Research on High- and Low-Temperature Rheological Properties of High-Viscosity Modified Asphalt Binder
Abstract
:1. Introduction
2. Raw Materials and Test Methods
2.1. Asphalt Material
2.2. Test Method
2.2.1. Temperature Sweep Test
2.2.2. MSCR Test [30]
2.2.3. BBR Test
3. Test Results and Analysis
3.1. High-Temperature Rheological Properties
3.1.1. Rutting Factor
3.1.2. Non-Recoverable Creep Compliance and Creep Recovery Rate
3.1.3. Analysis of High-Temperature Performance Evaluation Index
3.2. Low-Temperature Rheological Properties
3.2.1. Burgers Model
3.2.2. Creep Stiffness and Creep Speed
3.2.3. m/S Value
3.2.4. Analysis of Low-Temperature Performance Evaluation Index
4. Conclusions
- (1)
- At 65 °C, the rut factor values of the three HVMA binders are all greater than 10,000 Pa, and the unrecoverable creep compliance under different stress levels is much smaller than that of neat asphalt, and the creep recovery rate is much larger than that of matrix asphalt. At a low temperature, the dissipation energy ratio and m/S value of the three kinds of HVMA binders are smaller than those of neat asphalt. These show that the use of high viscosity modifiers is positive to improve the performance of asphalt and high-viscosity modifiers can significantly enhance asphalt’s high-temperature deformation resistance, significantly reduce the possibility of low-temperature crack resistance, and have good deformation recovery ability.
- (2)
- Considering seven high-temperature performance evaluation indexes of HVMA binders, such as rutting factor, dynamic viscosity, softening point, non-recoverable creep compliance, and creep recovery rate, it is recommended to use the MSCR test’s non-recoverable creep compliance to evaluate the high-temperature performance of HVMA.
- (3)
- Elongation, creep stiffness, creep speed, dissipation energy ratio, and relaxation time were chosen as low-temperature performance evaluation indexes of high-viscosity modified binders. The Burgers model’s dissipation energy ratio and m/S value are recommended for evaluating the low-temperature performance of high-viscosity modified materials.
- (4)
- This study investigates the high- and low-temperature rheological performance index of a HVMA binder and provides the recommended high and low temperature performance evaluation index. Due to the small number of asphalt samples used in the test, we will test more samples in the follow-up study to study and analyze the more accurate rheological performance index of HVMA binders, and will provide the basis for determining the quality of high-viscosity modified binders.
Author Contributions
Funding
Conflicts of Interest
References
- Wang, D.; Baliello, A.; Poulikakos, L.; Vasconcelos, K.; Kakar, M.R.; Giancontieri, G.; Pasquiniet, E.; Porot, L.; Tušar, M.; Riccardi, C.; et al. Rheological properties of asphalt binder modified with waste polyethylene: An interlaboratory research from the RILEM TC WMR. Resour. Conserv. Recycl. 2022, 186, 106564. [Google Scholar] [CrossRef]
- Yuan, D.; Jiang, W.; Xiao, J.; Tong, Z.; Jia, M.; Shan, J.; Ogbon, A.W. Assessment of the aging process of finished product–modified asphalt binder and its aging mechanism. J. Mater. Civ. Eng. 2022, 34, 04022174. [Google Scholar] [CrossRef]
- Tong, Z.; Guo, H.; Gao, J.; Wang, Z. A novel method for multi-scale carbon fiber distribution characterization in cement-based composites. Constr. Build. Mater. 2019, 218, 40–52. [Google Scholar] [CrossRef]
- Jia, M.; Sha, A.; Jiang, W.; Li, X.; Jiao, W. Developing a solid–solid phase change heat storage asphalt pavement material and its application as functional filler for cooling asphalt pavement. Energy Build. 2023, 285, 112935. [Google Scholar] [CrossRef]
- Sha, A.; Liu, Z.; Jiang, W.; Qi, L.; Hu, L.; Jiao, W.; Barbieri, D.M. Advances and development trends in eco-friendly pavements. J. Road Eng. 2021, 1, 1–42. [Google Scholar] [CrossRef]
- Yuan, D.; Jiang, W.; Hou, Y.; Xiao, J.; Ling, X.; Xing, C. Fractional derivative viscoelastic response of high-viscosity modified asphalt. Constr. Build. Mater. 2022, 350, 128915. [Google Scholar] [CrossRef]
- Cai, J.; Wen, Y.; Wang, D.; Li, R.; Zhang, J.; Pei, J.; Xie, J. Investigation on the cohesion and adhesion behavior of high-viscosity asphalt binders by bonding tensile testing apparatus. Constr. Build. Mater. 2020, 261, 120011. [Google Scholar] [CrossRef]
- Cai, J.; Song, C.; Zhou, B.; Tian, Y.; Li, R.; Zhang, J.; Pei, J. Investigation on high-viscosity asphalt binder for permeable asphalt concrete with waste materials. J. Clean. Prod. 2019, 228, 40–51. [Google Scholar] [CrossRef]
- Büchler, S.; Falchetto, A.C.; Walther, A.; Riccardi, C.; Wang, D.; Wistuba, M.P. Wearing Course Mixtures Prepared with High Reclaimed Asphalt Pavement Content Modified by Rejuvenators. Transp. Res. Rec. 2018, 2672, 96–106. [Google Scholar] [CrossRef]
- Hugener, M.; Wang, D.; Cannone Falchetto, A.; Porot, L.; Kara De Maeijer, P.; Tabatabaee, E.; Kawakami, A.; Hafko, B.; Grilli, A.; Pasquini, E.; et al. Recommendation of RILEM TC 264 RAP on the evaluation of asphalt recycling agents for hot mix asphalt. Mater. Struct. 2022, 55, 31. [Google Scholar] [CrossRef]
- Gao, J.; Yao, Y.; Yang, J.; Song, L.; Xu, J.; He, L.; Tao, W. Migration behavior of reclaimed asphalt pavement mastic during hot mixing. J. Clean. Prod. 2022, 376, 134123. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, D.; Shan, J.; Ye, W.; Lu, H.; Sha, A. Experimental study of the performance of porous ultra-thin asphalt overlay. Int. J. Pavement Eng. 2022, 23, 2049–2061. [Google Scholar] [CrossRef]
- Jia, M.; Sha, A.; Lin, J.; Zhang, Z.; Qi, B.; Yuan, D. Polyurethane asphalt binder: A promising candidate for steel bridge deck-paving material. Int. J. Pavement Eng. 2022, 23, 3920–3929. [Google Scholar] [CrossRef]
- Cao, Y.; Li, J.; Sha, A.; Liu, Z.; Zhang, F.; Li, X. A power-intensive piezoelectric energy harvester with efficient load utilization for road energy collection: Design, testing, and application. J. Clean. Prod. 2022, 369, 133287. [Google Scholar] [CrossRef]
- Yuan, D.; Jiang, W.; Sha, A.; Xiao, J.; Wu, W.; Wang, T. Technology method and functional characteristics of road thermoelectric generator system based on Seebeck effect. Appl. Energy 2023, 331, 120459. [Google Scholar] [CrossRef]
- Xinxin, G.; Zhang, C.; Cui, B.-X.; Wang, D.; Tsai, J. Analysis of Impact of Transverse Slope on Hydroplaning Risk Level. Procedia Soc. Behav. Sci. 2013, 96, 2310–2319. [Google Scholar]
- Chen, Y.; Tan, Y.; Chen, K. Effect of TPS modifier on the properties of high viscosity asphalt. J. Harbin Inst. Technol. 2012, 44, 82–85. [Google Scholar]
- Li, L.; Geng, H.; Sun, Y. Evaluation method and indicator for viscosity of high-viscosity asphalt. J. Build. Mater. 2010, 13, 352–356. [Google Scholar]
- Tan, Y.; Haiyan, Z.; Dongwei, C.; Lei, X.; Rongjie, D.; Zhaoqiang, S.; Rui, D.; Xianhe, W. Study on cohesion and adhesion of high-viscosity modified asphalt. Int. J. Transp. Sci. Technol. 2019, 8, 394–402. [Google Scholar]
- Li, M.; Zeng, F.; Xu, R.; Cao, D.; Li, J. Study on Compatibility and Rheological Properties of High-Viscosity Modified Asphalt Prepared from Low-Grade Asphalt. Materials 2019, 12, 3776. [Google Scholar] [CrossRef]
- Yu, H.; Jin, Y.; Liang, X.; Dong, F. Preparation of Waste-LDPE/SBS Composite High-Viscosity Modifier and Its Effect on the Rheological Properties and Microstructure of Asphalt. Polymers 2022, 14, 3848. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ni, F. Dynamic viscoelastic properties of modified asphalt and mixture based on DSR. J. Southeast Univ. 2014, 44, 386–390. [Google Scholar]
- Qin, X.; Zhu, S.; He, X.; Jiang, Y. High temperature properties of high viscosity asphalt based on rheological methods. Constr. Build. Mater. 2018, 186, 476–483. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C. Preparation and properties of high viscosity modified asphalt. Polym. Compos. 2017, 38, 936–946. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C.; Zhuang, W. The research for low-temperature rheological properties and structural characteristics of high-viscosity modified asphalt. J. Therm. Anal. Calorim. 2018, 131, 1025–1034. [Google Scholar] [CrossRef]
- Yuan, D.; Jiang, W.; Xiao, J.; Lu, H.; Wu, W. Thermal-oxygen aging effects on viscoelastic properties of high viscosity modified asphalt. J. Chang. Univ. 2020, 40, 1–11. [Google Scholar]
- Jiang, W.; Li, P.; Sha, A.; Li, Y.; Xiao, J.; Xing, C. Research on Pavement Traffic Load State Perception Based on the Piezoelectric Effect. IEEE Trans. Intell. Transp. Syst. 2023, 1–15. [Google Scholar] [CrossRef]
- Yuan, D.; Jiang, W.; Xiao, J. Comparison of rheological properties between SBS, rubber and high-viscosity modified asphalt binders. J. Chang. Univ. 2020, 40, 135–142. [Google Scholar]
- AASHTO T315; Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO: Washington, DC, USA, 2010.
- ASTM D7405-20; Standard Test Method for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer. American Association of State Transport and Officials: Washington, DC, USA, 2012.
- Tong, Z.; Gao, J.; Zhang, H. Innovation for evaluating aggregate angularity based upon 3D convolutional neural network. Constr. Build. Mater. 2017, 155, 919–929. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, W.; Chen, J. Investigating impacts of warm-mix asphalt technologies and high reclaimed asphalt pavement binder content on rutting and fatigue performance of asphalt binder through MSCR and LAS tests. J. Clean. Prod. 2019, 219, 879–893. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, D.; Xu, S.; Hu, H.; Xiao, J.; Sha, A.; Huang, Y. Energy harvesting from asphalt pavement using thermoelectric technology. Appl. Energy 2017, 205, 941–950. [Google Scholar] [CrossRef]
- AASHTO T313; Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR). AASHTO: Washington, DC, USA, 2008.
- Wang, W.; Jia, M.; Jiang, W.; Lou, B.; Jiao, W.; Yuan, D.; Li, X.; Liu, Z. High temperature property and modification mechanism of asphalt containing waste engine oil bottom. Constr. Build. Mater. 2020, 261, 119977. [Google Scholar] [CrossRef]
- Lin, P.; Huang, W.; Tang, N.; Xiao, F.; Li, Y. Understanding the low temperature properties of Terminal Blend hybrid asphalt through chemical and thermal analysis methods. Constr. Build. Mater. 2018, 169, 543–552. [Google Scholar] [CrossRef]
- Wu, W.; Jiang, W.; Yuan, D.; Lu, R.; Shan, J.; Xiao, J.; Ogbon, A.W. A review of asphalt-filler interaction: Mechanisms, evaluation methods, and influencing factors. Constr. Build. Mater. 2021, 299, 124279. [Google Scholar] [CrossRef]
- Xing, C.; Jiang, W.; Li, M.; Wang, M.; Xiao, J.; Xu, Z. Application of atomic force microscopy in bitumen materials at the nanoscale: A review. Constr. Build. Mater. 2022, 342, 128059. [Google Scholar] [CrossRef]
Test Item | Test Value | Index |
---|---|---|
Particle Size/mm | 4.5 | ≤5 |
Density/(g/cm3) | 0.8 | 0.7~1.0 |
Water Absorption/% | 0.4 | <1% |
Type | Penetration (25 °C, 5 s, 100 g)/(0.1 mm) | Softening Point/°C | Ductility (5 °C)/cm | Dynamic Viscosity (60 °C)/(Pa·s) |
---|---|---|---|---|
SK-90 | 97.1 | 47.4 | 9.7 | 140.3 |
B-type | 51.1 | 84.3 | 64.3 | 38,696.9 |
Y-type | 54.6 | 85.9 | 59.9 | 20,425.1 |
H-type | 49.3 | 94.2 | 48.6 | 99,635.4 |
Type | Softening Point/°C | Dynamic Viscosity (60 °C)/(Pa·s) | (65 °C)/Pa | (64 °C)/ kPa−1 | (64 °C)/ kPa−1 | (64 °C) | (64 °C) |
---|---|---|---|---|---|---|---|
B-type | 84.3 | 38,696.9 | 15,518.6 | 21.54 | 32.39 | 80.1 | 64.9 |
Y-type | 85.9 | 20,425.1 | 10,964.2 | 15.47 | 19.9 | 96.9 | 85.1 |
H-type | 94.2 | 99,635.4 | 19,921.1 | 2.41 | 2.9 | 96.2 | 95.2 |
Index | Softening Point/°C | Dynamic Viscosity (60 °C)/(Pa·s) | (65 °C)/Pa | (64 °C)/ kPa−1 | (64 °C)/ kPa−1 | (64 °C) | (64 °C) |
---|---|---|---|---|---|---|---|
D | 0.000061 | 0.134179 | 0.007432 | 0.151634 | 0.190717 | 0.000309 | 0.002042 |
Type | m/S (−12 °C) | Density/(g/cm3) | S (−12 °C)/MPa | m (−12 °C) | (−12 °C) | (−12 °C) |
---|---|---|---|---|---|---|
B-type | 0.00556 | 64.3 | 73 | 0.406 | 76.87 | 5.75 |
Y-type | 0.00617 | 59.9 | 66.2 | 0.409 | 75.30 | 6.34 |
H-type | 0.01 | 48.6 | 42.4 | 0.424 | 48.30 | 26.86 |
Index | m/S (−12 °C) | Density/(g/cm3) | S (−12 °C)/MPa | m (−12 °C) | (−12 °C) | (−12 °C) |
---|---|---|---|---|---|---|
D | 0.020454 | 0.001740 | 0.011869 | 0.000007 | 0.008249 | 0.407520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Ling, X.; Wang, D.; Li, P.; Li, H.; Wang, X.; Wang, Z.; Wei, R.; Zhu, W.; Falchetto, A.C. Research on High- and Low-Temperature Rheological Properties of High-Viscosity Modified Asphalt Binder. Buildings 2023, 13, 1077. https://doi.org/10.3390/buildings13041077
Huang Z, Ling X, Wang D, Li P, Li H, Wang X, Wang Z, Wei R, Zhu W, Falchetto AC. Research on High- and Low-Temperature Rheological Properties of High-Viscosity Modified Asphalt Binder. Buildings. 2023; 13(4):1077. https://doi.org/10.3390/buildings13041077
Chicago/Turabian StyleHuang, Zhongcai, Xianwu Ling, Di Wang, Pengfei Li, Huaquan Li, Xinyu Wang, Zujian Wang, Rong Wei, Weining Zhu, and Augusto Cannone Falchetto. 2023. "Research on High- and Low-Temperature Rheological Properties of High-Viscosity Modified Asphalt Binder" Buildings 13, no. 4: 1077. https://doi.org/10.3390/buildings13041077
APA StyleHuang, Z., Ling, X., Wang, D., Li, P., Li, H., Wang, X., Wang, Z., Wei, R., Zhu, W., & Falchetto, A. C. (2023). Research on High- and Low-Temperature Rheological Properties of High-Viscosity Modified Asphalt Binder. Buildings, 13(4), 1077. https://doi.org/10.3390/buildings13041077