the United Kingdom’s local authorities. Cities 2018, 74, 292–309. [Google Scholar] [CrossRef]
- Fumo, N.; Mago, P.; Luck, R. Methodology to estimate building energy consumption using EnergyPlus Benchmark Models. Energy Build. 2010, 42, 2331–2337. [Google Scholar] [CrossRef]
- Boyano, A.; Hernandez, P.; Wolf, O. Energy demands and potential savings in European office buildings: Case studies based on EnergyPlus simulations. Energy Build. 2013, 65, 19–28. [Google Scholar] [CrossRef]
- Natanian, J.; Aleksandrowicz, O.; Auer, T. A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts. Appl. Energy 2019, 254, 113637. [Google Scholar] [CrossRef]
- Kavgic, M.; Mavrogianni, A.; Mumovic, D.; Summerfield, A.; Stevanovic, Z.; Djurovic-Petrovic, M. A review of bottom-up building stock models for energy consumption in the residential sector. Build. Environ. 2010, 45, 1683–1697. [Google Scholar] [CrossRef]
- Leng, H.; Chen, X.; Ma, Y.; Wong, N.H.; Ming, T. Urban morphology and building heating energy consumption: Evidence from Harbin, a severe cold region city. Energy Build. 2020, 224, 110143. [Google Scholar] [CrossRef]
- Maamari, F.; Andersen, M.; de Boer, J.; Carroll, W.L.; Dumortier, D.; Greenup, P. Experimental validation of simulation methods for bi-directional transmission properties at the daylighting performance level. Energy Build. 2006, 38, 878–889. [Google Scholar] [CrossRef]
- Reeves, S.O.T. Validation of Building Energy Modeling Tools: EcotectTM, Green Building StudioTM and IES<VE>TM. In Proceedings of the 2012 Winter Simulation Conference, Berlin, Germany, 9–12 December 2012; pp. 582–593. [Google Scholar]
- Tian, W. A review of sensitivity analysis methods in building energy analysis. Renew. Sustain. Energy Rev. 2013, 20, 411–419. [Google Scholar] [CrossRef]
- Kristensen, M.H.; Petersen, S. Choosing the appropriate sensitivity analysis method for building energy model-based investigations. Energy Build. 2016, 130, 166–176. [Google Scholar] [CrossRef]
- Tso, G.K.F.; Guan, J. A multilevel regression approach to understand effects of environment indicators and household features on residential energy consumption. Energy 2014, 66, 722–731. [Google Scholar] [CrossRef]
- Lima, I.; Scalco, V.; Lamberts, R. Estimating the impact of urban densification on high-rise office building cooling loads in a hot and humid climate. Energy Build. 2019, 182, 30–44. [Google Scholar] [CrossRef]
- Martins, T.; Adolphe, L.; Bonhomme, M. Building Energy Demand based on urban morphology analysis. In Proceedings of the PLEA2013—29th Conference, Sustainable Architecture for a Renewable Future, Munich, Germany, 10–12 September 2013. [Google Scholar]
- Pan, Y.; Pan, Y.; Yang, Y.; Liu, H. A Parametric Study on the Community Form and Its Influences on Energy Consumption of Office Buildings in Shanghai. Procedia Eng. 2017, 205, 548–555. [Google Scholar] [CrossRef]
- Wong, N.H.; Jusuf, S.K.; Syafii, N.I.; Chen, Y.; Hajadi, N.; Sathyanarayanan, Y.V. Manickavasagam, Evaluation of the impact of the surrounding urban morphology on building energy consumption. Sol. Energy 2011, 85, 57–71. [Google Scholar] [CrossRef]
- Martilli, A. An idealized study of city structure, urban climate, energy consumption, and air quality. Urban Clim. 2014, 10, 430–446. [Google Scholar] [CrossRef]
- Taleghani, M.; Tenpierik, M.; van den Dobbelsteen, A.; de Dear, R. Energy use impact of and thermal comfort in different urban block types in the Netherlands. Energy Build. 2013, 67, 166–175. [Google Scholar] [CrossRef]
- Ruiz, G.; Bandera, C. Validation of Calibrated Energy Models: Common Errors. Energies 2017, 10, 1587. [Google Scholar] [CrossRef]
- American Society of Heating, Ventilation, and Air Conditioning Engineers (ASHRAE). Guideline 14-2014, Measurement of Energy, Demand and Water Savings; American Society of Heating, Ventilating, and Air Conditioning Engineers: Atlanta, GA, USA, 2014. [Google Scholar]
Building Height Type | Building Height | Building Layout Type | Block Typology | Block 3D Model | Block Sample |
---|---|---|---|---|---|
Multi-storey office blocks | H ≤ 24 m | Courtyard | Courtyard multi-storey | ||
Pavilion | Pavilion multi-storey | ||||
Slab | Slab multi-storey | ||||
Mid-rise office blocks | 24 < H ≤ 50 m | Pavilion | Mid-rise pavilion | ||
Slab | Mid-rise slab | ||||
High-rise office blocks | 50 < H ≤ 100 m | Pavilion | High-rise pavilion | ||
Slab | High-rise slab |
Item | Parameter Setting | ||||||
---|---|---|---|---|---|---|---|
Occupancy Rate | 8 a.m.–7 p.m. (Mon.–Fri.) | 8 a.m.–9.a.m. | 9 a.m.–12 a.m. | 12 a.m.–1 p.m. | 1 p.m.–2 p.m. | 2 p.m.–6 p.m. | 6 p.m.–7.p.m. |
0.17 | 0.96 | 0.04 | 0.81 | 0.96 | 0.23 | ||
9 a.m.–5 p.m. (Sat.–Sun.) | 8 a.m.–9 a.m. | 9 a.m.–12 a.m. | 12 a.m.–1 p.m. | 1 p.m.–2 p.m. | 2 p.m.–6 p.m. | 6 p.m.–7 p.m. | |
0.10 | 0.18 | 0.04 | 0.04 | 0.18 | 0.10 | ||
Operation Rate of Lighting | 8 a.m.–7 p.m. (Mon.–Fri.) | 8 a.m.–9 a.m | 9 a.m.–12 a.m. | 12 a.m.–1 p.m. | 1 p.m.–2 p.m. | 2 p.m.–6 p.m. | 6 p.m.–7 p m. |
0.06 | 0.96 | 0.86 | 0.92 | 0.96 | 0.75 | ||
9 a.m.–5 p.m. (Sat.–Sun.) | 8 a.m.–9 a.m. | 9 a.m.–12 a.m. | 12 a.m.–1 p.m. | 1 p.m.–2 p.m. | 2 p.m.–6 p.m. | 6 p.m.–7 p.m. | |
0.06 | 0.18 | 0.14 | 0.14 | 0.18 | 0.10 | ||
Operation Rate of Equipment | 8 a.m.–7 p.m. (Mon.–Fri.) | 8 a.m.–9 a.m. | 9 a.m.–12 a.m. | 12 a.m.–1 p.m. | 1 pm–2 pm | 2 p.m.–6 p.m. | 6 p.m.–7 p.m. |
0.18 | 0.96 | 0.88 | 0.93 | 0.96 | 0.16 | ||
9 a.m.–5 p.m. (Sat.–Sun.) | 8 a.m.–9 a.m | 9 a.m.–12 a.m. | 12 a.m.–1 p.m. | 1 p.m.–2 p.m. | 2 p.m.–6 p.m. | 6 p.m.–7 p.m. | |
0.10 | 0.18 | 0.14 | 0.16 | 0.18 | 0.10 | ||
Temperature set | Cooling Set Point (°C) | 8 a.m.–6 p.m. (Mon.–Fri.) | 26 | Heating Set Point (°C) | 8 a.m.–6 p.m. (Mon.–Fri.) | Heating Set Point (°C) | 18 |
Density | Occupancy density/(m2/person) | 8 | |||||
Lighting power density/(W/m2) | 15 | ||||||
Equipment power density/(W/m2) | 15 |
Item | Parameter Setting | ||||
---|---|---|---|---|---|
Transparent Envelope | Window-to-Wall Ratio | N | E | S | W |
0.5 | 0.3 | 0.5 | 0.3 | ||
Solar Heat Gain Coefficient | N | E | S | W | |
0.48 | 0.44 | 0.44 | 0.44 | ||
Opaque Envelope | Heat Transfer Coefficient (W/(m2·K) | Exterior wall | Interior wall | Roof | Floor slabs |
0.98 | 0.79 | 0.48 | 0.98 | ||
Heat Transfer Coefficient (W/(m2·K) | 3.0 | Floor-to-Floor Height(m) | 4 |
Block Morphological Parameters | PCC | p Value |
---|---|---|
Average Building Width of Block (BW) | −0.125 | 0.343 |
Average Building Depth of Block (BD) | −0.0623 ** | 0.000 |
Average Building Height of Block (BH) | −0.644 ** | 0.000 |
Width-to-Depth Ratio of Block (W/D) | 0.411 ** | 0.001 |
Height-to-Depth Ratio of Block (H/D) | −0.316 * | 0.014 |
Building Shape Factor (BS) | 0.833 ** | 0.000 |
Building Coverage Ratio (BCR) | −0.277 * | 0.032 |
Floor Area Ratio (FAR) | −0.810 ** | 0.000 |
Dependent Variables | Independent Variables | Unstandardized Coefficients | Standardized Coefficients | Sig. | VIF | R Square (R2) | |
---|---|---|---|---|---|---|---|
B | Standard Error | Beta | |||||
EUI | (Constants) | 52.047 | 1.229 | 0.000 | 0.755 | ||
BSF | 26.682 | 5.244 | 0.514 | 0.000 | 2.464 | ||
FAR | −0.700 | 0.171 | −0.414 | 0.000 | 2.464 |
No. | Block Typology | BW (m) | BD (m) | BH (m) | W/D | H/D | BSF | BCR | FAR | Predictive EUI (kWh/m2/y) | Simulated EUI (kWh/m2/y) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Multi-storey | 82.60 | 36.26 | 12.00 | 2.28 | 0.40 | 0.18 | 40.00% | 1.20 | 56.01 | 57.50 |
2 | Multi-storey | 28.23 | 10.55 | 20.00 | 2.68 | 2.21 | 0.36 | 36.06% | 1.80 | 61.11 | 62.53 |
3 | Multi-storey | 54.59 | 16.98 | 20.00 | 3.24 | 1.19 | 0.21 | 30.63% | 1.53 | 56.58 | 57.86 |
4 | Multi-storey | 51.74 | 21.66 | 20.00 | 2.39 | 0.74 | 0.16 | 38.53% | 1.93 | 54.97 | 56.38 |
5 | Multi-storey | 85.15 | 23.55 | 16.00 | 3.62 | 0.71 | 0.19 | 34.28% | 1.37 | 56.16 | 57.73 |
6 | Mid-rise | 54.96 | 14.82 | 24.00 | 3.71 | 1.62 | 0.22 | 31.73% | 1.90 | 56.59 | 57.88 |
7 | Mid-rise | 49.41 | 15.35 | 24.00 | 3.22 | 1.58 | 0.22 | 39.40% | 2.36 | 56.27 | 57.75 |
8 | Mid-rise | 51.40 | 17.06 | 24.00 | 3.01 | 1.48 | 0.21 | 21.99% | 1.32 | 56.73 | 58.27 |
9 | Mid-rise | 39.34 | 16.45 | 24.00 | 2.39 | 1.46 | 0.22 | 23.86% | 1.43 | 56.92 | 57.68 |
10 | Mid-rise | 55.95 | 15.88 | 24.00 | 3.52 | 1.23 | 0.18 | 28.75% | 1.72 | 55.65 | 58.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Li, G.; Zhang, H.; Xie, M.; Mendis, T.; Du, H. Effect of Block Morphology on Building Energy Consumption of Office Blocks: A Case of Wuhan, China. Buildings 2023, 13, 768. https://doi.org/10.3390/buildings13030768
Xu S, Li G, Zhang H, Xie M, Mendis T, Du H. Effect of Block Morphology on Building Energy Consumption of Office Blocks: A Case of Wuhan, China. Buildings. 2023; 13(3):768. https://doi.org/10.3390/buildings13030768
Chicago/Turabian StyleXu, Shen, Gaomei Li, Hailong Zhang, Mengju Xie, Thushini Mendis, and Hu Du. 2023. "Effect of Block Morphology on Building Energy Consumption of Office Blocks: A Case of Wuhan, China" Buildings 13, no. 3: 768. https://doi.org/10.3390/buildings13030768
APA StyleXu, S., Li, G., Zhang, H., Xie, M., Mendis, T., & Du, H. (2023). Effect of Block Morphology on Building Energy Consumption of Office Blocks: A Case of Wuhan, China. Buildings, 13(3), 768. https://doi.org/10.3390/buildings13030768