Uncertainty Analysis of Creep Behavior of Compacted Loess and a Non-Deterministic Predication Method for Post-Construction Settlement of a High-Fill Embankment
Abstract
:1. Introduction
2. Materials and Test Method
2.1. Materials
2.2. Test Method
3. Test Results
4. Conversion Correction between Staged Loading and Separated Loading
5. Randomness Analysis for Creep Model Parameters
6. Non-Deterministic Predication Method for Post Construction Settlement of Loess High-Fill Embankment
6.1. Structure of the Proposed Method
6.2. Engineering Application
6.2.1. Calculation Model
6.2.2. Prediction Results
6.3. Limitations of the Method
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trapp, M.; Nestorović, T. Reconstruction of Structural Anomalies out of Seismic Measurements by Means of a Non-Deterministic Full Waveform Inversion Approach for Application in Mechanized Tunneling. J. Appl. Geophys. 2020, 182, 104180. [Google Scholar] [CrossRef]
- Meng, F.; Chen, R.; Kang, X. Effects of Tunneling-Induced Soil Disturbance on the Post-Construction Settlement in Structured Soft Soils. Tunn. Undergr. Space Technol. 2018, 80, 53–63. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, L.; Li, Y.; Ding, J.; Wang, S.; Cheng, W.C. Experimental Study on Uniaxial Compression Behavior of Fissured Loess before and after Vibration. Int. J. Geomech. 2022, 22, 04021277. [Google Scholar] [CrossRef]
- Li, P.; Yin, J.-H.; Yin, Z.-Y.; Chen, Z. One–Dimensional Nonlinear Finite Strain Analysis of Self–Weight Consolidation of Soft Clay Considering Creep. Comput. Geotech. 2023, 153, 105081. [Google Scholar] [CrossRef]
- Hou, J.; Guo, Z.; Li, J.; Zhao, L. Study on Triaxial Creep Test and Theoretical Model of Cemented Gangue-Fly Ash Backfill under Seepage-Stress Coupling. Constr. Build. Mater. 2021, 273, 121722. [Google Scholar] [CrossRef]
- Yin, Q.; Zhao, Y.; Gong, W.; Dai, G.; Zhu, M.; Zhu, W.; Xu, F. A Fractal Order Creep-Damage Constitutive Model of Silty Clay. Acta Geotech. 2023, 1–20. [Google Scholar] [CrossRef]
- Ausilio, E.; Conte, E. Settlement Rate of Foundations on Unsaturated Soils. Can. Geotech. J. 1999, 36, 940–946. [Google Scholar] [CrossRef]
- Conte, E. Plane Strain and Axially Symmetric Consolidation in Unsaturated Soils. Int. J. Geomech. 2006, 6, 131–135. [Google Scholar] [CrossRef]
- Kavvadas, M.; Kalos, A. A Time-Dependent Plasticity Model for Structured Soils (TMS) Simulating Drained Tertiary Creep. Comput. Geotech. 2019, 109, 130–143. [Google Scholar] [CrossRef]
- Wang, L. An Analytical Model for 3D Consolidation and Creep Process of Layered Fractional Viscoelastic Soils Considering Temperature Effect. Soils Found. 2022, 62, 101124. [Google Scholar] [CrossRef]
- Wang, P.; Liu, E.; Song, B.; Liu, X.; Zhang, G.; Zhang, D. Binary Medium Creep Constitutive Model for Frozen Soils Based on Homogenization Theory. Cold Reg. Sci. Technol. 2019, 162, 35–42. [Google Scholar] [CrossRef]
- Xiang, G.; Yin, D.; Cao, C.; Gao, Y. Creep Modelling of Soft Soil Based on the Fractional Flow Rule: Simulation and Parameter Study. Appl. Math. Comput. 2021, 403, 126190. [Google Scholar] [CrossRef]
- Li, D.; Zhang, C.; Ding, G.; Zhang, H.; Chen, J.; Cui, H.; Pei, W.; Wang, S.; An, L.; Li, P.; et al. Fractional Derivative-Based Creep Constitutive Model of Deep Artificial Frozen Soil. Cold Reg. Sci. Technol. 2020, 170, 102942. [Google Scholar] [CrossRef]
- Aung, Y.; Khabbaz, H.; Fatahi, B. Mixed Hardening Hyper-Viscoplasticity Model for Soils Incorporating Non-Linear Creep Rate–H-Creep Model. Int. J. Plast. 2019, 120, 88–114. [Google Scholar] [CrossRef]
- Zhou, W.-H.; Tan, F.; Yuen, K.-V. Model Updating and Uncertainty Analysis for Creep Behavior of Soft Soil. Comput. Geotech. 2018, 100, 135–143. [Google Scholar] [CrossRef]
- Cong, S.; Nie, Z.; Li, X.; Tang, L.; Ling, X.; Hu, Q.; Li, G. Prediction of Compressive Creep Behaviors of Expansive Soil Exposed to Freeze-Thaw Cycle Using a Disturbed State Concept-Based Model. Cold Reg. Sci. Technol. 2022, 204, 103664. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, S.; Peng, S.; Song, Y. Surface Settlement in Saturated Loess Stratum during Shield Construction: Numerical Modeling and Sensitivity Analysis. Tunn. Undergr. Space Technol. 2022, 119, 104205. [Google Scholar] [CrossRef]
- Zhong, J.; Yang, C.; Ma, W.; Zhang, Z. Long-Term Creep Behavior Prediction of Polymethacrylimide Foams Using Artificial Neural Networks. Polym. Test. 2021, 93, 106893. [Google Scholar] [CrossRef]
- Chung, Y.C.; Ooi, J.Y. Linking of Discrete Element Modelling with Finite Element Analysis for Analysing Structures in Contact with Particulate Solid. Powder Technol. 2012, 217, 107–120. [Google Scholar] [CrossRef]
- Fujiwara, H.; Ue, S. Effect of Preloading on Post-Construction Consolidation Settlement of Soft Clay Subjected to Repeated Loading. Soils Found. 1990, 30, 76–86. [Google Scholar] [CrossRef]
- Zheng, Z.; Zang, M.; Chen, S.; Zhao, C. An Improved 3D DEM-FEM Contact Detection Algorithm for the Interaction Simulations between Particles and Structures. Powder Technol. 2017, 305, 308–322. [Google Scholar] [CrossRef]
- Wan, X.; Doherty, J. A Data-Driven Approach for Forecasting Embankment Settlement Accounting for Multi-Stage Construction. Comput. Geotech. 2022, 152, 105001. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Rafidah, M.; Madenci, E.; Özkılıç, Y.O.; Aksoylu, C.; Razman, M.R.; Ramli, Z.; Zakaria, S.Z.S.; Khan, T. Creep Properties and Analysis of Cross Arms’ Materials and Structures in Latticed Transmission Towers: Current Progress and Future Perspectives. Materials 2023, 16, 1747. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Chen, W.; Li, Z.; Zhao, J.; Luo, Q.; Chen, W.; Chen, T. Sustainability of the Polymer SH Reinforced Recycled Granite Residual Soil: Properties, Physicochemical Mechanism, and Applications. J. Soils Sediments 2023, 23, 246–262. [Google Scholar] [CrossRef]
- Nazarzadeh, M.; Sarbishe-ee, S. Probabilistic Analysis of Shallow Foundation Settlement Considering Soil Parameters Uncertainty Effects. Open J. Geol. 2017, 7, 731–743. [Google Scholar] [CrossRef]
- Chen, H.; Shen, Z.; Wang, L.; Tian, Y. Probabilistic Analysis of Skirted Foundations under Combined Loading in Soils Modelled by Non-Stationary Random Fields. Ocean Eng. 2023, 272, 113791. [Google Scholar] [CrossRef]
- Yuan, B.; Chen, W.; Zhao, J.; Li, L.; Liu, F.; Guo, Y.; Zhang, B. Addition of Alkaline Solutions and Fibers for the Reinforcement of Kaolinite-Containing Granite Residual Soil. Appl. Clay Sci. 2022, 228, 106644. [Google Scholar] [CrossRef]
- Aminpour, M.; Alaie, R.; Khosravi, S.; Kardani, N.; Moridpour, S.; Nazem, M. Slope Stability Machine Learning Predictions on Spatially Variable Random Fields with and without Factor of Safety Calculations. Comput. Geotech. 2023, 153, 105094. [Google Scholar] [CrossRef]
- Hu, C.; Lei, R. A Probabilistic Framework for the Stability Analysis of Slopes Considering the Coupling Influence of Random Ground Motion and Conditional Random Field. Soil Dyn. Earthq. Eng. 2023, 164, 107632. [Google Scholar] [CrossRef]
- Zhu, B.; Pei, H.; Yang, Q. Reliability Analysis of Submarine Slope Considering the Spatial Variability of the Sediment Strength Using Random Fields. Appl. Ocean Res. 2019, 86, 340–350. [Google Scholar] [CrossRef]
- Zhu, B.; Hiraishi, T.; Mase, H.; Pei, H.; Yang, Q. Probabilistic Analysis of Wave-Induced Dynamic Response in a Poroelastic Sloping Seabed Using Random Finite Element Method. Ocean Eng. 2022, 252, 111231. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, J.; Cai, C.S.; Zhou, Y.; Wang, L.; Zhang, J. Time-Dependent Reliability Assessment of Aging Structures Considering Stochastic Resistance Degradation Process. Reliab. Eng. Syst. Saf. 2022, 217, 108105. [Google Scholar] [CrossRef]
- Yuan, Y.; Hu, C.; Mei, Y.; Wang, X.; Wang, J. Slope Reliability Analysis Based on Curvilinear Local Averaging of a 2-D Random Field. Comput. Geotech. 2021, 137, 104247. [Google Scholar] [CrossRef]
- Halder, K.; Chakraborty, D. Influence of Soil Spatial Variability on the Response of Strip Footing on Geocell-Reinforced Slope. Comput. Geotech. 2020, 122, 103533. [Google Scholar] [CrossRef]
- Gong, W.; Juang, C.H.; Martin, J.R.; Tang, H.; Wang, Q.; Huang, H. Probabilistic Analysis of Tunnel Longitudinal Performance Based upon Conditional Random Field Simulation of Soil Properties. Tunn. Undergr. Space Technol. 2018, 73, 1–14. [Google Scholar] [CrossRef]
- Yu, X.; Cheng, J.; Cao, C.; Li, E.; Feng, J. Probabilistic Analysis of Tunnel Liner Performance Using Random Field Theory. Adv. Civ. Eng. 2019, 2019, 1–18. [Google Scholar] [CrossRef]
- Puglia, V.B.; Kosteski, L.E.; Riera, J.D.; Iturrioz, I. Random Field Generation of the Material Properties in the Lattice Discrete Element Method. J. Strain Anal. Eng. Des. 2019, 54, 236–246. [Google Scholar] [CrossRef]
- Yuan, Y.; Hu, C.; Li, L.; Mei, Y.; Wang, X. Regional-Modal Optimization Problems and Corresponding Normal Search Particle Swarm Optimization Algorithm. Swarm Evol. Comput. 2023, 78, 101257. [Google Scholar] [CrossRef]
- Hu, C.; Yuan, Y.; Mei, Y.; Wang, X.; Liu, Z. Comprehensive Strength Deterioration Model of Compacted Loess Exposed to Drying-Wetting Cycles. Bull. Eng. Geol. Environ. 2020, 79, 383–398. [Google Scholar] [CrossRef]
- Yuan, B.; Li, Z.; Zhao, Z.; Ni, H.; Su, Z.; Li, Z. Experimental Study of Displacement Field of Layered Soils Surrounding Laterally Loaded Pile Based on Transparent Soil. J. Soils Sediments 2021, 21, 3072–3083. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, H.; Zhang, B.; Dong, Z.; Wu, P. Short-Term Creep Behaviors of Seawater Sea-Sand Coral Aggregate Concrete: An Experimental Study with Rheological Model and Neural Network. Constr. Build. Mater. 2023, 363, 129786. [Google Scholar] [CrossRef]
- Wang, G.-F.; Sun, F.; Xiong, X.-H.; He, L.; Zhang, K.-H. A 3D Creep Model Considering Disturbance Damage and Creep Damage and Its Application in Tunnel Engineering. Math. Probl. Eng. 2020, 2020, 7073089. [Google Scholar] [CrossRef]
Specific Weight | Liquid Limit/% | Plastic Limit/% | Plasticity Index/% | Particle Composition/% | ||
---|---|---|---|---|---|---|
>0.075 mm | 0.075~0.005 mm | <0.005 mm | ||||
2.70 | 29.70 | 18.40 | 11.30 | 1.05% | 78.43% | 20.52% |
Sample NO. | Loading Type | Loading Level | Repetitive Times | Dry Density/ (g/cm3) | Water Content (%) |
---|---|---|---|---|---|
C1-1~C1-45; C2-1~C2-45; C3-1~C3-45; C4-1~C4-45; C5-1~C5-45 | Separated loading | 100 kPa, 200 kPa, 400 kPa, 800 kPa, 1600 kPa | 45 | 1.68 | 10% |
S1-1~S1-45; S2-1~S2-45; S3-1~S3-45; S4-1~S4-45; S5-1~S5-45 | Staged loading |
Creep Parameters | 100 kPa | 200 kPa | 400 kPa | 800 kPa | 1600 kPa | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. | |
E0/MPa | 48.738 | 2.214 | 41.851 | 1.614 | 47.759 | 0.814 | 56.812 | 1.479 | 67.503 | 1.325 |
E1/MPa | 910.126 | 13.808 | 4027.298 | 92.566 | 1120.534 | 85.481 | 2647.032 | 123.936 | 1070.480 | 64.753 |
η1/MPa.h | 2332.207 | 288.536 | 15,376.760 | 597.842 | 13,389.650 | 1113.850 | 22,900.400 | 1828.887 | 54.018 | 1.227 |
E2/MPa | 37.705 | 2.204 | 60.803 | 1.014 | 126.803 | 11.204 | 171.750 | 7.748 | 60.470 | 1.450 |
a | 0.517 | 0.032 | 0.387 | 0.008 | 1.214 | 0.092 | 0.934 | 0.023 | 0.267 | 0.008 |
b | 0.200 | 0.015 | 0.222 | 0.017 | 0.227 | 0.015 | 0.230 | 0.010 | 0.189 | 0.009 |
Load/kPa | Time/h | Mean/% | Standard Deviation/% | Strain Range/% |
---|---|---|---|---|
100 | 96 | 0.377 | 0.007 | 0.36~0.40 |
200 | 96 | 0.653 | 0.019 | 0.60~0.72 |
400 | 96 | 1.120 | 0.035 | 1.02~1.23 |
800 | 96 | 1.778 | 0.040 | 1.63~1.94 |
1600 | 96 | 3.550 | 0.042 | 3.43~3.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.-L.; Hu, C.-M.; Mei, Y.; Wang, F.-F.; Wang, G. Uncertainty Analysis of Creep Behavior of Compacted Loess and a Non-Deterministic Predication Method for Post-Construction Settlement of a High-Fill Embankment. Buildings 2023, 13, 1118. https://doi.org/10.3390/buildings13051118
Yuan Y-L, Hu C-M, Mei Y, Wang F-F, Wang G. Uncertainty Analysis of Creep Behavior of Compacted Loess and a Non-Deterministic Predication Method for Post-Construction Settlement of a High-Fill Embankment. Buildings. 2023; 13(5):1118. https://doi.org/10.3390/buildings13051118
Chicago/Turabian StyleYuan, Yi-Li, Chang-Ming Hu, Yuan Mei, Fang-Fang Wang, and Ge Wang. 2023. "Uncertainty Analysis of Creep Behavior of Compacted Loess and a Non-Deterministic Predication Method for Post-Construction Settlement of a High-Fill Embankment" Buildings 13, no. 5: 1118. https://doi.org/10.3390/buildings13051118
APA StyleYuan, Y. -L., Hu, C. -M., Mei, Y., Wang, F. -F., & Wang, G. (2023). Uncertainty Analysis of Creep Behavior of Compacted Loess and a Non-Deterministic Predication Method for Post-Construction Settlement of a High-Fill Embankment. Buildings, 13(5), 1118. https://doi.org/10.3390/buildings13051118